Electronic Journal of Differential Equations, Vol. 2003(2003), No. 125, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXPONENTIAL STABILITY OF LINEAR AND ALMOST PERIODIC SYSTEMS ON BANACH SPACES

CONSTANTIN BUŞE & VASILE LUPULESCU

ABSTRACT. Let $v_f(\cdot,0)$ the mild solution of the well-posed inhomogeneous Cauchy problem

$$\dot{v}(t) = A(t)v(t) + f(t), \quad v(0) = 0 \quad t \ge 0$$

on a complex Banach space X, where $A(\cdot)$ is an almost periodic (possible unbounded) operator-valued function. We prove that $v_f(\cdot, 0)$ belongs to a suitable subspace of bounded and uniformly continuous functions if and only if for each $x \in X$ the solution of the homogeneous Cauchy problem

$$\dot{u}(t) = A(t)u(t), \quad u(0) = x \quad t \ge 0$$

is uniformly exponentially stable. Our approach is based on the spectral theory of evolution semigroups.

1. INTRODUCTION

Let X be a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. The norms on X and $\mathcal{L}(X)$ will be denoted by $\|\cdot\|$. We recall that a family $\mathcal{U} = \{U(t,s)\}_{t\geq s}$ of bounded linear operators acting on X, is a strongly continuous and exponentially bounded evolution family (which we will call simply an evolution family), if U(t,t) = Id (Id is the identity operator on X), U(t,s)U(s,r) = U(t,r) for all $t \geq s \geq r$, for each $x \in X$ the map $(t,s) \mapsto U(t,s)x$ is continuous and there exist $\omega \in \mathbb{R}$ and $M_{\omega} \geq 1$ such that

$$\|U(t,s)\| \le M_{\omega} e^{\omega(t-s)} \quad \text{for all } t \ge s.$$

$$(1.1)$$

If $\mathcal{F}(\mathbb{R}, X)$ is a suitable Banach function space, then for each $t \geq 0$ the operator $\mathcal{T}(t)$ defined by

$$(\mathcal{T}(t)f)(s) = U(s, s-t)f(s-t), \quad s \in \mathbb{R}$$
(1.2)

acts on $\mathcal{F}(\mathbb{R}, X)$ and the family $\{\mathcal{T}(t)\}_{t\geq 0}$ is a strongly continuous semigroup which is called the *evolution semigroup* associated with the family \mathcal{U} on the space $\mathcal{F}(\mathbb{R}, X)$. For example, $\mathcal{F}(\mathbb{R}, X) = C_{00}(\mathbb{R}, X)$ the Banach space of all continuous functions that vanish at infinities and $\mathcal{F}(\mathbb{R}, X) = L^p(\mathbb{R}, X)$ with $1 \leq p < \infty$, the usual Lebesgue-Bochner space, are suitable. Similar results were obtained when $\mathcal{F}(\mathbb{R}, X)$ are certain subspaces of $BUC(\mathbb{R}, X)$ the Banach space of all X-valued, bounded

²⁰⁰⁰ Mathematics Subject Classification. 35B10, 35B15, 35B40, 47A10, 47D03.

Key words and phrases. Almost periodic functions, uniform exponential stability,

evolution semigroups.

 $[\]textcircled{O}2003$ Texas State University - San Marcos.

Submitted November 13, 2003. Published December 16, 2003.

and uniformly continuous functions on \mathbb{R} , endowed with the sup-norm. Let $\mathbb{R}_+ := [0, \infty)$. The space $BUC(\mathbb{R}_+, X)$ can be defined in a similar way.

We will use the following closed subspaces of $BUC(\mathbb{R}, X)$, see [9, 14, 18]:

 $AP(\mathbb{R}, X)$ is the smallest closed subspace of $BUC(\mathbb{R}, X)$ which contains all functions of the form:

$$t \mapsto e^{i\mu t} x : \mathbb{R} \to X, \quad \mu \in \mathbb{R}, \quad x \in X;$$

 $C_0^+(\mathbb{R}, X)$ is the subspace of $BUC(\mathbb{R}, X)$ consisting by all functions vanishing at ∞ ;

 $AAP_r^+(\mathbb{R}, X)$ is the space consisting by all functions f with relatively compact range for which there exist $g \in AP(\mathbb{R}, X)$ and $h \in C_0^+(\mathbb{R}, X)$ such that f = g + h. $P_q(\mathbb{R}, X)$, with strictly positive fixed q, is the space consisting by all continuous and q-periodic functions.

The evolution family \mathcal{U} is called *q*-periodic if the function $U(t + \cdot, s + \cdot)$ is *q*-periodic for every pair (t, s) with $t \geq s$. Also we say that the family \mathcal{U} is *asymptotically almost periodic with relatively compact range* (a.a.p.r.) if for each $x \in X$ and each pair (t, s) with $t \geq s$, the map $U(t + \cdot, s + \cdot)x$ lies in the space $AAP_r^+(\mathbb{R}, X)$. If the evolution family \mathcal{U} is *q*-periodic and $\mathcal{F}(\mathbb{R}, X) = P_q(\mathbb{R}, X)$ or $\mathcal{F}(\mathbb{R}, X) = AP(\mathbb{R}, X)$ then the semigroup $\mathcal{T} = \{\mathcal{T}(t)\}_{t\geq 0}$ defined in (1.2) acts on $P_q(\mathbb{R}, X)$ or $AP(\mathbb{R}, X)$ and it is strongly continuous. Moreover, if \mathcal{U} is a.a.p.r. and for each $x \in X$, $\lim_{t\to 0+} U(s, s - t)x = x$, uniformly for $s \in \mathbb{R}$, then the evolution semigroup \mathcal{T} is defined on $AAP_r^+(\mathbb{R}, X)$ and is strongly continuous. More details related to these results can be found in [1, 2, 10, 11, 12, 13, 15, 16]. Interesting results on this subject in the general framework of dynamical systems have been obtained by D. N. Cheban [6, 7].

2. Almost periodic evolution families and evolution semigroups

An X-valued function f defined on \mathbb{R} is called almost periodic (a.p.) if it belongs to the space $AP(\mathbb{R}, X)$. Let \mathcal{U} be a strongly continuous and exponentially bounded evolution family on the Banach space X and let f be a X-valued function on \mathbb{R} . We will consider the following hypotheses about \mathcal{U} and f.

- (H1) The function $U(\cdot, \cdot t)x$ is a.p. for every $t \ge 0$ and any $x \in X$.
- (H2) The function $U(\cdot, \cdot t)x$ has relatively compact range for every $t \ge 0$ and any $x \in X$.
- (H3) For each $x \in X \lim_{t \to 0} U(s, s t)x = x$ uniformly for $s \in \mathbb{R}$.
- (H4) The function f is a.p.

It is well-known that (H1) implies (H2).

Theorem 2.1. (i) If the evolution family \mathcal{U} satisfies (H1) and f satisfies (H4) then for each $t \geq 0$, the function $\mathcal{T}(t)f$ is a.p.

- (ii) If U satisfies (H2) and f satisfies (H4) then for each t ≥ 0, the map T(t)f has relatively compact range.
- (iii) If U satisfies (H1) and (H3) then the semigroup T acts on AP(ℝ, X) and is strongly continuous.
- (iv) If \mathcal{U} satisfies (H1) and (H3) then the evolution semigroup \mathcal{T} is defined on $AAP_r^+(\mathbb{R}, X)$ and is strongly continuous.

Proof. (i) Let $p_n(t) := \sum_{k=0}^n c_k e^{i\mu_k t} x_k$ with $c_k \in \mathbb{C}$, $\mu_k \in \mathbb{R}$, $t \in \mathbb{R}$ and $x_k \in X$ such that $p_n(s)$ converges uniformly at f(s) for $s \in \mathbb{R}$. Then $U(s, s - t)p_n(s - t)$

EJDE-2003/125

converges uniformly at U(s, s-t)f(s-t) for $s \in \mathbb{R}$. Since the map:

$$s \mapsto U(s, s-t)p_n(s-t) = \sum_{k=0}^n c_k e^{i\mu_k(s-t)}U(s, s-t)x_k$$

is a. p. its limit $U(\cdot, \cdot - t)f(\cdot - t)$ is a.p. as well.

(ii) Let $t \ge 0$ be fixed. First we prove that for each $x \in X$ and each $\mu \in \mathbb{R}$ the function $s \mapsto U(s, s - t)e^{i\mu(s-t)}x$ has relatively compact range. Let (s_n) be a sequence of real numbers such that $(U(s_n, s_n - t)x)$ converges in X. Since the sequence $(e^{i\mu(s_n-t)})$, is bounded in \mathbb{C} , we can suppose that the sequence $(e^{i\mu(s_n-t)}U(s_n, s_n - t)x)$ converges in X. Let $p_N(s-t) = \sum_{k=0}^N c_k e^{i\mu_k(s-t)}x_k$, as above, be such that $p_N(s-t) \to f(s-t)$ uniformly for $s \in \mathbb{R}$. Let $\varepsilon > 0$ and $N_0 \in \mathbb{N}$ be such that the inequality

$$Me^{\omega t} \|f(s_n - t) - p_{N_0}(s_n - t)\| < \frac{\varepsilon}{2}$$

holds for n sufficiently large. We denote by y_t the limit in X of the sequence $(U(s_n, s_n - t)p_{N_0}(s_n - t))$. Then, for n sufficiently large, we have

$$\begin{aligned} \|U(s_n, s_n - t)f(s_n - t) - y_t\| \\ &\leq \|U(s_n, s_n - t)f(s_n - t) - U(s_n, s_n - t)p_{N_0}(s_n - t)\| \\ &+ \|U(s_n, s_n - t)p_{N_0}(s_n - t)\| \\ &\leq Me^{\omega t} \|f(s_n - t) - p_{N_0}(s_n - t)\| + \|U(s_n, s_n - t)p_{N_0}(s_n - t) - y_t\| < \varepsilon. \end{aligned}$$

Hence the map $U(\cdot, \cdot - t)f(\cdot - t)$ has relatively compact range. (iii) Let $f \in AP(\mathbb{R}, X)$ and $\varepsilon > 0$. We can choose $N_0 \in \mathbb{N}$ and $\delta > 0$ such that the following three inequalities

$$\sup_{s \in \mathbb{R}} \|U(s, s-t)p_{N_0}(s-t) - p_{N_0}(s-t)\| \le \sum_{k=0}^{N_0} |c_k\| \|U(s, s-t)x_k - x_k\| < \frac{\varepsilon}{3},$$
$$\sup_{s \in \mathbb{R}} \|p_{N_0}(s-t) - f(s-t)\| < \frac{\varepsilon}{3},$$
$$\sup_{s \in \mathbb{R}} \|f(s-t) - f(s)\| < \frac{\varepsilon}{3}$$

hold for all $0 \leq t < \delta$. Now it is clear that $\lim_{t\to 0} \|\mathcal{T}(t)f - f\|_{\infty} = 0$, hence the semigroup \mathcal{T} is strongly continuous.

(iv) Finally we show that the semigroup \mathcal{T} given in (1.2) on $AAP_r^+(\mathbb{R}, X)$ is strongly continuous. Let $\varepsilon > 0$ be fixed. We can choose $\delta_1 > 0$ such that the inequality

$$\sup_{s \in \mathbb{R}} \|f(s-t) - f(s)\| < \frac{\varepsilon}{2}$$

holds for $0 \le t < \delta_1$. Since f has relatively compact range there exist $s_1, s_2, \ldots, s_{\nu}$ in \mathbb{R} such that:

$$\overline{\operatorname{range}(f)} \subset \cup_{k=1}^{\nu} B\big(f(s_k), \frac{\varepsilon}{6Me^{\omega t}}\big), \quad \omega > 0, \ t \ge 0.$$

Let $s \in \mathbb{R}, t \ge 0$ and $k \in \{1, \ldots, \nu\}$ such that $f(s-t) \in B(f(s_k), \frac{\varepsilon}{6Me^{\omega t}})$. From hypothesis it follows that there exists $\delta_2 > 0$ such that the inequality

$$\|U(s,s-t)f(s_k) - f(s_k)\| < \varepsilon/6$$

holds for $0 \le t < \delta_2$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then for every t in $[0, \delta)$, we have

$$\begin{aligned} \|U(s,s-t)f(s-t) - f(s)\| \\ &\leq \|U(s,s-t)f(s-t) - U(s,s-t)f(s_k)\| + \|U(s,s-t)f(s_k) - f(s_k)\| \\ &+ \|f(s_k) - f(s-t)\| + \|f(s-t) - f(s)\| \\ &\leq Me^{\omega t}\|f(s-t) - f(s_k)\| + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{2} < \varepsilon; \end{aligned}$$

therefore, $\lim_{t\to 0} \|\mathcal{T}(t)f - f\|_{\infty} = 0$. In the above considerations we supposed that \mathcal{T} acts on $AAP_r^+(\mathbb{R}, X)$. Next, we show that this is true. Let $f \in AAP_r^+(\mathbb{R}, X)$ and $t \geq 0$ be fixed. From the hypothesis it results that there exist a sequence (s_n) of real numbers and y_t, z_t in X such that

$$f(s_n - t) \to y_t \quad \text{and} \quad U(s_n, s_n - t)y_t \to z_t \quad \text{as} n \to \infty.$$

Then $U(s_n, s_n - t)f(s_n - t) \to z_t$ as $n \to \infty$. Indeed, we have
 $\|U(s_n, s_n - t)f(s_n - t) - z_t\| \le \|U(s_n, s_n - t)[f(s_n - t) - y_t]\| + \|U(s_n, s_n - t)y_t - z_t\| \to 0$
as $n \to \infty$.

3. Evolution semigroups and exponential stability

Let $\mathcal{F}_q(\mathbb{R}, X) := P_q(\mathbb{R}, X) \oplus C_0^+(\mathbb{R}, X)$ and \mathcal{U} be a *q*-periodic evolution family of bounded linear operators on the Banach space X. It is easy to see that the evolution semigroup \mathcal{T} defined in (1.2) acts on $\mathcal{F}_q(\mathbb{R}, X)$ and it is strongly continuous. By $\mathcal{F}_q^0(\mathbb{R}_+, X)$ we will denote the subspace of $BUC(\mathbb{R}_+, X)$ consisting of all functions f on \mathbb{R}_+ for which f(0) = 0 and there exists F_f in $\mathcal{F}_q(\mathbb{R}, X)$ such that $F_f(t) = f(t)$ for all $t \geq 0$. For such f we consider the map:

$$(\mathcal{S}(t)f)(s) := \begin{cases} U(s, s-t)f(s-t) & \text{if } s \ge t \\ 0 & \text{if } 0 \le s < t. \end{cases}$$
(3.1)

Proposition 3.1. With the previous notation we have that S(t) acts on $\mathcal{F}_q^0(\mathbb{R}_+, X)$ for each $t \ge 0$ and the evolution semigroup $S = \{S(t)\}_{t\ge 0}$ is strongly continuous.

Proof. Let $t \geq 0$ be fixed, $f \in \mathcal{F}_q^0(\mathbb{R}_+, X)$ and $\tilde{f} := \mathcal{S}(t)f$. Then $F_f = G_f + H_f$ with $G_f \in P_q(\mathbb{R}, X)$, $H_f \in C_0^+(\mathbb{R}, X)$ and $f = G_f + H_f$ on \mathbb{R}_+ . Let us consider the maps $\tilde{G}_f \in P_q(\mathbb{R}, X)$ and $\tilde{H}_f \in C_0^+(\mathbb{R}, X)$ defined by

$$\tilde{G}_f(s) = (\mathcal{T}(t)G_f)(s), \quad s \in \mathbb{R},$$

$$\tilde{H}_f(s) = \begin{cases} (\mathcal{T}(t)H_f)(s) & \text{if } s \ge t \\ -(\mathcal{T}(t)G_f)(s) & \text{if } s < t. \end{cases}$$

If t > 0 then $\tilde{G}_f(0) + \tilde{H}_f(0) = 0$, and if t = 0 then

$$\tilde{G}_f(0) + \tilde{H}_f(0) = (\mathcal{T}(0)G_f)(0) + (\mathcal{T}(0)H_f)(0) = U(0,0)G_f(0) + U(0,0)H_f(0) = 0.$$

On the other hand it is clear that $\tilde{f} = \tilde{G}_f + \tilde{H}_f$ on \mathbb{R}_+ , hence \tilde{f} belongs to $\mathcal{F}_q^0(\mathbb{R}_+, X)$. Using the strong continuity of \mathcal{T} and the uniform continuity of f, it follows that

$$\begin{aligned} \|\mathcal{S}(t)f - f\|_{\infty} &\leq \sup_{s \geq t} \|(\mathcal{T}(t)F_{f})(s) - F_{f}(s)\| + \sup_{s \in [0,t]} \|f(s)\| \\ &\leq \|\mathcal{T}(t)F_{f} - F_{f}\|_{\mathcal{F}_{q}(\mathbb{R},X)} + \sup_{s \in [0,t]} \|f(s)\|. \end{aligned}$$

EJDE-2003/125

The last term tends to 0 when t tends to 0. Therefore, the semigroup S is strongly continuous.

The following theorem seems to be a new characterization of the exponential stability for evolution families.

Theorem 3.2. Let \mathcal{U} be a q-periodic evolution family of bounded linear operators on the Banach space X. The following two statements are equivalent.

- (1) The family \mathcal{U} is exponentially stable, that is, we can choose a negative ω such that (1.1) holds.
- (2) For each f in $\mathcal{F}_q^0(\mathbb{R}_+, X)$ the map $t \mapsto \int_0^t U(t,\tau)f(\tau)d\tau : \mathbb{R}_+ \to X$ is an element of $\mathcal{F}_q^0(\mathbb{R}_+, X)$.

Proof. (2) \Rightarrow (1) It is clear that $\mathcal{F}_q^0(\mathbb{R}_+, X)$ contains $C_{00}(\mathbb{R}_+, X)$. Then we can apply [3, Theorem 3] which works with $C_{00}(\mathbb{R}_+, X)$ instead of $C_0(\mathbb{R}_+, X)$. Here $C_{00}(\mathbb{R}_+, X)$ denotes the subspace of $BUC(\mathbb{R}_+, X)$ consisting by all functions that vanish at 0 and ∞ .

(1) \Rightarrow (2) \mathcal{U} is exponentially stable so the semigroup \mathcal{S} defined in (3.1) is exponentially stable as well. Then the generator

$$G: D(G) \subset \mathcal{F}_q^0(\mathbb{R}_+, X) \to \mathcal{F}_q^0(\mathbb{R}_+, X)$$

of $\mathcal S$ is an invertible operator. The proof of Theorem 3.2 will be complete using the following lemma. \Box

Lemma 3.3. Let $\{u, f\}$ belong to $\mathcal{F}_q^0(\mathbb{R}_+, X)$. The following statements are equivalent.

(1) $u \in D(G)$ and Gu = -f. (2) $u(t) = \int_0^t U(t,s)f(s)ds$ for all $t \ge 0$.

This Lemma is well-known for certain spaces instead of $\mathcal{F}_q^0(\mathbb{R}_+, X)$.

Let $\mathcal{A}_0(\mathbb{R}_+, X)$ be the set of all X-valued functions f on \mathbb{R}_+ for which there exist $t_f \geq 0$ and $F_f \in AP(\mathbb{R}, X)$ such that $F_f(t_f) = 0$ and

$$f(t) = \begin{cases} 0 & \text{if } t \in [0, t_f] \\ F_f(t) & \text{if } t > t_f. \end{cases}$$

The smallest closed subspaces of $BUC(\mathbb{R}_+, X)$ which contains $\mathcal{A}_0(\mathbb{R}_+, X)$ will be denoted by $\mathcal{AP}_0(\mathbb{R}_+, X)$. By $AAP_{r0}^+(\mathbb{R}_+, X)$ we will denote the space consisting by all functions f for which there exists $F_f \in AAP_r^+(\mathbb{R}, X)$ such that $F_f(0) = 0$ and $F_f = f$ on \mathbb{R}_+ .

- **Proposition 3.4.** (1) If the evolution family \mathcal{U} satisfies the hypothesis (H1) and (H3) then the semigroup \mathcal{S} , given in (3.1) acts on $\mathcal{AP}_0(\mathbb{R}, X)$. Moreover the semigroup \mathcal{S} is strongly continuous.
 - (2) If the family U satisfies h₁, h₂ and (H3) then the semigroup S acts on AAP⁺_{r0}(ℝ, X) and is strongly continuous.

The proof of (1) can be obtained as in [4, Lemma 2.2], and the proof on (2) as in [5, Lemma 2.2]. Thus we omit their proof.

For every real fixed T we consider the spaces $BUC([T, \infty), X)$ and $AP([T, \infty), X)$ Recall that $AP([T, \infty))$ is bounded locally dense in $BUC([T, \infty), X)$; that is, for every $\varepsilon > 0$, every bounded and closed interval $I \subset [T, \infty)$ and every $f \in C(I, X)$

there exist a function $f_{\varepsilon,I} \in AP([T,\infty), X)$ and a positive constant L, independent of ε and I such that

$$\sup_{s \in I} \|f(s) - f_{\varepsilon,I}(s)\| \le \varepsilon$$

and $||f_{\varepsilon,I}||_{BUC([T,\infty),X)} \le L||f||_{C(I,X)}$ (see [17], page 335).

Let $BUC_0(\mathbb{R}_+, X)$ be the space of functions in $BUC(\mathbb{R}_+, X)$ for which f(0) = 0. It is clear that $\mathcal{A}_0(\mathbb{R}_+, X)$ is bounded locally dense in $BUC_0(\mathbb{R}_+, X)$ hence $\mathcal{AP}_0(\mathbb{R}_+, X)$ is bounded locally dense in $BUC_0(\mathbb{R}_+, X)$ as well.

Theorem 3.5. Suppose that \mathcal{U} is an evolution family that satisfies hypotheses (H1) and (H3). The following statements are equivalent.

- (1) The family \mathcal{U} is exponentially stable.
- (2) For each $f \in \mathcal{AP}_0(\mathbb{R}_+, X)$ the map $t \mapsto \int_0^t U(t, s) f(s) ds : \mathbb{R}_+ \to X$ is in $\mathcal{AP}_0(\mathbb{R}_+, X)$.

Proof. The implication $(1) \Rightarrow (2)$ follows as in [4, Theorem 2.3]. Now we shoe that $(2) \Rightarrow (1)$. By the uniform boundedness theorem there is a constant K > 0 such that for every $g \in \mathcal{AP}_0(\mathbb{R}_+, X)$,

$$\sup_{s>0} \left\| \int_0^t U(t,s)g(s)ds \right\| \le K \|g\|_{\infty} \,.$$

For a given $f \in C_0(\mathbb{R}_+, X)$ and t > 0, let $M_t = \sup_{0 \le r \le s \le t} ||U(s, r)||$ and let $f_t \in \mathcal{AP}_0(\mathbb{R}_+, X)$ be a mapping such that

$$\sup_{0 \le s \le t} \|f(s) - f_t(s)\| \le \frac{1}{tM_t} \|f\|_{C_0(\mathbb{R}_+, X)}$$
$$\|f_t\|_{BUC_0(\mathbb{R}_+, X)} \le L \|f\|_{C_0(\mathbb{R}_+, X)}.$$

It follows that

$$\left\| \int_{0}^{t} U(t,s)f(s)ds \right\| \leq \left\| \int_{0}^{t} U(t,s)[f(s) - f_{t}(s)]ds \right\| + \left\| \int_{0}^{t} U(t,s)f_{t}(s)ds \right\|$$
$$\leq (1 + KL) \cdot \|f\|_{C_{0}(\mathbb{R}_{+},X)}.$$

Then by [3, Theorem 3], \mathcal{U} is exponentially stable.

Now we can write the spectral mapping theorem for the evolution semigroup \mathcal{S} on $\mathcal{AP}_0(\mathbb{R}_+, X)$ corresponding to an evolution family \mathcal{U} . Of course similar results hold for the spaces $\mathcal{F}_q^0(\mathbb{R}_+, X)$ and $AAP_{r0}^+(\mathbb{R}_+, X)$. With (G, D(G)) we will denote the generator of \mathcal{S} with its maximal domain. By $\sigma(G)$ we denote the spectrum of G. The spectral bound s(G) is defined by

$$\mathbf{s}(G) = \sup\{\operatorname{Re}(\lambda) : \lambda \in \sigma(G)\},\$$

and the spectral radius of $\mathcal{S}(t)$ is defined by

$$r(\mathcal{S}(t)) = \sup\{|\lambda| : \lambda \in \sigma(\mathcal{S}(t))\}.$$

Theorem 3.6. If \mathcal{U} is an evolution family that satisfies the hypothesis (H1) and (H3) then the evolution semigroup S associated with \mathcal{U} , defined on $\mathcal{AP}_0(\mathbb{R}_+, X)$, satisfies the spectral mapping theorem; that is,

$$\sigma(\mathcal{S}(t)) \setminus \{0\} = e^{t\sigma(G)}, \quad t \ge 0.$$

Moreover, $\sigma(G) = \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) \le s(G)\}$, and for every t > 0, $\sigma(\mathcal{S}(t)) = \{\lambda \in \mathbb{C} : |\lambda| \le r(\mathcal{S}(t)).$ EJDE-2003/125

Acknowledgements. The authors would like to thank the anonymous referees for their comments and suggestions on a preliminary version of this article.

References

- W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birckhaüser, Basel, 2001.
- [2] C. J. K. Batty, R. Chill, Bounded convolutions and solutions of inhomogeneous Cauchy problems, Forum. Math. 11, No.2, 253-277, (1999).
- [3] C. Buşe, On the Perron-Bellman theorem for evolutionary processes with exponential growth in Banach spaces, New Zealand Journal of Mathematics, 27, (1998), 183-190.
- [4] C. Buşe, O. Jitianu, A new theorem on exponential stability of periodic evolution families on Banach spaces, Electron. J. Diff. Eqns., Vol. 2003, (2003), No. 14, pp.1-10.
- [5] C. Buşe, A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line, Electron. J. Diff. Eqns., Vol. 2002 (2002), No. 70, pp. 1-11.
- [6] D. N. Cheban, Relationship between different types of stability for linear almost periodic systems in Banach spaces, Electron. J. Diff. Eqns., Vol. 1999 (1999), No. 46, pp.1-9.
- [7] D. N. Cheban, Uniform exponential stability of linear periodic systems in a Banach spaces, Electron. J. Diff. Eqns., Vol. 2001 (2001), No. 03, pp. 1-12.
- [8] S. Clark, Y. Latushkin, S. Montgomery-Smith, and T. Randolph, Stability radius and internal versus, external stability: An evolution semigroup approach, SIAM J. Control and Optimization, 38, (2000),1757-1793.
- [9] C. Corduneanu, Almost-Periodic Functions, Interscience Wiley, New-York-London, Sydney-Toronto, 1968.
- [10] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Amer. Math. Soc., 1999.
- R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428-445.
- [12] W. Hutter, F. Räbiger, Spectral mapping theorems for evolution semigroups on spaces of almost periodic functions, Quaest. Math. 26, No.2, 191-211(2003).
- [13] Y. Latushkin, S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Funct. Anal. 127(1995), 173-197.
- [14] B. M. Levitan, V. V. Zhicov, Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.
- [15] Nguyen Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32, (1998), 332-353.
- [16] S. Naito, Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Diff. Equations 152 (1999), 338-376.
- [17] J. van Neerven, Characterization of Exponential Stability of a Semigroups of Operators in Terms of its Action by Convolution on Vector-Valued Function Spaces over ℝ₊, J. Diff. Eq. 124, No. 2 (1996), 324-342.
- [18] S. D. Zaidman, Almost-Periodic Functions in Abstract Spaces, Research Notes in Math. 126, Pitman, Boston-London-Melbourne, 1985.

Constantın Buşe

Department of Mathematics, West University of Timişoara, Bd. V. Pârvan, No. 4, Timişoara, România

E-mail address: buse@hilbert.math.uvt.ro

Vasile Lupulescu

DEPARTMENT OF MATHEMATICS, "CONSTANTIN BRÂNCUŞI"- UNIVERSITY OF TG. JIU, BD. REPUB-LICII, NO. 1, TG. JIU, ROMÂNIA

E-mail address: vasile@utgjiu.ro