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NONLINEAR SUBELLIPTIC SCHRÖDINGER EQUATIONS
WITH EXTERNAL MAGNETIC FIELD

KYRIL TINTAREV

Abstract. To account for an external magnetic field in a Hamiltonian of
a quantum system on a manifold (modelled here by a subelliptic Dirichlet

form), one replaces the the momentum operator 1
i
d in the subelliptic symbol

by 1
i
d − α, where α ∈ TM∗ is called a magnetic potential for the magnetic

field β = dα.
We prove existence of ground state solutions (Sobolev minimizers) for non-

linear Schrödinger equation associated with such Hamiltonian on a gener-

ally, non-compact Riemannian manifold, generalizing the existence result of

Esteban-Lions [5] for the nonlinear Schrödinger equation with a constant mag-
netic field on RN and the existence result of [6] for a similar problem on

manifolds without a magnetic field. The counterpart of a constant magnetic
field is the magnetic field, invariant with respect to a subgroup of isometries.
As an example to the general statement we calculate the invariant magnetic

fields in the Hamiltonians associated with the Kohn Laplacian and for the
Laplace-Beltrami operator on the Heisenberg group.

1. Introduction

In this paper we study nonlinear Schrödinger equations with external magnetic
field on (generally) non-compact Riemannian manifolds. A summary exposition on
the magnetic Schrödinger operator can be found in [1]. The scope of the paper
includes subelliptic Hamiltonians.

Let M be a differentiable n-dimensional Riemannian manifold and let α be a
1-form on M . We consider the quadratic form

E0 =
∫
M

a
(1
i
du− uα,

1
i
du− uα

)
dµ (1.1)

where µ is the Riemannian measure of M and a ∈ TM2,0 (called the symbol of the
quadratic form), is a smooth Hermitian bilinear form with real-valued coefficients
defined on fibers TM∗

x .
The form E is understood in physics as a generalized Hamiltonian for a quantum

particle on M in presence of the external magnetic field β = dα. In general, a
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magnetic field is a closed 2-form that does not have to be exact. Quantization
of systems with a non-potential magnetic field is more complicated (see [10] and
references therein) and is not considered here. The potential α is defined by β up to
an arbitrary closed form and the energy is invariant under the gauge transformation
(α, u) 7→ (α+ dϕ, eiϕu).

The (stationary) nonlinear Schrödinger equation for complex-valued functions
on M in the weak form is:∫

M

(
a(

1
i
du− uα,

1
i
dv − vα) + λuv − |u|q−2uv

)
dµ = 0, (1.2)

v ∈ C∞
0 (M). In what follows we will use the notation a[α] := a(α, α), E0[u] :=

E0(u, u) etc. for quadratic forms.
Let H1(M) be the Hilbert space defined as the closure of C∞

0 (M ; C) with respect
to the Hilbert norm

(∫
M

(|du|2 + |u|2)dµ
)1/2. For an open set Ω ⊂M the subspace

H1(Ω) will be the closure of C∞
0 (Ω) in H1(M).

We assume that the symbol a and the number 2∗ are related via the Sobolev
inequality for the real-valued functions u ∈ H1(M):∫

M

(a[du] + |u|2)dµ ≥ c‖u‖2Lq(M,dµ), q ∈ [2, 2∗], (1.3)

and that, in restriction to H1(Ω) with any bounded Ω ⊂ M , and with q ∈ (2, 2∗),
this imbedding is compact.

This is true, for example, when a[ξ] ≥ c|ξ|2 with some c > 0 (the uniformly
elliptic case) and when M satisfies the assumption (1.8) below. In this case 2∗ =
2n
n−2 for n > 2, and 2∗ = ∞ for n = 2. The relation (1.3) holds as well when
M is a Lie group and the symbol of E0 is a =

∑
j Xj ⊗ Xj , where Xj ∈ TM ,

j = 1, . . . ,m, are left-invariant vector fields. If the subsequent commutators of
Xj span the whole tangent space of M (Hörmander condition), then there exists
a N ≥ n, called homogeneous dimension, such that (1.3) holds with 2∗ = 2N

N−2

([8, 9, 19] and references therein).
Let now H1

α(M) (resp. H1
α(Ω)) be the closure of C∞

0 (M ; C) (resp. C∞
0 (Ω; C))

in the metric of
E[u] := E0[u] + ‖u‖2L2(M,dµ). (1.4)

The following inequality is an elementary generalization of the diamagnetic inequal-
ity, well known for the Euclidean case (see e.g. [13]).

Lemma 1.1. Let α ∈ TM∗ and let a be as above. The following inequality is true
for every u ∈ C∞

0 (M ; C) at every point where u 6= 0:

a[du− iuα] ≥ a[d|u|]. (1.5)

Proof. Let v, w be the real and the imaginary parts of u. The assertion follows
from the following chain of identities that use the bilinearity of a and the chain
rule:

a[du− iuα]− a[d|u|] = a[du] + |u|2a[α]− 2va(α, dw) + 2wa(α, dv)

− |u|−2
{
v2a[dv] + w2a[dw] + 2vwa(dv, dw)

}
= |u|−2

{
a[vdw − wdv] + 2|u|2a(α,wdv − vdw) + |u|4a[α]

}
= |u|−2a[wdv − vdw + |u|2α] ≥ 0.

�
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Proposition 1.2. The following inequality holds:

E(u) ≥ ‖|u|‖2H1(M), u ∈ H1
α(M). (1.6)

Moreover, the space H1
α(M) is continuously imbedded into Lq(M,µ), q ∈ (2, 2∗, and

for any bounded open Ω ⊂M the imbedding of H1
α(Ω) into Lq(Ω, µ) is compact.

Proof. Using approximation operators Tε : C1
0 (M) → C1

0 (M), Tεu := (u2 + ε2)1/2−
ε, one can immediately deduce from Lemma 1.5 (see for details the proof of Lemma
7.6 in [7]) that u ∈ H1

α(M) ⇒ |u| ∈ H1(M) with E0(u) ≥ ‖|u|‖2H1(M). Thus,
by (1.3) applied to |u|, the space H1

α(M) is continuously embedded into Lq(M,µ)
and for any open bounded Ω, the subspace H1

α(Ω) is compactly embedded into
Lq(Ω, µ). �

Critical points of the map u 7→ (E(u),
∫
|u|qdµ), H → R2 provide solutions of the

equation (1.2) (up to a scalar multiple). We look here for solutions of the ground
state type, that is, the minimizers in the problem

cq := inf∫
M
|u|qdµ=1

E[u], q ∈ (2, 2∗). (1.7)

By analogy with the semilinear elliptic problem for the Laplacian on Rn without a
magnetic field, the minimum in the problem (1.7) is not expected to exist without
substantial additional assumption. Existence of a minimizer is known for (1.7) in
the Euclidean case with a constant magnetic field ([5]). If the field is not constant, or
a potential term is added to the equation, existence of minimum has been derived
from various penalty conditions at infinity, typically involving a potential term∫
V (x)|u|2 in the energy (see [12]). One may also observe absence of minimizer

if the penalty condition is appropriately reversed ([5]). In this paper we consider
invariant (which, in case of a discrete group, means space-periodic) magnetic fields
on manifolds that are co-compact with respect to their isometry groups, a class
that includes homogeneous Riemannian spaces and in particular, Lie groups.

Let I be a subgroup of the isometry group of M , closed in the CO-topology. We
assume that there is a compact set K ⊂M such that⋃

η∈I
ηK = M. (1.8)

We assume that the symbol a is invariant with respect to the transformations
η ∈ I. This is true, in particular, if it is the symbol of the Laplace-Beltrami operator
or of an invariant subelliptic operator as defined above.

Consider now the condition of invariance of the magnetic field β. The invariance
relation ∀η, ηβ = β, where η : TM0,2

η· → TM0,2
· is the natural action of the isometry

η ∈ I on 2-forms, written in terms of the magnetic potential α is equivalent to
d(ηα − α) = 0 where η : TM∗

ηx → TM∗
x is the natural action of η ∈ I on the

cotangent bundle of M . For a technical reason (existence of global magnetic shifts)
we put a somewhat stronger condition on α, namely that

∀η ∈ I, ηα− α is exact. (1.9)

This will allow to construct global magnetic shifts relative to η ∈ I in the next
section.

The main result of this paper is
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Theorem 1.3. Let a and µ be invariant under the action of the group I. Assume
(1.3), (1.8), (1.9). Then the problem (1.7) has a point of minimum which, up to
the constant multiple is a non-trivial solution of (1.2).

Remark 1.4. The statement of the theorem remains true if one replaces in the
energy the term

∫
|u|2 in E[u] with

∫
V (x)|u|2dµ, V ∈ L1

loc(M,µ), infM V > 0
provided that V ◦ η = V , η ∈ I. This generalization does not require any essential
changes in the proof.

The proof of the existence of the minimum in (1.7) is based on the concentration
compactness principle (see [14, 15] for a fundamental exposition for the subcritical
case). One can use here the approach of [3, 18], and we give an essentially equivalent
proof, using a general “multi-bump” expansion for bounded sequences (in the spirit
of [16]) from [17].

In what follows we assume conditions of Theorem 1.3.

2. Concentration compactness with magnetic shifts

By (1.9), for every η ∈ I there exists a ψη ∈ C∞(M) such that

ηα− α = dψη. (2.1)

This implies that dψid = 0, so that ψid is constant on connected components of M .
Since the relation (2.1) is satisfied by ψη − ψid, we normalize ψη by setting

ψid(x) = 0, x ∈M. (2.2)

Let

gηu = eiψηu ◦ η, u ∈ C∞
0 (M). (2.3)

The action gη on u ∈ C∞
0 (M) (as well as its continuous extension below) is called

a magnetic shift. We set

D := {gη}η∈I . (2.4)

Lemma 2.1. Every operator g ∈ D extends by continuity to a unitary operator
on H1

α(M). The (renamed) set D of extended operators is a multiplicative operator
group on H1

α(M).

Proof. It suffices to prove that

gη−1 = g−1
η , (2.5)

gη−1 = g∗η (2.6)

for every η ∈ I. To prove (2.5), note that from (2.1) and (2.2) it follows immediately
that

ψη = −(ψη−1 ◦ η). (2.7)

Then solving the equation gηu = v, one has v = e−iψη◦η−1
u ◦ η−1 = eiψη−1u ◦ η−1.
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In order to prove (2.6), consider the following calculations, taking into account
invariance properties of a and µ, (2.7) and (1.9):

E0(u, gηv) =
∫
M

e−iψηa (du+ iuα, d(v ◦ η)− idψηv ◦ η + i(v ◦ η)α) dµ

=
∫
M

e−iψη◦η−1
a

(
(du) ◦ η−1 + i(u ◦ η−1)η−1α, dv + ivα

)
dµ

=
∫
M

eiψη−1a
(
d(u ◦ η−1) + i(u ◦ η−1)(α+ dψη−1), dv + ivα

)
dµ

= E0(gη−1u, v), u, v ∈ C∞
0 (M).

�

Lemma 2.2. The group D on H1
α(M) is a set of dislocations according to [17], i.e.

a set of unitary operators on a separable Hilbert space satisfying the condition:

(*) Any sequence gk ∈ D that does not converge to zero weakly has a strongly
convergent subsequence.

We recall that a sequence of operators gk in a Banach space E is called strongly
convergent if for every x ∈ E, gkx converges.

Proof. Assume that gηk
6⇀ 0. Then there exist u, v ∈ C∞

0 (M) and a renamed
subsequence of ηk, such that (gηk

u, v) 6→ 0, so that η−1
k (suppu) ∩ supp v 6= ∅. Let

xk ∈ suppu be such that ηkxk ∈ supp v. Since suppu is compact, a renamed
subsequence of xk converges to some x ∈ suppu. Since supp v is compact and ηk
are isometries, a renamed subsequence of ηkx converges, and therefore ηk converges
to some η ∈ I in the compact-open topology (cf. [11]) and therefore uniformly on
compact sets. Then gηk

v converges for any v ∈ C∞
0 (M) by convergence of integrals

under uniform convergence.
Since operators in D are unitary, it suffices to verify the strong operator con-

vergence on C∞
0 (M), which in turn follows from convergence of integrals under

uniform convergence. �

Definition 2.3. Let u, uk ∈ H1
α(M). We will say that uk converges to u D-weakly,

which we will denote as uk
D
⇀ u, if for all ϕ ∈ H1

α(M),

lim
k→∞

sup
g∈D

(g(uk − u), ϕ) = 0. (2.8)

Lemma 2.4. Let uk ∈ H1
α(M) be a bounded sequence. Then

uk
D
⇀ 0 ⇒ uk → 0 in Lq(M,µ), q ∈ (2, 2∗). (2.9)

Proof. If gηk
uk ⇀ 0, then due to the inequality (1.6), |uk| ◦ ηk ⇀ 0 in H1(M).

Then |uk| → 0 in Lq(M,µ) by [2, Lemma 3.7] (when a is uniformly elliptic, one can
also refer to [6, Lemma 2.6]). �
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Theorem 2.5 ([17]). Let uk ∈ H be a bounded sequence. Then there exist w(n) ∈
H, g(n)

k ∈ D, k, n ∈ N, such that for a renumbered subsequence

g
(1)
k = id, g

(n)
k

−1
g
(m)
k ⇀ 0 for n 6= m, (2.10)

w(n) = w − lim g
(n)
k

−1
uk (2.11)∑

n∈N
‖w(n)‖2 ≤ lim sup ‖uk‖2 (2.12)

uk −
∑
n∈N

g
(n)
k w(n) D

⇀ 0. (2.13)

Lemma 2.6. Let D be the group of magnetic shifts in H1
α(M), let uk be a bounded

sequence in H1(M) and let w(n) be as in Theorem 2.5. Then the corresponded
renamed subsequence uk satisfies∫

M

|uk|qdµ =
∑
n∈N

∫
M

|w(n)|qdµ, q ∈ (2, 2∗). (2.14)

Proof. Apply Theorem 2.5 for the bounded (by (1.6) sequence |uk| in H1(M)
equipped with the dislocation group D0 := {v → v ◦ η, η ∈ I. Since the weak
convergence in both spaces H1 and H1

α implies convergence in measure, the weak
limits (2.11) in the (H1, D0)-case, written in terms of those in the (H1

α, D)-case,
are |w(n)|. Note now that gηk

⇀ 0 (in (H1, D0)) implies that for any compact set
K ⊂ M , d(ηkK, 0) → ∞. Indeed, if ηkxk were bounded for some xk ∈ K, then,
since ηk are isometries, ηk converges in the CO topology (cf. [11]). Then the asser-
tion of the lemma follows elementarily from restriction of |w(n)| to disjoint balls of
arbitrarily large radius. �

3. Magnetic Schrödinger equation on the Heisenberg group

In this section we give an example of a manifold with a subelliptic energy form
and a potential magnetic field to which Theorem 1.3 applies.

Let H3 be the space R3, whose elements we denote as η = (x, y, t), equipped
with the group operation

η ◦ η′ = (x+ x′, y + y′, t+ t′ + 2(xy′ − yx′)). (3.1)

This group multiplication endows H3 with the structure of a Lie group with
e = 0. Two invariant vector fields X = ∂x + 2y∂t and Y = ∂y − 2x∂t satisfy the
bracket condition, namely, together with T = [X,Y ] they form the basis in the
tangent space, which yields the homogeneous dimension N = 4 and 2∗ = 4. The
Riemannian structure is fixed by setting the scalar product at TH3 so that the
given basis X,Y, T is orthonormal. The Riemannian measure and the left and the
right Haar measure on H3 coincide with the Lebesgue measure.

The Sobolev inequality (1.3) holds with the subelliptic symbol a = X⊗X+Y ⊗Y
for 2 < q < 4 and with the elliptic symbol X ⊗X + Y ⊗ Y + T ⊗ T for 2 < q < 6,
and for any open bounded Ω there is compactness in the Sobolev imbedding for
functions with support in Ω [8, 4].

Every homogeneous magnetic field on the Heisenberg group has a form β =
Adt∧dx+Bdy∧dt+(C−2By+2Ax)dx∧dy with arbitrary constants A,B,C ∈ R
(one can verify (1.9) by direct substitution, and the field is uniquely defined by its
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value at the origin due to transitivity). A magnetic potential α satisfying β = dα,
can be written in the following form, uniequely up to the differential of an arbitrary
function:

α =
1
2
A(tdx−xdt+x2dy−2xydx)+

1
2
B(ydt−tdy−2xydy+y2dx)+

1
2
C(xdy−ydx).

The function ψη that satisfies ηα − α = dψη, and the normalization condition
ψe(x, y, t) = 0 is as follows:

ψ(x′,y′,t′)(x, y, t)

=
1
2
A(t′x− x′t− x′

2
y − y′x2) +

1
2
B(y′t− t′y − y′

2
x− x′y2) +

1
2
C(x′y − y′x).

Once we evaluate α(X) = 1
2A(t−4xy)+ 3

4By
2− 1

2Cy and α(Y ) = 3
4Ax

2 + 1
2B(−t−

4xy) + 1
2Cx, we can write the invariant subelliptic energy functional E0 on the

Heisenberg group as

E0[u] =
∫
M

(|1
i

∂u

∂x
+

2
i
y
∂u

∂t
− (

1
2
A(t− 4xy) +

3
4
By2 − 1

2
Cy)u|2

+ |1
i

∂u

∂y
− 2
i
x
∂u

∂t
− (

3
4
Ax2 +

1
2
B(−t− 4xy) +

1
2
Cx)u|2)dx dy dt,

so that Theorem 1.3 gives existence of the minimizer in the inequality

E0[u] +
∫
|u|2dz ≥ c‖u‖2Lq(M,µ) (3.2)

for 2 < q < 4.

For the same reason one has existence of the minimizer with 2 < q < 4 that
corresponds to

E0[u] =
∫
M

(P (x, y, t)|1
i

∂u

∂x
+

2
i
y
∂u

∂t
− (

1
2
A(t− 4xy) +

3
4
By2

− 1
2
Cy)u|2 +Q(x, y, t)

∣∣1
i

∂u

∂y
− 2
i
x
∂u

∂t

−
(3
4
Ax2 +

1
2
B(−t− 4xy) +

1
2
Cx)u

∣∣2)dx dy dt,
where P,Q are bounded positive measurable functions, bounded away from zero,
periodic with respect to the group shifts with x′, y′, z′ ∈ Z.

The existence result applied to the uniformly elliptic case involves the functional

E0[u] =
∫
M

(P (x, y, t)|1
i

∂u

∂x
+

2
i
y
∂u

∂t
− (

1
2
A(t− 4xy) +

3
4
By2 − 1

2
Cy)u|2

+Q(x, y, t)|1
i

∂u

∂y
− 2
i
x
∂u

∂t
− (

3
4
Ax2 +

1
2
B(−t− 4xy) +

1
2
Cx)u|2

+R(x, y, t)|1
i

∂u

∂t
− 1

2
(By −Ax)u|2)dx dy dt,

with 2 < q < 6 (we used here the evaluation α(∂t) = 1
2 (By − Ax)), assuming that

P,Q,R satisfy the same conditions as P,Q in the previous example.
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4. Proof of Theorem 1.3

Proof. Let uk be a minimizing sequence for the relation (1.7) We apply Theorem 2.5:∑
‖w(n)‖2H1

α(M) ≤ cq. (4.1)

At the same time we have (2.14). From (2.14) and (4.1) follows that∑
‖w(n)‖2H1

α(M) ≤ cq
∑

t2/qn , (4.2)

where tn = ‖w(n)‖qLp(X,µ). Note now that (2.14) can be written as
∑
tn = 1, so

that, since q > 2,
∑
t
2/q
n = 1 only if all but one of tn, say for n = n0, equals zero.

We conclude that w(n0) is the minimizer for (1.7). �

Remark 4.1. We note that from the proof of Theorem 1.3 follows that that for any
minimizing sequence uk for (1.7) there is a sequence ηk, such that gηk

uk converges
to the minimizer in H1

α(M). Indeed, with ηk = (ηn0
k )−1 as above we have a weak

convergence and convergence of the norms, and thus the norm convergence.
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