ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2003**(2003), No. 13, pp. 1–4. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

Travelling waves for a neural network *

Fengxin Chen

Abstract

In this note, we give another proof of existence and uniqueness of travelling waves for a neural network equations and prove that all travelling waves are monotonic.

1 Introduction

The following single-layer neural network over the real line was introduced by Ermentrout and Mcleod [6]:

$$u(x,t) = \int_{-\infty}^{t} ds \int_{-\infty}^{\infty} dy h(t-s)k(x-y)S(u(y,s))$$
(1.1)

where $x \in \mathbb{R}$ and $t \in \mathbb{R}$; u(x,t) is the mean membrane potential of a patch of tissue at position x and at time t; S(u) is a nonlinear function and S(u(x,t)) is the firing rate; h and k are nonnegative functions defined $[0,\infty)$ and \mathbb{R} respectively. When $h(t) = e^{-t}$ for t > 0, then equation (1.1) is equivalent to the following differential equation:

$$\partial u(x,t)/\partial t + u(x,t) = k * S(u)(x,t), \tag{1.2}$$

where k*S(u) denotes the convolution of k with S(u), i.e., $k*S(u)(x,t)=\int_{-\infty}^{\infty}k(x-y)S(u(y,t))dy.$

The existence and uniqueness of travelling waves of (1.1) of the form $u(x,t) = \phi(x - ct)$ satisfying $\phi(-\infty) = 0$ and $\phi(\infty) = 1$ are established in [6], where ϕ is a smooth function, called the wave profile, and c is a constant, called the wave speed. A homotopy argument is employed to prove the existence, which has fostered other studies in similar topics (see [2, 3, 4, 5, 7, 8], for example). This note serves to supplement the results obtained in [6], by applying results in [7], where a comparison argument, together with constructions of appropriate super- and sub- solutions, is used to study travelling waves for (1.2).

First we state the conditions on h, k, and S. We assume that

(A1) $h \in C^1[0,\infty)$ is a positive function on $[0,\infty)$ with $\int_0^\infty h(t)dt = 1$ and $\int_0^\infty th(t)dt < \infty$.

^{*} Mathematics Subject Classifications: 35K55, 35Q99.

 $Key\ words:$ Nonlocal phase transition, travelling waves, continuation.

^{©2003} Southwest Texas State University.

Submitted January 10, 2002. Published February 11, 2003.

- (A2) k is a nonnegative, continuous function on \mathbb{R} with $\int_{\mathbb{R}} k(x) dx = 1, k' \in L^1(\mathbb{R})$ and $\operatorname{supp} J \bigcap (0, \infty) \neq \emptyset \neq \operatorname{supp} J \bigcap (-\infty, 0).$
- (A3) $S \in C^1([0,1])$ satisfies that S'(u) > 0, for $u \in [0,1]$, and that f(u) = -u + S(u) has precisely three zeros at u = 0, a, 1 satisfying f'(0) < 0 and f'(1) < 0, where 0 < a < 1.

Under the above assumptions, we can improve the results in [6]:

Theorem 1.1. Under the above assumptions on h, k and S, we have

- (a) There exists a travelling wave solution $u = \phi(x ct)$ to (1.1) satisfying $\phi \in C^1$, $\phi(-\infty) = 0$ and $\phi(\infty) = 1$.
- (b) Any travelling wave solution to (1.1) satisfying $\phi(-\infty) = 0$ and $\phi(\infty) = 1$ is strictly increasing.
- (c) Traveling wave solution to (1.1) is unique module spatial translation.
- **Remark 1.2.** (a) The monotonicity of travelling wave solutions to (1.1) is established in [6] for special kernels h and k and is conjectured for general case. Our result gives a positive answer.
 - (b) For the existence and uniqueness in [6], that k is even and h is monotonically decreasing is assumed. While it is natural, we can relax these restrictions.

2 Proof of Theorem 1.1

First we need the following result:

Lemma 2.1. [7] For any k and S satisfying (A2) and (A3) respectively, there exists one and only one (modulo spatial translation) travelling wave solution $u(x,t) = \phi(x-ct)$ to (1.2) satisfying $\phi(-\infty) = 0$ and $\phi(\infty) = 1$. Moreover, $\phi' > 0$ for all $x \in \mathbb{R}$.

For any $c \in \mathbb{R}$, let $J_c(\cdot) = \int_0^\infty h(s)k(\cdot + cs)ds$. Then J_c satisfies (A2). For each $c \in \mathbb{R}$, by Lemma 2.1, there is a travelling wave solution $\phi_c(x - \alpha(c)t)$ to the equation (1.2) with k replaced by J_c , where ϕ_c is the profile and $\alpha(c)$ is the wave speed, depending on c. Let $\xi = x - ct$. Then the pair $(\phi_c, \alpha(c))$ satisfies the following equations:

$$-\alpha(c)\phi_c'(\xi) + \phi_c(\xi) - J_c * S(\phi_c)(\xi) = 0, \qquad (2.1)$$

$$\phi(-\infty) = 0, \text{ and } \phi(\infty) = 1. \tag{2.2}$$

On the other hand, a travelling wave solution u = u(x - ct) to (1.1) satisfies

$$u(\xi) = J_c * S(u)(\xi).$$
(2.3)

EJDE-2003/??

Fengxin Chen

Therefore, if (u, c) is a travelling wave solution to (1.1), (u, 0) is a travelling wave solution to (1.2) corresponding to $k(x) = J_c(x)$. Similarly, if $(\phi_c, 0)$ is a travelling wave solution to (1.2) with $k(x) = J_c(x)$, then (ϕ_c, c) is a travelling wave solution to (1.1). Therefore to prove the existence of a travelling wave, we only need to prove that there is a $c \in \mathbb{R}$ such that $\alpha(c) = 0$. To that end, we need:

Lemma 2.2. The wave speed $\alpha(\cdot)$ is a continuous function on \mathbb{R} .

Proof. Let $c_0 \in \mathbb{R}$ and $(\phi_{c_0}, \alpha(c_0))$ be a travelling wave solution to (1.2) corresponding to $k = J_{c_0}$. Then, $\phi'_c > 0$ for all $x \in \mathbb{R}$ and $(\phi_c, \alpha(c))$ can be obtained as a solution to (2.1) by the Implicit Function Theorem, applying in the neighborhood of c_0 (see [6], for example). Therefore, $\phi(c)$ is indeed continuously differentiable.

Lemma 2.3. $\alpha(c) < 0$ for c positively sufficiently large and $\alpha(c) > 0$ for c negatively sufficiently large.

Proof. We only prove the lemma when c is positive. The other case can be proved similarly. We can choose $z_0 \in (0, 1)$ such that $\epsilon_0 = S(z_0) - z_0 > 0$. For this ϵ_0 , we can choose two positive constants $A = A(\epsilon_0)$ and $B = B(\epsilon_0)$ such that $(\int_0^A + \int_B^\infty)h(s)ds < \epsilon_0/8$ and $(\int_{-\infty}^{-B} + \int_B^\infty)k(s)ds < \epsilon_0/8$. Since $(\phi_c, \alpha(c))$ satisfies (2.1), we have

$$-\alpha(c)\phi_{c}'(x) + \phi_{c}(x) - S(\phi_{c})(x) = \int_{0}^{\infty} h(s) \int_{-\infty}^{\infty} k(x + cs - y) \{S(\phi_{c}(y)) - S(\phi_{c}(x))\} dy ds \geq \int_{A}^{B} h(s) \int_{x+cs-B}^{x+cs+B} k(x + cs - y) \{S(\phi_{c}(y)) - S(\phi_{c}(x))\} dy ds - \epsilon_{0}/2$$
(2.4)

where we have used the fact that $S(u(x)) \leq 1$. If $c \geq A^{-1}B$, then y > x for y in the range of the integration on the right of (2.4). Therefore the integral on the right side of (2.4) is positive and

$$-\alpha(c)\phi_c'(x) + \phi_c(x) - S(\phi_c)(x) > -\epsilon_0/2.$$
(2.5)

Since $\phi_c(-\infty) = 0$, and $\phi_c(\infty) = 1$, we choose x_0 such that $\phi_c(x_0) = z_0$, Then we deduce from (2.5) that $\alpha(c)\phi'_c(x_0) < 0$. Therefore, $\alpha(c) < 0$ since $\phi'_c(x_0) > 0$.

Proof of Theorem 1.1 By lemma 2.2 and 2.3, there is constant c such that $\alpha(c) = 0$. The pair (ϕ_c, c) is the travelling wave solution to (1.1). By lemma 2.1, $\phi'_c > 0$ for all x. The uniqueness is established in [6], where uniqueness for monotonic travelling waves is proved.

References

- P. W. Bates and F. Chen, Periodic travelling wave solutions of an integrodifferential model for phase transition, *Electronic J. Differential Equations*, 26 (1999) 1-19.
- [2] P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Rational Mech. Anal., 150 (1999), 281-305.
- [3] P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling waves in a nonlocal model of phase transitions, Arch. Rat. Mech. Anal., 138 (1997), 105-136.
- [4] F. Chen, Almost Periodic Traveling Waves of Nonlocal Evolution Equations J. Nonlinear Anal., 50 (2002), 807–838.
- [5] Z. Chen, B. Ermentrout, B. McLeod, Traveling fronts for a class of nonlocal convolution differential equations. *Appl. Anal.* 64 (1997), no. 3-4, 235–253.
- [6] B. Ermentrout, B. McLeod, Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 3, 461–478.
- [7] X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations, *Adv. Diff. Eqs.*, **2** (1997), 125-160.
- [8] A. de Masi, E. Orlandi, E. Presutti, and L. Triolo, Uniqueness of the instanton profile and global stability in nonlocal evolution equations, *Rend. Math.*, 14 (1994), 693-723.
- [9] M. Katsoulakis and P. S. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rat Mech. Anal., 127 (1994), 133-157.

FENGXIN CHEN Department of Applied Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA e-mail: feng@sphere.math.utsa.edu