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EXISTENCE OF PERIODIC ORBITS FOR VECTOR FIELDS
VIA FULLER INDEX AND THE AVERAGING METHOD

PIERLUIGI BENEVIERI, ANDREA GAVIOLI, MASSIMO VILLARINI

Abstract. We prove a generalization of a theorem proved by Seifert and

Fuller concerning the existence of periodic orbits of vector fields via the av-
eraging method. Also we show applications of these results to Kepler motion

and to geodesic flows on spheres.

1. Introduction

Let X0 be a smooth vector field on a closed manifold M ; we will refer to it as the
unperturbed vector field. A smooth homotopy ε 7→ Xε will be called a perturbation
of X0. A tipical situation when all the orbits of X0 are closed leads to a fibration
by circles of M , generated by the S1-action whose infinitesimal generator is X0.
Relevant examples are harmonic oscillators having the same frequency, the geodesic
flow on spheres and the regularized Kepler motion. We are interested in the problem
of existence of periodic orbits for perturbed vector fields. Concerning this problem
two important results should be mentioned: the Seifert-Fuller Theorem [8, 3], and
the Reeb-Moser Theorem [9, 7]. In this article we clarify the relationships between
these two results. In particular, we will prove the former by proving a generalization
of the latter: in doing so, we realize an approach to the use of perturbation theory
to draw conclusions about the qualitative dynamics proposed by Anosov in [1, page
181].

In the next section we prove the Seifert-Fuller Theorem via the averaging method
for one-frequency systems. It is based on a generalization of the Reeb-Moser The-
orem, contained in our Theorem 2.3. In the last section, we give some examples
and applications: They concern the regularized Kepler motion and an existence
result of periodic orbits which can be considered as a multidimensional version of
the Poincaré-Bendixson Theorem. In the first case we also prove the existence of
periodic orbits for Hamiltonian perturbations in the negative energy case, which
generalizes an analogous one given by Moser in [7] in the nondegenerate case.
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2. A proof of a Theorem by Seifert and Fuller via Averaging
Method on a Manifold

In this section we give a new proof - and a slight generalization - of a well-known
result by Seifert [8] and Fuller [3], [4] concerning the existence of closed orbits
for vector fields arising from perturbations of a fibration by circles on a closed
manifold. Our approach is strongly motivated by Anosov’s comments in [1]. Let
us quote Anosov’s own words in [1], page 181:

“We digress slightly to discuss a possible approach to the proof of this theorem
(of Seifert-Fuller, or of Seifert-Reeb as referred to by Anosov) using perturbation
theory, the description of what we refer to as the Reeb-Moser Theorem about the
existence of closed nondegenerate orbits corresponding to nondegenerate singular
points of the averaged vector field follows. But we do not, in fact, exclude cases
in which the equilibrium points [ of the averaged vector field ] are degenerate or
even non-isolated. Such cases could, of course, be investigated by perturbation
theory, but it is not clear a priori what result of such an investigation would be and
whether it would be possible to handle all the cases which arise in a uniform way
. . . In summary, perturbation theory provides effective computation procedure in
a specific situation, but is less effective than topological considerations in studying
the qualitative behaviour in the general case.”

Actually, our generalization of the Seifert-Fuller Theorem will show how Anosov’s
approach to the use of perturbation theory for the qualitative study of differential
systems can be made effective even in the degenerate cases.

To state the Seifert-Fuller Theorem we need a short introduction to the Fuller
index theory. We give a simplified version of it, well-suited for our goals, and refer
to [3], [4] for a thoroughly discussion of the theory and related results.

We point out that every mathematical object in this article is assumed smooth:
C2-regularity would be enough. Let M be a n-dimensional closed (i.e. compact
boundaryless) manifold and let

X : M → TM

be a vector field. Consider an open set Ω ⊆ M , bounded away from the set
sing(X) of the singular points of X. Let 0 < T1 < T2 < +∞. Then, the set
Ω×]T1, T2[⊆ M ×R+ is admissible for X. When we denote by φt the flow of X and

Π(X) = {(q, t) ∈ M × R+ : φt(q) = q},

then ∂(Ω×]T1, T2[) ∩Π(X) = ∅.
If ε 7→ Xε is a smooth homotopy of vector fields, Xε : M → TM , 0 ≤ ε ≤ 1, we

say that Ω×]T1, T2[ is admissible for the homotopy if it is admissible for every Xε. In
[3] Fuller defines a rational-valued, additive, homotopy invariant index, the Fuller
index, relative to a vector field X and to an admissible set Ω×]T1, T2[. We denote
it by iF (X; Ω×]T1, T2[). The most important property we will use about this index
states that if iF (X; Ω×]T1, T2[) 6= 0, then there exists a nontrivial periodic orbit
of X, having nonempty intersection with Ω and period in ]T1, T2[ (not necessarily
minimal). Now we state the result by Seifert and Fuller.

Theorem 2.1 (Seifert [8], Fuller [4]). Let M be a compact boundaryless n-dimensional
manifold, fibered by circles by the S1-action having as infinitesimal generator the
vector field

X0 : M → TM
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or, equivalently, let us suppose that all the orbits of X0 have one and the same
minimal period, say 2π. Actually, it is enough to suppose that the minimal periods
of the closed orbits of X0 are bounded from above in M , and then reparametrize
X0. In dimension n > 3 there exist examples [10] of closed manifolds foliated by
circles having unbounded minimal periods (equiv. lenghts). Then, the orbit space

M̃ = M/S1

is a closed (n− 1)-manifold, and

iF (X0;M×]π, 3π[) = χ(M̃),

where χ(M̃) is the Euler characteristic of M̃ . Therefore, if χ(M̃) 6= 0 and ε is
sufficiently small, each vector field Xε of a given smooth homotopy has at least one
closed orbit.

Remark. In general, the Fuller index is a rational number, while, in the cases when
the statement of Theorem 2.1 applies, it is always an integer. This is a consequence
of the fact that in the situation considered in the above theorem only closed orbits
with minimal period in ]π, 3π[ are detected.

To present our proof - and the promised slight generalization - of the above the-
orem, we need to introduce the basic elements of averaging method on a manifold,
mainly focusing on the one-frequency case as treated by Moser in [7]. We will refer
to

X0 : M → TM

as the unperturbed vector field, and to the Xε’s of a smooth homotopy as the
perturbations of X0. We will use the notation

Xε = X0 + εP + O(ε2).

The averaged vector field of Xε on M , Xε : M → TM , is defined as

Xε =
1
2π

∫ 2π

0

(φt
0)∗Xεdt, (2.1)

where (φt
0)∗Xε = dφ−t

0 Xε ◦ φt
0 and φt

0 denotes the flow of X0. The main property
of Xε is that

(φt
0)∗Xε = Xε

or equivalently that [X0,Xε] ≡ 0.
As a straightforward consequence we get that, if

p : M → M̃ = M/S1

(p∗ denotes the Fréchet derivative of p) is the projection of the S1-bundle, then

Xε = p∗Xε

is a well-defined vector field
Xε : M̃ → TM̃.

We still call it averaged vector field on M̃ . Recalling that Xε = X0 +εP +O(ε2),
and using the above formula (2.1), we obtain

Xε = X0 + εP + O(ε2),



4 P. BENEVIERI, A. GAVIOLI, M. VILLARINI EJDE-2004/128

where P is the averaged vector field of P (on M), defined as

P =
1
2π

∫ 2π

0

(φt
0)∗P dt.

Therefore, Xε = εP + O(ε2), where P = p∗P is the averaged vector field on M̃ .
In local trivializing coordinates of the bundle p : M → M̃ = M/S1, corre-

sponding to straightening coordinates of X0, by using the “action coordinate” I to
parametrize M̃ and the “angular coordinate” θ, with θ = θ mod 2π, to parametrize
S1, we obtain

X0 :

{
İ = 0
θ̇ = 1,

Xε :

{
İ = εg(I, θ, ε)
θ̇ = 1 + εf(I, θ, ε),

Xε :

{
İ = εG(I) + O(ε2)
θ̇ = 1 + εf(I, θ, ε),

Xε :
{

İ = εG(I) + O(ε2).

It is easy to check that G(I) is the expression of P in local trivializing coordinates,
that is,

G(I) =
1
2π

∫ 2π

0

g(I, θ, 0)dθ.

The geometric meaning of the vector field P , or equivalently of G(I), is given by
the following argument, essentially due to Moser [7]. The use of local trivializing
coordinates allows us to locally identify the bundle p : M → M̃ with the product
U ×S1, where U is open in M̃ . On the other hand, U can be viewed as an (m− 1)-
dimensional submanifold of M , represented in local coordinates as {(I, 0), |I| < R},
with R > 0 small enough.

For a sufficiently small ε > 0, consider a cross section Σ of Xε, |ε| < ε, that is
an (m − 1)-dimensional submanifold of M , contained in U , which is transverse in
each of its points to Xε. In addition, consider the one parameter family of Poincaré
maps

F = Fε : A× (−ε, ε) → Σ,

where A is an open subset of Σ. The existence of closed orbits of Xε, for |ε| < ε,
with initial data (I, 0), I ∈ A, and minimal period close to 2π, is then reduced to
the existence of I = I(ε) such that F (I(ε), ε) = I(ε). Since F is smooth, it can be
expanded as

F (I, ε) = I + ε
∂

∂ε
F (I, 0) + O(ε2),

where the equality F (I, 0) = I follows from the 2π-periodicity of X0. Observe
that O(ε2) is uniform with respect to I, if |I| < R. The crucial point in the
averaging method for one frequency systems is the following equality, which clarifies
the geometric meaning of the averaged vector field P :

1
2π

∂

∂ε
F (I, 0) = P (I)
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or, equivalently,

1
2π

∂

∂ε
F (I, 0) = G(I) =

1
2π

∫ 2π

0

g(I, θ, 0)dθ.

This property is easily verified. In fact, let us represent the flow φt
ε of Xε in local

coordinates as follows:

φt
ε(I, θ) = (ξ(t, I, θ, ε), ζ(t, I, θ, ε)).

From the expression of Xε and from the obvious identity φt
0(I, θ) = (I, t + θ) we

get

ξ(t, I, θ, ε) = ε

∫ t

0

g(I + O(ε), τ + θ + O(ε), ε)dτ.

The Poincaré map has the equivalent definition

F (I, ε) = ξ(t(I, ε), I, 0, ε),

where t(I, ε) is the first return time map on Σ, and, obviously,

t(I, ε) = 2π + O(ε).

Let us recall that all the O(ε)’s are uniform with respect I, with |I| < R. Finally

F (I, ε) = ε

∫ 2π

0

g(I, θ, 0)dθ + O(ε2)

and thus
∂

∂ε
F (I, 0) = 2πG(I).

We can now collect in the following theorem some propositions which will be
fundamental for our extension of the Reeb-Moser Theorem and therefore for our
averaging-oriented proof of the Seifert-Fuller Theorem. These propositions are well-
known, apart perhaps the statement i) which is obvious; nevertheless, we give a
complete proof of them because it is elementary, basic for the developments of our
article and slightly simplified in our case.

Theorem 2.2 (Reeb [9], Moser [7], Hale [5], Fuller [4]).
(i) Let {εn} be a real sequence converging to 0 and, for each n, let γεn

be a
closed orbit of Xεn

, with minimal period in ]π, 3π[ and corresponding to
initial data (I(εn), 0). Assume also that I(εn) tends to 0. Then G(0) = 0.

(ii) (Reeb [9], Moser [7]) If G(0) = 0 and the linear operator ∂
∂I G(0) is non-

singular, i.e. the averaged vector field P on M has a nondegenerate zero
in I = 0, then there exist ε > 0 and a neighborhood U of I = 0 in M̃ , such
that for every ε, |ε| < ε, there exists at least one closed orbit γε of Xε, cor-
responding to the initial datum (I, 0), I ∈ U , and such that γε 7→ {I = 0}
(Hausdorff topology).

(iii) (Hale [5]) Assume that 0 ∈ U ⊆ Rn−1 is a hyperbolic singular point of
P . Then the closed orbit γε is hyperbolic, hence isolated among the closed
orbits of Xε having periods in ]π, 3π[.

(iv) (Fuller [4]) In the same assumptions of the previous statement there exists
a small tubular neighborhood γ̃ε of γε in M such that

iF (Xε; γ̃ε×]π, 3π[) = sign(−ε)niP−H(P ; 0),

where iP−H(P ; 0) is the Poincaré-Hopf index of P at 0.
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Proof. From the assumptions of statement i) and from the basic relationship be-
tween the Poincaré map and the averaged vector field we get

F (I(εn), εn)− I(εn) = εn(
∂

∂ε
F (I(εn), εn) + O(εn)) = 0

for a sequence of nonzero εn → 0 and consequently for I(εn) → 0. This is clearly
impossible if

P (0) =
1
2π

∂

∂ε
F (0, 0) 6= 0,

then i) follows.
To prove the second statement we must prove the existence of ε 7→ I(ε), I(0) = 0,

such that
F (I(ε), ε)− I(ε) = 0

or equivalently, just expanding the Poincaré map with respect to the parameter ε,
we must prove the existence of nontrivial solutions of

ε(
1
2π

∂

∂ε
F (I, ε) + O(ε)) = 0.

Of course, this is a straightforward consequence of the Implicit Function Theorem,
of the basic equality

1
2π

∂

∂ε
F (I, 0) = G(I)

and of the hypothesis that G(I) has a nondegenerate zero at 0.
The proofs of both the statements iii) and iv) follow from the following argument.

Let λj(I, ε), µj(I), j = 1, . . . ,dim M̃ be respectively the eigenvalues of

∂

∂I
F (I, ε)

and of
∂

∂I
P (I).

Let us remark that, even if X0 : M → TM does not admit a global section, i.e.
a one-codimensional closed submanifold, diffeomorphic to M̃ , which is everywhere
transverse to X0, the functions λj(I, ε), j = 1, . . . , n = dim M̃ are well-defined, if
the multiplicity of the eigenvalues is considered. In fact, we can choose an one-
codimensional distribution D of small disks on M , everywhere transverse to X0,
and we can compute the relative local first return maps: the eigenvalues λj(I, ε)
turn out to be independent of D. Moreover, let us observe that all the conclusions
about the computations of the various indices are not affected by a small smooth
homotopy of P still keeping I = 0 as a hyperbolic singular point of P , having
eigenvalues of the linearization at 0 which are all distincts: hence we will suppose
this is the situation we are dealing with.

Then, again as a straightforward consequence of the basic equality

F (I(ε), ε) = I(ε) + 2πεP (I) + O(ε2),

we get
∂

∂I
F (I(ε), ε) = E + 2π

∂

∂I
G(I)ε + O(ε2)

and so finally, using the fact that the µj(I)’s are all distinct, we get the equality

λj(I, ε) = 1 + 2πεµj(I) + O(ε2)
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from which both statements iii) and iv) easily follow. In fact, from the definition
of the Fuller index for hyperbolic periodic orbits, see [3], we have that

iF (Xε; γ̃ε×]π, 3π[) = (−1)σ

where σ is the number of eigenvalues of the monodromy operator ∂
∂I F (I(ε), ε) in

]1,+∞[. Therefore σ is equal, in the case ε > 0, to the number of the µj ’s which are
real and greater than zero, or, from the fact that the system is real, to the number
of the µj ’s having positive real parts: this conclude the proof in the case when ε is
positive; the case of negative ε is analogous. �

We can now state and prove the main result of this section: it is an extension of
statement ii) of the above thorem (Reeb-Moser Theorem) to the degenerate case.
Let us consider the one-parameter family of vector fields on M

Xε = X0 + εP + O(ε2).

We are going to show how the topological properties of the Frechet derivative of
ε 7→ Xε - namely the vector field P - determine the existence of closed orbits of
Xε, with ε sufficiently small. A generalization of this approach will be considered
in the remark at the end of this section.

Let Ã be an open subset of M̃ , whose boundary is a boundaryless (m − 2)-
dimensional manifold. We recall that, in this case, the index of the averaged vector
field P : M̃ → TM̃ in Ã is well defined if singP ∩ ∂Ã = ∅, where singP is the set
of singular points of P . We have the equality

ind(P , Ã) = deg(
P

‖P‖
, ∂Ã),

where deg( P
‖P‖ , ∂Ã) stands for the ordinary Brouwer degree.

Theorem 2.3. Let Ã be an open subset of M̃ with ∂Ã a compact boundaryless
manifold. Suppose singP ∩ ∂Ã = ∅. Let p : M → M̃ be the bundle projection map
and A = p−1(Ã) ⊆ M . Then, there exists ε > 0 such that, for every ε, |ε| < ε, the
set A×]π, 3π[ is admissible for Xε and

iF (Xε;A×]π, 3π[) = sign(−ε)n ind(P , Ã), (2.2)

where n = dim M̃ .

Before giving the proof of this theorem we deduce as a corollary Theorem 2.1

iF (Xε;M×]π, 3π[) = χ(M̃).

Proof of Theorem 2.1. We just need to use the above theorem and the additive
property of the index, together with the well-known equality of the global index of
a vector field on a closed manifold and the Euler characteristic of the manifold itself.
The presence of the factor sign(−ε)n in the formula (2.2) is obviously immaterial
when the global situation is considered. This is clear if dim M̃ is even and this is a
consequence of the fact that χ(M̃) = 0 in the case when dim M̃ is odd . �

Proof of Theorem 2.3. We carry on the proof in the case Ã is completely contained
in one local chart of M̃ and referred to local coordinates I as Ã = BR(0) = {I ∈
M̃ : |I| < R}. The general case is completely analogous and can be reduced to
the above situation by choosing local trivializing coordinates (I, θ) on the bundle,
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decomposing Ã in local charts and patching the various parts of it together, taking
into account the additivity property of the index.

Let us observe that in our situation, we have

A = BR(0)× S1.

Moreover, as we are working in local coordinates, we will refer to P as G(I). The
assumption that G(I) 6= 0, for I ∈ ∂BR(0), and statement i) of Theorem 2.2 imply
that for |ε| < ε, ε sufficiently small, Xε has no closed orbits with periods in ]π, 3π[
passing through points of ∂A. This proves that A is admissible for the Xε’s.

In the following part of the proof we suppose ε to be fixed and sufficiently small,
according to the above specified request, and we compute iF (Xε;A×]π, 3π[). Let

ρ : M → R+

be a smooth bump function, such that ρ ≡ 0 in M − p−1(BR(0)) = M − A,
while ρ ≡ 1 in p−1(BµR(0)) where µ is sufficiently small in order that G(I) 6= 0
for µR ≤ |I| ≤ R. The bump function ρ allows to localize a smooth homotopy
λ 7→ Xε,λ in the local chart containing BR(0) × S1. Therefore, we just need to
define Xε,λ in local coordinates (I, θ). Let n = dim M and V ∈ Rn−1 − {0}, and
let us define such (local) homotopy as

λ 7→ Xε,λ(I, θ) = Xε(I, θ) + λρ(I, θ)V.

Of course, A×]π, 3π[ is still admissible for Xε,λ, for sufficiently small λ. Let λ be one
of such sufficiently small values: a straightforward application of Sard’s Theorem
implies that for almost any choice of V , the averaged vector field Xε,λ has only
hyperbolic singular points in BR(0). From the basic results of degree theory we
have the following chain of equalities

ind(P ,BR(0)) = deg(
P

‖P‖
, ∂BR(0))

= deg(
Xε

‖Xε‖
, ∂BR(0))

= deg(
Xε,λ

‖Xε,λ‖
, ∂BR(0))

=
∑

Ij∈sing(Xε,λ)

iP−H(Xε,λ; Ij).

On the other hand, statement iv) of Theorem 2.2 and the homotopy invariance of
the Fuller index give∑

Ij∈sing(Xε,λ)

iP−H(Xε,λ; Ij) = sign(−ε)niF (Xε,λ; p−1(BR(0)×]π, 3π[)

= sign(−ε)niF (Xε; p−1BR(0)×]π, 3π[)

and finally

sign(−ε)niF (Xε; p−1BR(0)×]π, 3π[) = ind(P ,BR(0)).

�
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Remark. It is easy to see that, as a consequence of Theorem 2.3, a closed orbit of
Xε with initial datum (I, 0), I ∈ Ã, exists whenever ind(Xε, p

−1(Ã)) 6= 0.
Remark. One could try to use the Fuller index approach to investigate the exis-
tence of periodic orbits of minimal period greater than 2π. Actually, these trajec-
tories do not exist. More precisely we can state the following property:

for any given number T > 2π, there exists ε such that for every
0 < ε < ε the vector field Xε has no periodic orbits having minimal
periods in ]2π, T [.

The proof of this claim is an obvious consequence of the fact that the eigenvalues
λj(I, ε) defined in the proof of Theorem 2.2 verify λj(i, ε) = 1 + O(ε).

Remark. Theorem 2.3 easily generalizes to the case when P ≡ 0 on M̃ . Let

Xε = X0 + εP + · · ·+ εkP (k) + O(εk+1) ,

P (k) =
1
2π

∫ 2π

0

(φt
0)∗P

(k)dt ,

P
(k)

= p∗P
(k).

Also suppose that P ≡ · · · ≡ P
(k−1) ≡ 0 while P

(k) 6= 0. Then the same arguments
leading to Theorem 2.3 give

iF (Xε;A×]π, 3π[) = sign(−ε)kn ind(P
(k)

, Ã).

3. Examples and applications

This final part of the article contains some applications of the results contained
in the previous section. Specifically, we give applications of the “degenerate version
of the Reeb-Moser Theorem”, namely of Theorem 2.3, as well as applications of the
classical Seifert-Fuller Theorem. In our opinion they have some interest, originality
and relationship with the present article. This section is divided in two subsections,
labeled by a latin letter and a short title.

Hamiltonian degenerate perturbations of the Kepler motion. Let

H0(p, q) =
1
2
|p|2 − 1

|q|
be a Kepler Hamiltonan, q = (q1, . . . , qn), p = (p1, . . . , pn). In the case n = 2 H0 is
the Hamiltonian of the Newtonian gravitational field describing a two-body system.
Let

Hε(p, q, ε) = H0(p, q) + εK(p, q, ε)
be a perturbed Hamiltonian, where K(p, q, ε) is smooth and satisfies a smoothness
assumption also as a function

K(|p|2q − (2p · q)p,
p

|p|2
ε)

near |q| = 2, p = 0, ε = 0. Such a smoothness condition could be verified following
an analogous case presented in [7, Section 5, p. 628].

Under these conditions the Hamiltonian motion on a negative energy level, say
on {Hε(p, q, ε) = − 1

2}, can be embedded, as a flow, after a reparametrization of
the independent variable and a smooth change of coordinates, in a Hamiltonian ε-
perturbation of the geodesic flow X0 on Sn (with respect to the standard metric on
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the n-sphere ). This is the so called regularization of the perturbed Kepler motion,
see [7] for details. Let

Xε : T1S
n → T (T1S

n)

be the corresponding one-parameter family of vector fields on the unitary tangent
bundle of the n-sphere realizing the perturbation of the geodesic vector field

X0 : T1S
n → T (T1S

n).

In [7] Moser proved, as a consequence of statement ii) in Theorem 2.2, the following
theorem of existence of periodic orbits for the perturbed geodesic flow on spheres,
or equivalently for the perturbed Kepler motion.

Theorem 3.1 ([7]). Let Xε be the averaged vector field with respect to the un-
perturbed geodesic flow X0 on a sphere. If, for ε sufficiently small, Xε has a
nondegenerate singular point, then Xε has a (nondegenerate) periodic orbit.

Moreover, let Hε be the Hamiltonian of Xε and consider the regularization of
the perturbed Kepler motion on negative energy manifolds. For every ε sufficiently
small such that a nondegenerate singular point of the averaged vector field aris-
ing from the regularization exists, it has at least one closed orbit. Actually such
“closed” orbit could be a collision orbit. We will not consider this question here.

Our Theorem 2.3 permits to drop the (particularly heavy in the Hamiltonian
case) non-degeneracy assumption in Theorem 3.1.

Theorem 3.2. The same conclusion as in the previous theorem, regarding the
existence of closed orbits for the perturbation Xε of the geodesic flow on spheres,
holds if Xε = εP +O(ε2) has a degenerate zero with nonzero index or more generally
if there exists a ball BR in the orbit space of X0 such that

ind(P , ∂BR) 6= 0.

Actually, if ε is sufficiently small, the perturbed geodesic vector field Xε has always
at least one closed geodesic. An analogous conclusion holds for the perturbed Kepler
motion.

Proof. The first part of the theorem is a straightforward application of Theorem 2.3,
while the second one is a consequence of the Seifert-Fuller Theorem. In both cases
we just need to reduce the dynamical situation to a geometric model well-suited for
application of the one-frequency averaging method. We will do that referring to the
application of the Seifert-Fuller Theorem, the rest of the proof being completely
analogous. The geodesic vector field X0 : T1S

n → T (T1S
n) defines a fibration by

circles

T1S
n → G2,n+1,

where G2,n+1 is the Grassmannian manifold of oriented 2-planes in Rn+1, obtained
after identification of a great circle in Sn by the 2-plane through the origin con-
taining it. We apply now the Seifert-Fuller Theorem

iF (X0;T1S
n×]π, 3π[) = χ(G2,n+1) 6= 0.

In fact a straightforward computation of the Betti numbers of G2,n+1, based
for instance on the cell structure of the Grassmann manifolds as exposed in [6],
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together with the definition of the Euler characteristic as the alternating sum of
the Betti numbers, leads to

χ(G2,n+1) =

{
n + 1 if n is odd
n if n is even.

�

Remark. It is probably worthwhile mentioning that the above result and the
approach used for its proof are not unrelated with the deeply studied problem of
existence of closed geodesics after perturbation of the standard metric on Sn. We
stress the fact that in the above theorem we considered arbitrary perturbations, and
not only perturbations arising from a perturbation of the standard metric on the
sphere. For such particular perturbations not only existence but also multiplicity
results are known, obtained through a variational approach (see [2]).

A Poincaré-Bendixson type existence theorem of periodic orbits. This
second application of the ideas related to the Fuller index approach in the averaging
method for one-frequency systems deals with a situation which is frequently present
in mechanics. Let J ⊆ R be an interval and M be a closed manifold: the dynamic
variable h parametrizing J is called the energy of the unperturbed dynamical system

X0 : J ×M → R× TM.

Such a vector field verifies:
(i) h is a first integral for X0,
(ii) X0|{h=c} : M → TM generates a fibration by circles (with c-depending

minimal periods Tc)
p(c) : M → M̃,

(iii) for c1, c2 ∈ J the fibrations p(cj) : M → M̃ , j = 1, 2, are isomorphic,
(iv) the Fuller index of the fibration by circles satisfies

iF (X0|{h=c};M×]
1
2
Tc,

3
2
Tc[) 6= 0.

In the sequel we will always refer to the natural splitting of the tangent bundle
T (J × M) = R × TM and the analogous T (J × M̃) = R × TM̃ defined by the
bundle map. Therefore, the averaged vector field

P : J × M̃ → R× TM̃

is canonically decomposed as P = (P
h
, P

M̃
). s

Example. Harmonic oscillators with the same frequency. Let x ∈ R4 and

ẋ = X0(x) = Ax,

where A = I1 ⊕ I2 and

I1 = I2 =
(

0 −1
1 0

)
.

Here J = R+, M = S3, M̃ = S2 and the fibration p : S3 → S2, which is the
same for every energy level, is the Hopf fibration, with iF (X0;S3×]π, 2π[ ) = 2.
Of course, this situation generalizes in an obvious way to the case of n harmonic
oscillators with rationally dependent frequencies.
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Example. Geodesic flow on spheres. Here

X0 : TSn → T (TSn)

is the geodesic vector field, n ≥ 2, with respect to the usual metric on Sn. The
tangent bundle is fibered through the level manifold of the kinetic energy first
integral as

TSn = (Sn × {0}) ∪ (∪h>0ThSn).

The exceptional 0-fiber is diffeomorphic to Sn, while all the other fibers are dif-
feomorphic to T1S

n. Therefore every energy interval J = (h1, h2) ⊆ R+ defines a
phase space for (the restriction of) X0 such that

X0 : ∪h1<h<h2({h} × ThSn) → ∪h1<h<h2({h} × T (ThSn)),

where p(h) : ThSn → G2,n+1 are isomorphic bundles for h1 < h < h2. Finally, we
recall that

iF (X0|{h=c};ThSn×]
π

c
,
3π

c
[) = χ(G2,n+1) 6= 0.

These examples justify our attention to the perturbations

Xε : J ×M → R× TM,

where Xε = X0 + εP + O(ε2) and X0 satisfies the above listed properties i)-iv). It
is easy to see that in general Xε has no closed orbits: in the next theorem we will
give some relevant hypotheses implying the existence of periodic orbits.

Theorem 3.3. Let h1, h2 ∈ J be two energy levels, h1 < h2, such that

P
h
(h1, I)P

h
(h2, I) < 0

for every I ∈ M̃ . Assume in addition that χ(M̃) 6= 0. Then, for every sufficiently
small ε, there exists a closed orbit of Xε having minimal period between 1

2T (h1) and
3
2T (h2) and corresponding to an initial datum q ∈ J×M such that h1 < h(q) < h2.

Proof. We prove the theorem in the case π < T (h1) < T (h2) < 3π. This situation
is the general one, up to a reparametrization of the independent variable and of
the energy h, not affecting our geometric conclusions concerning the existence of a
periodic orbit. We will apply the Fuller index theory to the set

Ω = ( ]h1, h2[×M)×]π, 3π[ .

Let us remark that, as M is boundaryless,

∂Ω = {h1}×M×]π, 3π[∪{h2}×M×]π, 3π[∪]h1, h2[×M ×{π}∪]h1, h2[×M ×{3π}.

The assumption

P
h
(h1, I)P

h
(h2, I) < 0

together with statement i) of Theorem 2.2 permits to conclude that Ω is admissible
for the perturbation if ε is sufficiently small, as we will always suppose for the rest
of the proof. Therefore, to conclude the proof we keep ε fixed and we prove that
iF (Xε; Ω) 6= 0. Let us define

Y :]h1, h2[×M → R× TM
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through its components with respect to the canonical splitting as

Y M (h, q) = X0|{h}×M ,

Y h(h, q) =

{
h− h1+h2

2 if P
h
(h1, I) < 0,

h1+h2
2 − h if P

h
(h1, I) > 0.

It is clear that {(h, q) : h− h1+h2
2 = 0} ' M is an invariant manifold for Y , fibered

by circles by the Y -action, while no other point in ]h1, h2[×M can be the initial
datum for a periodic orbit of Y . It is also easy to see that Ω is admissible for Y
and that - by an obvious homotopic perturbation - we get

iF (Y ; Ω) = χ(M̃) 6= 0.

Therefore, the statement will be proved if we construct a smooth homotopy between
Y and Xε still having Ω as an admissible set. Let

λ 7→ (1− λ)Xε + λY = Zε,λ

connecting Xε to Y . To prove the admissibility of Ω for λ 7→ Zε,λ, we observe that

Zε,λ = ε(1− λ)P + ελY

and that Y
M̃

= 0, while Y
h

= h− h1+h2
2 . Now, let us suppose that P

h
(h1, I) < 0

and P
h
(h2, I) > 0 for I ∈ M̃ , the opposite situation being analogous. Then

Z
M̃

ε,λ = ε(1− λ)P
M̃

,

Z
h

ε,λ = ε(1− λ)P
h

+ λY
h

and therefore for ε 6= 0,

Z
h

ε,λ(h1, I)Z
h

ε,λ(h2, I) < 0 .

Arguing as in Theorem 2.2, statement (i), the above inequality implies that no
periodic orbit of Zε,λ can intersect

{h1} ×M×]π, 3π[∪{h2} ×M×]π, 3π[.

Therefore, to prove that ∂Ω is admissible for λ 7→ Zε,λ we must prove that no
periodic orbit of Zε,λ intersects ]h1, h2[×M × {π}∪]h1, h2[×M × {3π} or, which is
the same, that no periodic orbit of Zε,λ in ]h1, h2[×M has period π or 3π. Let
Z0,λ = (1 − λ)X0 + λY , 0 ≤ λ ≤ 1. For every λ ∈ [0, 1] these vector fields has no
periodic orbits of period π or 3π. More precisely, if

φt
0,λ(h, I) = (φt

0,λ;h(h, I), φt
0,λ;I(h, I))

is the flow of Z0,λ, then, as

ZM
0,λ(h, I) = X0|{h}×M ,

there exists δ > 0 such that, for every (h, I) ∈]h1, h2[×M ,

d(φπ
0,λ;I(h, I), I) > 2δ ,

d(φ3π
0,λ;I(h, I), I) > 2δ ,

where d(·, ·) is a distance defined by a Riemann metric on M . Then, if

φt
ε,λ(h, I) = (φt

ε,λ;h(h, I), φt
ε,λ;I(h, I))
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is the flow of Zε,λ and if ε is sufficiently small, from the continuous dependence of
the solutions from parameters one has that for every (h, I) ∈ [h1, h2]×M

d(φπ
ε,λ;I(h, I), I) > δ ,

d(φ3π
ε,λ;I(h, I), I) > 2δ

and therefore the vector fields Zε,λ have no periodic orbits with periods π or 3π in
∈ [h1, h2]×M . This concludes the proof. �

Remark. An application of the above theorem to the geodesic flow on spheres
(second example above) gives an existence result for closed geodesics.

In some sense, the above theorem is a theorem of Poincaré-Bendixson type, too.
In fact, the ω-invariance of a region of the (multidimensional) phase space, together
with topological hypotheses on the averaged vector field, including that it always
points either inward or outward in the 2 boundary components, imply the existence
of a closed orbit.
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de Recherche Mathématiques Avancée, Strasbourg, 1968.
[5] J. K. Hale; Integral Manifolds of Perturbed Differential Systems Ann. Math., 73, No. 3

(1961), 496-531.

[6] J. Milnor, J. Stasheff; Characteristic Classes, Princeton University Press, Princeton, 1974.
[7] J. Moser; Regularization of Kepler’s Problem and the Averaging Method on a Manifold,

Comm. Pure Appl. Math., 23 (1970), 609-636.

[8] H. Seifert; Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc.
Am. Math. Soc. 1 (1950), 287-302.

[9] G. Reeb; Sur certaines propriétés topologiques des systèmes dynamiques, Acad. Roy. Sci.
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Modena e Reggio Emilia, Via Campi 213/b, 41100 Modena, Italy
E-mail address: gavioli@unimo.it

Massimo Villarini

Dipartimento di Matematica Pura e Applicata “G. Vitali”, Università degli Studi di
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