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PERSISTENCE AND EXTINCTION OF SINGLE POPULATION
IN A POLLUTED ENVIRONMENT

ZHAN LI, ZHISHENG SHUAI, KE WANG

Abstract. In this paper, we consider the ODE system corresponding to a
diffusive-convective model for the dynamics of a population living in a polluted

environment. Sufficient criteria on persistence and extinction of the population

are derived.

1. Introduction

Today, the most threatening problem to the society is the change in environment
caused by pollution, affecting the long term survival of species, human life style
and biodiversity of the habitat. Therefore the study of the effects of toxicant on
the population and the assessment of the risk to populations is becoming more
important.

In the early eighties a deterministic modelling approach to the problem of as-
sessing the effects of a pollutant on an ecological system was proposed by Hallam
and his co-workers[4, 5, 6]. Since then, such models have been the subject of many
investigations and improvements. Population-toxicant coupling has been applied
in several contexts, including Lotka-Volterra and chemostat-like environments, re-
sulting in ordinary, integro-differential and stochastic models. Usually a qualitative
analysis was performed which focuses on the survival or extinction of populations
[9, 10]. All these studies rely on the hypothesis of a complete spatially homogeneous
environment.

Recently, a first attempt to consider a spatial structure has been carried out in
[2, 3] where a reaction-diffusion model is proposed to describe the dynamics of a
living population interacting with a toxicant present in the environment(external
toxicant) through the amount of toxicant stored into the bodies of the living organ-
isms(internal toxicant). However, as the authors pointed out, even if the resulting
model presents many features which make stimulating its study, such a modelling
approach is a rough approximation to the biological phenomena at hand. In 1999,
Buonomo et.al. viewed the internal toxicant as drifted by the living population
and then, by balance arguments, they derived a PDE system consisting into two
reaction diffusion equations coupled with a first order convection equation, and the
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corresponding ODE system was obtained as well [1]. This model is the most real-
istic by now but the analysis of it is so difficult that they only used some analytic
and numerical approaches. Obviously, the more clear work is deserved to do.

In this paper, we use some new methods to investigate the model made by
Buonomo et al. and the conditions of survival and extinction are obtained.

2. The Model

We utilize a modified logistic equation [8] to model the effect of toxin on single
species. We take

n(t): concentration of the population biomass
c(t): concentration of the toxicant in the environment
z(t): concentration of the toxicant in the population.
We assume that there is a given(external) toxicant in the environment, and the

living organisms absorb into their bodies part of this toxicant so that the dynamics
of the population is affected by this(internal) toxicant. Concerning the growth rate
of the population we assume that the birth rate is b(n) = b0 − fn and the death
rate is d(n, c) = d0 + αc, where b0,d0 and α are positive constants. f is assumed
to be a non-negative constant. Therefore we assume, in absence of toxicant, a
malthusian(f = 0) or a logistic growth rate(f > 0). We can see that if b0−d0−αc ≤
0, n(t) will be extinct in the end, so we suppose

c <
b0 − d0

α
:= c1. (2.1)

We propose the following model governing the system
dn

dt
= n(b0 − d0 − αc− fn)

dc

dt
= kz − (r + m + b0 − fn)c

dz

dt
= −kzn + (r + d0 + αc)cn− hz + u(t).

(2.2)

with initial data

n(0) = n0 ≥ 0; c(0) = c0 ≥ 0; z(0) = z0 ≥ 0.

Here α is the depletion rate coefficient of the population due to organismal pollutant
concentration.
k is the depletion rate of toxicant in the environment due to its intake made by the
population.
r is the depletion rate of toxicant in the population due to egestion.
m is the depletion rate of toxicant in the population due to metabolization processes.
h is the depletion rate of the toxicant in the environment.
u is the exogen+ous toxicant input rate which is assumed to be a smooth bounded
non-negative function of t.

3. The conditions of survival and extinction for the population
when u(t) = Q > 0

We now recall the definitions of persistence and extinction. A component n(t)
of a given ODE system is said to be persistent if for any n(0) > 0 it follows that
n(t) > 0, t > 0 and lim inft→∞ n(t) > 0. If there exists δ > 0 (independent of n(0))
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such that n(t) is persistent and is bounded and lim inft→∞ n(t) ≥ δ, then n(t) is
said to be uniformly strongly persistent. If there exists δ > 0 (independent of n(0))
such that lim supt→∞ n(t) ≥ δ, then n(t) is said to be uniformly weakly persistent.
If lim supt→∞ n(t) ≤ 0, then n(t) is said to be extinct.

Theorem 3.1. The system (2.2) is uniformly strongly persistent if and only if

αkQ < h(b0 − d0)(r + m + b0).

Proof. First, we deduce that the system is uniformly weakly persistent. Assume
that the system is not uniformly weakly persistent then there exists a sequence of
initial value (nk(0), ck(0), zk(0)) ∈ (0,+∞)×R2

+, such that

lim sup
t→∞

nk(t) = εk → 0, as k → +∞.

Then there exist Tk > 0, such that

nk(t) < 2εk for t ≥ Tk. (3.1)

From (2.1) and (3.1) we have

żk ≤ (r + d0 + αc)cnk − hzk + Q ≤ (r + b0)c12εk − hzk + Q for t ≥ Tk .

Using the Comparison Theorem we have

lim sup
t→∞

zk(t) ≤ c1(r + b0)2εk + Q

h
.

So for all ε > 0, there exists Hk > Tk > 0, such that

zk(t) ≤ c1(r + b0)2εk + Q

h
+ ε =: zk for t ≥ Hk. (3.2)

From (3.1) and (3.2) we see that

ċk ≤ kzk − (r + m + b0)ck + f2εkck

= kzk − (r + m + b0 − f2εk)ck for t ≥ Hk .

Similarly by the Comparison Theorem and let ε → 0, we have

lim sup
t→∞

ck(t) ≤ kc1(r + b0)2εk + kQ

h(r + m + b0 − f2εk)
.

Then, for t ≥ Hk,

ck(t) ≤ kc1(r + b0)2εk + kQ

h(r + m + b0 − f2εk)
:= β(εk). (3.3)

Now we consider the first equation of the model (2.2), from (3.3) it is easy to see
there exists Sk > Hk > 0, such that

ṅk ≥ nk(b0 − d0 − αβ(εk)− fnk) for t ≥ Sk.

Using the Comparison Theorem again we have

lim inf
t→∞

nk(t) ≥ b0 − d0 − αβ(εk)
f

. (3.4)

By (3.4) and the assumption lim supt→∞ nk(t) = εk, we obtain

lim sup
t→∞

nk(t) = εk ≥ lim inf
t→∞

nk(t) ≥ b0 − d0 − αβ(εk)
f

.
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Let k → +∞, it follows that εk → 0 and β(εk) → kQ
h(r+m+b0)

. Hence,

0 ≥ b0 − d0 − αβ(εk)
f

→ h(b0 − d0)(r + m + b0)− αkQ

fh(r + m + b0)
.

That is, αkQ ≥ h(b0 − d0)(r + m + b0). So there is uniformly weakly persistent if

αkQ < h(b0 − d0)(r + m + b0).

Using the well known result which says that uniform weak persistence implies uni-
form strong persistence [7, Section 2], then the proof is completed. �

Moreover, if we look at the system restricted to {0}×R2
+, then there is a unique

equilibrium
X = (0, c, z)

with
z =

Q

h
and c =

kz

(r + m + b0)
Then an easy investigation of the linearized equation at X shows that when αkQ >
h(b0− d0)(r + m + b0), X is locally asymptotically stable. In particular the system
is not uniformly persistent anymore.

Theorem 3.2. Consider the system (2.2). If Q > (r+m+b0)(b0−d0)(fh+k(b0−d0))
αkf ,

then the population is extinct.

Proof. From (3.1) we know n(t) ≤ n1, for t > t1. So from the last equation of the
model (2.2) , we can obtain

dz

dt
> Q− hz − kn1z for t > t1.

Now we use the Comparison Theorem again, then we have

lim inf
t→+∞

z(t) ≥ Q

h + kn1
.

Let ε → 0, we have

lim inf
t→+∞

z(t) ≥=
fQ

fh + k(b0 − d0)
:= mz.

That is to say for all ε > 0,∃T1, such that z(t) > mz − ε, for all t > T1. From the
second equation of the model (2.2) , if t > T1, it is easy to see

dc

dt
> k(mz − ε)− (r + m + b0)c.

Similarly by the Comparison Theorem,

lim inf
t→+∞

c(t) ≥ kmz − ε)
r + m + b0

.

Let ε → 0. Then we have

lim inf
t→+∞

c(t) ≥ k(mz

r + m + b0
=

kfQ

(r + m + b0)(fh + k(b0 − d0))
=: mc.

Then for all ε > 0 there exists T2 > T1, such that c(t) > mc − ε for all t > T2.
Obviously, from the first equation of the model (2.2), if t > T2, we have

dn

dt
< n(b0 − d0 − α(mc − ε)− fn).



EJDE-2004/108 PERSISTENCE AND EXTINCTION 5

By the Comparison Theorem, we have

lim sup
t→+∞

n(t) ≤ b0 − d0 − α(mc − ε)
f

.

Let ε → 0. Then we obtain

lim sup
t→+∞

n(t) ≤ b0 − d0 − αmc

f
=: Mn .

Clearly,

lim sup
t→+∞

n(t) ≤ Mn ≤
b0 − d0

f
.

If Mn < 0, that is Q > (r+m+b0)(b0−d0)(fh+k(b0−d0))
αkf , the population will be extinct.

�
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