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STABILITY PROPERTIES OF NON-NEGATIVE SOLUTIONS OF
SEMILINEAR SYMMETRIC COOPERATIVE SYSTEMS

IMRE VÖRÖS

Abstract. We investigate the stability of non-negative stationary solutions

of symmetric cooperative semilinear systems with some convex (resp. concave)
nonlinearity condition, namely all second-order partial derivatives of each co-
ordinate being non-negative (resp. non-positive). In these cases, we will show

following [8], extending its results, that this along with some sign condition on
the non-linearity at the origin yields instability (resp. stability).

1. Introduction

Let Ω ⊂ Rn be some bounded domain of smooth boundary. In this paper,
we study the stability of positive stationary solutions of the coupled system of
semilinear partial differential equations

∂tu(t, x) = ∆u(t, x) + f(u(t, x)) t > 0, x ∈ Ω ⊂ Rn (1.1)

subject to the boundary condition

hu
∣∣
∂Ω

+ g∂νu
∣∣
∂Ω

= 0, (1.2)

where
u : R+ × Ω → Rm, f ∈ C2(Rm; Rm), g, h : ∂Ω → Rm

+ , (1.3)

and g and h are nowhere simultaneously vanishing non-negative smooth functions.
This problem concerning a single equation (m = 1) was studied by several au-

thors even for equations with delay. Shivaji and co-authors have shown that every
non-trivial solution of (1.1) with Dirichlet boundary

u
∣∣
∂Ω

= 0 (1.4)

is unstable if f ′′ > 0 and f(0) ≤ 0. They first considered the monotone case, i.e.
f ′ > 0 in [2]. The statement in the non-monotone case was first proved by Tertikas
[15] using sub- and supersolutions. The first simplification was given by Maya and
Shivaji in [12] by reducing the problem to the monotone case via decomposition of
f to a monotone and a linear function.

Karátson and Simon gave a direct proof of the result in [8]. Moreover, this proof
showed the stability of the concave counterpart at the same time, and could be
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easily extended to the general elliptic operator div(A∇u), where A : Ω → Rn×n,
This can be summed up in the theorem below.

Theorem 1.1. Let m = 1 and f : R → R be a twice continuously differentiable
function. Then

(i) if f ′′ > 0 and f(0) ≤ 0, then every nontrivial nonnegative solution of
(1.1)–(1.3) is unstable, while

(ii) if f ′′ < 0 and f(0) ≥ 0, then every nontrivial nonnegative solution of
(1.1)–(1.3) is stable.

The solution is not unique even in case of Ω = B(0, R) ⊂ Rn, and has typically
two solutions, in the case of the different sign condition on f(0), This problem
was studied by several authors. In the concave case for general nonlinearities and
general domains it was investigated in [1]. In [6, 10] the one dimensional case for
general nonlinearity, and in [9, 11, 14, 17] the multidimensional case with special
nonlinearities are studied. The authors of [8] pointed out that the sign condition of
f at the origin in some sense is necessary, since the small solution now has different
stability from the one claimed in the theorem in both cases. Concerning systems,
both cooperative and competitive, Castro, Chhetri and Shivaji established sufficient
conditions on the nonlinearity for the solution to be stable and unstable in [3].

The technique introduced in [8] can be applied to more general cases. In [4] equa-
tions with delay are considered, in [7] the corresponding equation with p-Laplacian
is studied.

In this paper, we will show a generalisation of Theorem 1 to a system of equations
given in (1.1)–(1.3). Our main result is formulated in Theorem 2.4, and the possible
extension to general elliptic operator as in [8] is noted in the following remark.

2. The Case of Systems

The equilibria of (1.1)–(1.3) are defined by the elliptic system

0 = ∆u + f(u), (2.1)

the linearisation of which at the stationary solution u is

∆v + f ′(u)v = 0.

The corresponding eigenvalue problem is

∆v + f ′(u)v = λv. (2.2)

Since the boundary condition is linear, it is the same for the eigenvalue problem as
that for the original one, that is

hv
∣∣
∂Ω

+ g∂νv
∣∣
∂Ω

= 0. (2.3)

Proposition 2.1. Assume that f ′(u) is cooperative, i.e. the off-diagonal elements
are non-negative. Then the dominant eigenfunction v of the eigenvalue problem
(1.1)–(1.3) is positive, i.e. vi ≥ 0 (i = 1, . . . ,m) and not all coordinates are constant
zero.
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Proof. Introducing M : Ω → Rm×m given by M(x) = −f ′(u(x))− µI let us trans-
form the eigenvalue problem as follows.

(∆ + f ′(u))v = λv

(−∆ + M)v = (−λ− µ)v

(−∆ + M)−1v = − 1
λ + µ

v.

The matrix M(x) has non-positive off-diagonal elements in each x ∈ Ω, and µ can
be chosen such that M is uniformly positive definite, since f ′(u) is continuous on
the closure of the bounded domain Ω. Moreover, a dominant eigenfunction of (−∆+
M)−1 is a dominant eigenfunction of (∆ + f ′(u)), which can be shown similarly.
According to Krein–Rutman’s theorem [16] every positive compact operator on a
Banach lattice has a positive dominant eigenvector. Hence we only have to show
that (−∆+M)−1 : L2(Ω)m → L2(Ω)m is a positive compact operator, where L2(Ω)m

denotes product of m copies of L2(Ω), that is L2(Ω) × · · · × L2(Ω). The proof of
the compactness is similar to that of the case of a single equation (m = 1) [5, 13].
Thus it remains to prove positivity.

To this end, let
−∆v + Mv ≥ 0 (2.4)

Let us introduce v± = max{±v, 0}, and multiply in the inner product sense this
latter equation by v− ≥ 0, that is multiply the ith row by v−i and sum them up
over all i,

−
∫

Ω

〈v−,∆v〉+
∫

Ω

〈v−,Mv〉 ≥ 0

and by Gauss-Ostogradskii theorem

−
∫

∂Ω

〈v−, ∂νv〉+
∑

i

∫
Ω

〈∇v−i ,∇vi〉+
∫

Ω

〈v−,Mv〉 ≥ 0 (2.5)

Let

γ : ∂Ω → Rm, γi(x) =

{
hi(x)
gi(x) if gi(x) > 0

0 if gi(x) = 0
(i = 1, . . . ,m)

Now v−i (x)∂νvi(x) = γiv
−
i (x)2 on ∂Ω, since

• vi(x) = 0, where gi(x) = 0,
• v−i (x), where vi(x) > 0,
• everywhere else vi(x) = −v−i (x), and ∂νvi(x) = −hi(x)

gi(x) vi(x),

and similarly 〈∇v−i ,∇vi〉 = −〈∇v−i ,∇v−i 〉 on Ω. Substitute this into (2.5), use
v = v+ − v−, and multiply it by −1 to get∑

i

∫
∂Ω

γi(v−i )2 +
∑

i

∫
Ω

|∇v−i |
2 +

∫
Ω

〈v−,Mv−〉 −
∫

Ω

〈v−,Mv+〉 ≤ 0. (2.6)

Since M is positive definite, 〈v−,Mv−〉 ≥ 0, and since v−i v+
i = 0 and M has

non-positive off-diagonal elements,

−〈v−,Mv+〉 = −
∑

i

miiv
−
i v+

i +
∑
i 6=j

(−mij)v−i v+
j ≥ 0.
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Therefore each term of (2.6) is non-negative, hence the left-hand side of (2.6) is
constant zero, thus v−i = 0 from the third term due to M being uniformly elliptic,
i.e. v ≥ 0. This shows the desired positivity, and concludes the proof. �

Remark 2.2. Consider the one dimensional (n = 1) case with f(u(x)) = Mu(x),
where M ∈ Rm×m; this way Ω is a real interval. Then the dominant eigenfunction
of (2.2) with Dirichlet boundary condition is positive if and only if M has a positive
eigenvector, which is in harmony with the previous proposition via the well-known
Perron-Frobeinus theorem.

Remark 2.3. This proof also shows the monotone case, i.e. if f ′ is cooperative
negative definite, then there is no need for the translation, thus via Krein-Rutman’s
theorem the dominant eigenvalue is negative, hence the equation (1.1)–(1.3) is
stable.

Now set v to this dominant eigenvectorfunction, the existence of which was
proved in Proposition 2.1. Multiply (2.1) by v, and (2.2) by u, and integrate them
over Ω ∫

Ω

〈v,∆u〉+
∫

Ω

〈v, f(u)〉 = 0∫
Ω

〈u, ∆v〉+
∫

Ω

〈u, f ′(u)v〉 = λ

∫
Ω

〈u, v〉

Use that 〈u, f ′(u)v〉 = 〈v, f ′(u)T u〉, and subtract the first one from the second one,
and obtain ∫

Ω

〈v, f ′(u)T u− f(u)〉 = λ

∫
Ω

〈v, u〉, (2.7)

since the first term of one equation eliminates against that of the other by Green’s
second formula ∫

Ω

(ui∆vi − vi∆ui) = 0

because of the common boundary condition.
Since both u and v are positive, guaranteeing the sign of f ′(u)T u−f(u) provides

the same sign of λ by (2.7). So denote l : u 7→ f ′(u)T u− f(u), i.e.

lj(u) = 〈∂jf(u), u〉 − fj(u),

thus
∂klj(u) = 〈∂jkf(u), u〉+ ∂jfk(u)− ∂kfj(u).

To have a constant sign of l for all positive values of u, it suffices to have l(0) and
l′ of the same sign, for which it suffices to assume f ′ symmetric, and that f ′′i are
entry-wise of the same sign for each i and fi are of the opposite sign. On these
conditions we have shown the sign of the dominant eigenvalue, which proves the
following theorem.

Theorem 2.4. Let f be such that f ′ symmetric and cooperative. Then
(i) if f ′′i ≥ 0 entry-wise and fi(0) ≤ 0 with at least one of the inequalities

being strict at zero for each coordinate i, then every nontrivial nonnegative
solution of (1.1)–(1.3) is unstable, while

(ii) if f ′′i ≤ 0 entry-wise and fi(0) ≥ 0 with at least one of the inequalities
being strict at zero for each coordinate i, then every nontrivial nonnegative
solution of (1.1)–(1.3) is stable.



EJDE-2004/105 STABILITY PROPERTIES 5

Remark 2.5. This result can be extended to the general elliptic operator of the
coordinate-wise form Lu := div(A∇u) as in [8], that is (Lu)i = div(Ai∇ui), where
all Ai is strongly elliptic, and to more general nonlinearities f : Ω × Rm → Rm,
Hence our equation reads now

∂tu(t, x) = Lu(t, x) + f(x, u(t, x)) (2.8)

subject to the boundary
hu

∣∣
∂Ω

+ g∂Aνu
∣∣
∂Ω

= 0, (2.9)
where ν is the outer unit normal vector of Ω, and

(∂Aνu)i = ∂Aiνui = 〈Aiν,∇ui〉. (2.10)

We only indicate the differences in the proof. The linearised eigenvalue problem
reads as

Lv + f ′(u)v = λv

hv
∣∣
∂Ω

+ g∂Aνv
∣∣
∂Ω

= 0.
(2.11)

In the proof of Proposition 2.1, now we show the positivity of (−L + M)−1.
Hence let (cf. (2.4))

−Lv + Mv ≥ 0,

from which the inequality which yields positivity is (cf. (2.6))∫
∂Ω

〈v−, γv−〉+
∑

i

∫
Ω

|∇v−i |
2 +

∫
Ω

〈v−,Mv−〉 −
∫

Ω

〈v−,Mv+〉 ≤ 0,

for which the same argument holds, where M and γ is defined similarly using the
conormal derivatives implied by (2.9).

Now the combination of (2.8)–(2.10) and (2.11) will be∫
Ω

〈v, (∂uf)T u− f〉 = λ

∫
Ω

〈v, u〉.

Then l is to be defined as
l(u) := (∂uf)T u− f,

for which the rest literally holds with the appropriate changes in the notation.
Hence the necessary condition for stability translates to sign conditions of fi(·, 0)
and entry-wise ∂2

ufi for all i = 1, . . . ,m and x ∈ Ω,
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