Electron. J. Diff. Eqns., Vol. 2003(2003), No. 19, pp. 1-12.

Nonlinear singular Navier problem of fourth order

Syrine Masmoudi & Malek Zribi

Abstract:
We present an existence result for a nonlinear singular differential equation of fourth order with Navier boundary conditions. Under appropriate conditions on the nonlinearity $f(t,x,y)$, we prove that the problem
$$\displaylines{
 L^{2}u=L(Lu) =f(.,u,Lu)\quad \hbox{a.e. in }(0,1), \cr
 u'(0) =0,\quad (Lu) '(0)=0,\quad u(1) =0,\quad Lu(1) =0.
 }$$
has a positive solution behaving like $(1-t)$ on $[0,1]$. Here $L$ is a differential operator of second order, $Lu=\frac{1}{A}(Au')'$. For $f(t,x,y)=f(t,x)$, we prove a uniqueness result. Our approach is based on estimates for Green functions and on Schauder's fixed point theorem.

Submitted September 29, 2002. Published February 28, 2003.
Math Subject Classifications: 34B15, 34B27.
Key Words: Nonlinear singular Navier problem, Green function, positive solution.

Show me the PDF file (213K), TEX file, and other files for this article.

Syrine Masmoudi
Departement de Mathematiques
Faculte des Sciences de Tunis
Campus Universitaire, 1060 Tunis, Tunisia
e-amil: Syrine.Sassi@fst.rnu.tn
Malek Zribi
Departement de Mathematiques
Faculte des Sciences de Tunis
Campus Universitaire, 1060 Tunis, Tunisia
e-mail: Malek.Zribi@insat.rnu.tn

Return to the EJDE web page