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QUASILINEAR ELLIPTIC SYSTEMS IN DIVERGENCE FORM
WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL

DATA

FABIEN AUGSBURGER, NORBERT HUNGERBÜHLER

Abstract. We study the quasilinear elliptic system

− div σ(x, u, Du) = v(x) + f(x, u) + div g(x, u)

on a bounded domain of Rn with homogeneous Dirichlet boundary conditions.
This system corresponds to a diffusion problem with a source v in a moving and
dissolving substance, where the motion is described by g and the dissolution
by f . We prove existence of a weak solution of this system under classical
regularity, growth, and coercivity conditions for σ, but with only very mild

monotonicity assumptions.

1. Introduction

Let Ω denote a bounded open domain in Rn. Let Mm×n denote the set of real
m by n matrices equipped with the usual inner product A : B = AijBij . In [12]
the following quasilinear elliptic system was cosidered:

−div σ(x, u,Du) = v(x) on Ω
u = 0 on ∂Ω ,

(1.1)

where v belongs to the dual space W−1,p′(Ω; Rm) of W 1,p
0 (Ω; Rm) and σ satisfies

the following conditions for some p ∈ (1,∞):

(E0) (Continuity) σ : Ω × Rm × Mm×n → Mm×n is a Carathéodory function,
i.e. x 7→ σ(x, u, F ) is measurable for every (u, F ) ∈ Rm × Mm×n and
(u, F ) 7→ σ(x, u, F ) is continuous for almost every x ∈ Ω.

(E1) (Growth and coercivity) There exist c1 > 0, c2 > 0, λ1 ∈ Lp′(Ω), λ2 ∈
L1(Ω), 0 < α < p, λ3 ∈ L(p/α)′(Ω) and 0 < β 6 n

n−p (p− 1) such that

|σ(x, u, F )| 6 λ1(x) + c1(|u|β + |F |p−1)

σ(x, u, F ) : F > −λ2(x)− λ3(x)|u|α + c2|F |p

(E2) (Monotonicity) σ satisfies one of the following conditions:
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(a) For all x ∈ Ω and all u ∈ Rm, the map F 7→ σ(x, u, F ) is a C1-function
and is monotone, i.e.

(σ(x, u, F )− σ(x, u,G)) : (F −G) > 0

for all x ∈ Ω, u ∈ Rm and F,G ∈ Mm×n.
(b) There exists a functionW : Ω×Rm×Mm×n → R such that σ(x, u, F ) =

∂W
∂F (x, u, F ), and F 7→W (x, u, F ) is convex and C1.

(c) For all x ∈ Ω and all u ∈ Rm, the map F 7→ σ(x, u, F ) is strictly
monotone, i.e. σ(x, u, ·) is monotone and (σ(x, u, F ) − σ(x, u,G)) :
(F −G) = 0 implies F = G.

(d) σ(x, u, F ) is strictly p-quasimonotone in F i.e.∫
Mm×n

(σ(x, u, λ)− σ(x, u, λ̄)) : (λ− λ̄)dν(λ) > 0

for all x ∈ Ω, all u ∈ Rm and all homogeneous W 1,p gradient Young
measures ν with center of mass λ̄ = 〈ν, id〉 which are not a single Dirac
mass.

Condition (E0) ensures that σ(x, u(x), U(x)) is measurable on Ω for measurable
functions u : Ω → Rm and U : Ω → Mm×n; see e.g. [20, Appendix “Measurable
funtions” (12), page 1013].

Condition (E1) states standard growth and coercivity conditions. The main
point is that we do not require strict monotonicity of a typical Leray-Lions operator
[15] or monotonicity in the variables (u, F ) in (E2) as it is usually assumed in
previous works. Thus, the classical monotone operator methods [6, 15, 4, 21, 20]
developed by Vĭsik, Minty, Browder, Brézis, Lions and others do not apply in
general for functions satisfying only (E0)–(E2).

For example, the assumption (E2) allows to take a potential W (x, u, F ), which
is only convex but not strictly convex in F , and to consider the corresponding
elliptic problem (QES) with σ(x, u, F ) = ∂W

∂F (x, u, F ). Even such a very simple
situation cannot be treated by conventional methods. The problem is that the
gradients of approximating solutions do not need to converge pointwise where W
is not strictly convex. The idea is now, that in a point where W is not strictly
convex, it is locally affine, and therefore, passage to the limit should locally still
be possible. Technically, this can indeed be achieved by considering the Young
measure generated by the sequence of gradients of approximating solutions.

The assumption (d) in (E2) is motivated by the study of nonlinear elastostatics
by Ball. For non-hyperelastic materials the static equation is not given by a poten-
tial map. Subsequently quasimonotone systems have been studied by Zhang and
Chabrowski [7] who investigated the existence of solutions for perturbed systems.
However, a slightly different notion of quasimonotonicity is used in the mentioned
papers. The regularity problems for such systems were studied by Fuchs [10]. A
simple example of a strictly p-quasimonotone function is the following:

Example 1.1. Assume that η : Mm×n → Mm×n satisfies the growth condition

|η(F )| 6 C |F |p−1

with p > 1 and the structure condition∫
Ω

(η(F +∇φ)− η(F )) : ∇φdx > c

∫
Ω

|∇φ|rdx
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for constants c > 0, r > 0, and for all φ ∈ C∞
0 (Ω; Rm) and all F ∈ Mm×n. Then η

is strictly p-quasimonotone. This follows easily from the definition if one uses that
for every W 1,p gradient Young measure ν there exists a sequence (Dvk) generating
ν for which (|Dvk|p) is equiintegrable [13].

An example of an operator which satisfies all conditions (E0)–(E2) is the p-
Laplace operator ∆p (which in fact is even uniformly monotone).

Example 1.2. The function σ(x, u,Du)=|Du|p−2Du satisfies (E0)–(E2). Condi-
tions (E0), (E1) are obvious and (a), (c) and (d) in (E2) follow by direct calculations.
For (b), we may choose W (x, u, F ) = 1

p |F |
p. Note that we have then

div |Du|p−2Du = ∆pu.

In [12], Young measures are used to prove the needed compactness of the ap-
proximating solutions obtained through a Galerkin scheme. With this method,
it is shown in [11] that the Dirichlet problem (QES) has a weak solution u ∈
W 1,p

0 (Ω; Rm) under the mild assumptions (E0)–(E2).

Definition 1.3. We say that u : Ω → Rm is a weak solution of

−div
(
a(x, u,Du)

)
+ b(x, u,Du) = v(x) on Ω

u = 0 on ∂Ω ,

with v ∈W−1,p′(Ω; Rm) if:
(i) u belongs to W 1,1

0 (Ω; Rm)
(ii) a(·, u(·), Du(·)) belongs to L1(Ω; Mm×n) and b(·, u(·), Du(·)) to L1(Ω; Rm),
(iii) the equality∫

Ω

a(x, u(x), Du(x)) : Dϕ(x)dx+
∫

Ω

b(x, u(x), Du(x)) · ϕ(x)dx = 〈v, ϕ〉

holds for every function ϕ ∈ C∞
c (Ω; Rm).

Here, 〈·, ·〉 denotes the dual pairing of W−1,p′ and W 1,p.

Remark 1.4. In Definition 1.3 the boundary condition u = 0 on ∂Ω is interpreted
in the sense of (i).

The purpose of this article is, motivated by physics or geometry, to generalize
the right hand side of (1.1) and to prove the existence of a weak solution, again
under the weak assumptions (E0)–(E2). In this sense, for a function u : Ω → Rm,
we consider the quasilinear elliptic system, (QES)f,g,

−div σ(x, u,Du) = v(x) + f(x, u) + div g(x, u) on Ω
u = 0 on ∂Ω ,

(1.2)

which is a Dirichlet problem. Here, σ satisfies (E0)–(E2) for some p ∈ (1,∞), v ∈
W−1,p′(Ω; Rm) and f and g satisfy the following continuity and growth conditions:

(F0) (Continuity) f : Ω×Rm → Rm is a Carathéodory function, i.e. x 7→ f(x, u)
is measurable for every u ∈ Rm and u 7→ f(x, u) is continuous for almost
every x ∈ Ω.

(F1) (Growth) There exist 0 < γ < p−1, b1 ∈ Lp′(Ω) and b2 ∈ L
n
p (Ω) such that

|f(x, u)| 6 b1(x) + b2(x)|u|γ .
(G0) (Continuity) g : Ω× Rm → Mm×n is a Carathéodory function.
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(G1) (Growth) There exist 0 < η < p − 1, b4 ∈ Lp′(Ω) and b5 ∈ L
n

p−1 (Ω) such
that

|g(x, u)| 6 b4(x) + b5(x)|u|η.
Conditions (F0) and (G0) ensure that f(x, u(x)) and g(x, u(x)) are measurable

on Ω for any measurable function u : Ω → Rm. (F1) and (G1) state standard
growth conditions. In particular, if u ∈ W 1,p

0 (Ω; Rm) then f(·, u(·)) · u(·) and
g(·, u(·)) : Du(·) belong to L1(Ω).

The notation (QES)f,g for (1.2) should help the reader and lighten the text. So
that the subscripts f and g show the nature of the right hand side. In particular,
when g = 0, the system will be denoted by (QES)f . Note that the system (QES)f,g

is more general than the system (QES)f . Indeed, the term div g cannot be absorbed
in div σ or in f since no condition on the derivatives of g or on the monotonicity of
f and g is imposed. Adapting the methods used in [11], we will prove the existence
of a weak solution for the system (1.2):

Theorem 1.5. If p ∈ (1, n) and if σ satisfies the conditions (E0)–(E2), then
the Dirichlet problem (1.2) has a weak solution u ∈ W 1,p

0 (Ω; Rm) for every v ∈
W−1,p′(Ω; Rm), every f satisfying (F0)–(F1) and every g satisfying (G0)–(G1).

Remark 1.6. (a) For p = n, Theorem 1.5 holds if the conditions b2 ∈ L∞(Ω) in
(F1) and b5 ∈ L∞(Ω) in (G1) are assumed. All the progress below remains valid
with these adaptations.

(b) For p > n, Theorem 1.5 remains valid with u ∈ C(Ω; Rm) if b2 ∈ L1(Ω) in
(F1) and b5 ∈ L1(Ω) in (G1) hold.

(c) The strict bound p − 1 for γ and η in the growth conditions (F1) and (G1)
ensures the coercivity of the operator F introduced in Section 4. However, the limit
value p− 1 is admissible in some particular cases (see Section 5).

(d) When σ satisfies (c) or (d) in (E2), the function f may even depend on the
Jacobian matrix Du. See the subsequent articles of the authors.

The general structure of the proof of Theorem 1.5 follows [11] and [2].

2. A brief review on Young measures

Weak convergence is a basic tool of modern nonlinear analysis because it en-
joys the same compactness properties that convergence in finite dimensional spaces
does Evans90. Nonetheless, this notion does not behave as one would desire with
respect to nonlinear functionals and operations. Young measures are a device to
understand and to control these difficulties. The main theorem we will advocate to
solve nonlinear PDEs systems is the following result due to Ball and proved in [3]:

Theorem 2.1 (Ball). Let Ω ⊂ Rn be Lebesgue measurable, let K ⊂ Rm be closed,
and let uj : Ω → Rm, j ∈ N, be a sequence of Lebesgue measurable functions satis-
fying uj → K in measure as j → ∞, i.e. given any open neighborhood U of K in
Rm

lim
j→∞

|{x ∈ Ω: uj(x) /∈ U}| = 0.

Then there exists a subsequence (uk) of (uj) and a family (νx), x ∈ Ω, of positive
measures on Rm, depending measurably on x, such that

(i) ‖νx‖meas≡
∫

Rm dνx 6 1 for a.e. x ∈ Ω,
(ii) supp νx ⊂ K for a.e. x ∈ Ω, and
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(iii) f(uk) ∗
⇀ 〈νx, f〉 =

∫
Rm f(λ)dνx(λ) in L∞(Ω) for each continuous function

f : Rm → R satisfying lim|λ|→∞ f(λ) = 0.
Suppose further that {uk} satisfies the boundedness condition

∀R > 0: lim
L→∞

sup
k∈N

|{x ∈ Ω ∩BR : |uk(x)| > L}| = 0, (2.1)

where BR = BR(0). Then

‖νx‖meas = 1 for a.e. x ∈ Ω (2.2)

(i.e. νx is a probability measure), and there holds:
For any measurable A ⊂ Ω and any continuous function f : Rm →
R such that {f(uk)} is sequentially weakly relatively compact in
L1(A) we have f(uk) ⇀ 〈νx, f〉 in L1(A).

(2.3)

Improved versions of this theorem exist: In [12, Theorem 1.2], it is shown
that (2.1) is necessary for (2.2) and (2.3) to hold, and that in fact (2.1), (2.2)
and (2.3) are equivalent.

In this article, we will adopt the following terminology:

Convention 2.2. Choosing K = Rm, the assumptions of Ball’s Theorem 2.1 are
always fulfilled. Thus a family (νx)x∈Ω satisfying (i)–(iii) always exists. Moreover,
once the subsequence (uk) of (uj) is fixed, (νx)x∈Ω obtained by this way is unique
and is a sub-probability family on Rm by (i): A sub-probability family (τx)x∈Ω on
Rm is a family of measures such that ‖τx‖meas 6 1 for a.e. x ∈ Ω. Such a family
(νx)x∈Ω is called a Young measure on Ω× Rm. Thus, in this sense, each sequence
generates a Young measure.

Remark 2.3. The notion of Young measure introduced in Convention 2.2 does
not entirely coincide with the original definition of Young [16]. which is adopted in
measure theory. For the link between these notions and a geometrical interpretation
of Young measures, refer to [2] or [17].

Theorem 2.1 has useful applications, in particular in non-linear PDE theory. The
following technical statements build the basic tools used in the next sections.

Proposition 2.4. If |Ω| < ∞ and νx is the Young measure (see Convention 2.2)
generated by the (whole) sequence uj, then there holds

uj → u in measure if an only if νx = δu(x) for a. e. x ∈ Ω.

For the proof, see [12, Proposition 1.3].

Proposition 2.5. Let |Ω| < ∞. If the sequences uj : Ω → Rm and vj : Ω → Rd

generate the Young measures δu(x) and νx respectively, then (uj , vj) generates the
Young measure δu(x) ⊗ νx.

For the proof, see [12, Proposition 1.4]. This result also holds for sequences µj ,
λj of Young measures converging in the narrow topology to µ and λ respectively;
see [17]. However it is false in general if both µ and λ are not Dirac measures. The
third application is a Fatou-type lemma:

Lemma 2.6. Let F : Ω × Rm × Mm×n → R be a Carathéodory function and
uk : Ω → Rm a sequence of measurable functions such that Duk generates the
Young measure νx, with ‖νx‖meas = 1 for almost every x ∈ Ω. Then

lim inf
k→∞

∫
Ω

F (x, uk(x), Duk(x))dx >
∫

Ω

∫
Mm×n

F (x, u, ξ)dνx(ξ)dx
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provided that the negative part F−(x, uk(x), Duk(x)) is equiintegrable.

More general versions of this lemma may be found in [16], [17] and [14]. However,
these assumptions allow a more elementary proof as in [12, Lemma 1.5].

3. A convergence result for σ

This section presents a general convergence result for functions σ satisfying sim-
ilar conditions as stated in Section 1. In fact, an elliptic div-curl inequality is the
key ingredient to prove that one can pass to the limit in our quasilinear elliptic
system. Since they are, in part, independent of the differential equation, we state
them in a general form using only a set of hypotheses:

(H1) The sequence (uk) is uniformly bounded in W 1,p
0 (Ω; Rm) for some p > 1

and hence a subsequence converges weakly in W 1,p
0 (Ω; Rm) to an element

denoted by u.
(H2) σ : Ω× Rm ×Mm×n → Mm×n is a Carathéodory function.
(H3) The sequence σk(x)≡σ(x, uk(x), Duk(x)) is uniformly bounded in the space

Lp′(Ω; Mm×n) and hence equiintegrable. The equiintegrability follows from
the Hölder inequality.

(H4) The sequence (σk(x) : Duk)− is equiintegrable.
(H5) There exists a sequence (vk) such that vk → u in W 1,p

0 (Ω; Rm) and∫
Ω
σk(x) : (Duk −Dvk)dx→ 0 as k →∞.

Note that the assumption (H1) ensures even a strong convergence in some
Lebesgue spaces:

Lemma 3.1. Let p > 1 and (uk) be a sequence which is uniformly bounded in
W 1,p

0 (Ω; Rm). Then there exists a subsequence of (uk) (for convenience not rela-
beled) and a function u ∈W 1,p

0 (Ω; Rm) such that

uk ⇀ u in W 1,p
0 (Ω; Rm) (3.1)

and such that

uk → u in measure on Ω and in Ls(Ω; Rm) (3.2)

for all s < p∗.

Proof. Since (uk) is bounded in W 1,p
0 (Ω; Rm), (3.1) follows directly from Eberlein-

Smuljan Theorem [5]. Moreover, the Rellich-Kondrachov Theorem [1] implies that
(uk) converges to an element ũ in Ls(Ω; Rm) for all s < p∗. Notice that in order
to have the strong convergence simultaneously for all s < p∗, the usual diagonal
sequence procedure applies. By unicity of the limit, ũ = u. Finally, the sequence
converges in measure [9, Proposition 2.29] since p > 1. �

Now, under the conditions (H1)–(H5), we can prove the following div-curl in-
equality:

Lemma 3.2 (div-curl inequality). Suppose (H1)–(H5) and assume (after passing
to a suitable subsequence if necessary) that (Duk) generates the Young measure νx.
Then the following inequality holds:∫

Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx 6
∫

Ω

∫
Mm×n

σ(x, u, λ) : Dudνx(λ)dx. (3.3)
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Proof. Let us consider the sequence

Ik≡σ(x, uk, Duk) : (Duk −Du) = σk : Duk − σk : Du.

By conditions (H3) and (H4), the negative part I−k of Ik is equiintegrable. Hence,
we may use the Fatou-Lemma 2.6 which gives that

X≡ lim inf
k→∞

∫
Ω

Ikdx >
∫

Ω

∫
Mm×n

σ(x, u, λ) : (λ−Du)dνx(λ)dx.

It remains to prove that X 6 0. For this, we note that by (H5) we have

X = lim inf
k→∞

(∫
Ω

σk : (Duk −Dvk)dx+
∫

Ω

σk : (Dvk −Du)dx
)

= lim inf
k→∞

∫
Ω

σk : (Dvk −Du)dx 6 lim inf
k→∞

‖σk‖p′︸ ︷︷ ︸
6C

‖vk − u‖1,p = 0,

where we used the Hölder inequality and (H3). Thus the conclusion follows. �

Remark 3.3. The naming “div-curl inequality” can be explained as follows. Sup-
pose for a moment that div σ(x, uk, Duk) = 0 for all k and that σ(x, uk, Duk) : Duk

is equiintegrable. Then, the weak limit of σ(x, uk, Duk) : Duk in L1(Ω) is given by∫
Mm×n σ(x, u, λ) : λdνx(λ). On the other hand, by the usual div-curl lemma we con-

clude that
∫
Ω
σ(x, uk, Duk) : Dukdx converges to

∫
Ω

∫
Mm×n σ(x, u, λ) : Dudνx(λ)dx

and hence, the lemma would follow with equality.

The div-curl inequality will be the key ingredient to pass to the limit in the
approximating equations. However, we need some additional information on the
Young measure νx generated by the sequence of the gradients (Duk) to exploit
(3.3). These properties are the following:

(N1) νx is a probability measure for almost every x ∈ Ω.
(N2) νx is a homogeneous W 1,p gradient Young measure for almost every x ∈ Ω

in the sense that for x ∈ Ω fixed there exists a sequence ũ(z) such that the
Young measure (ν̃z)z∈Ω generated by Dũ(z) is homogeneous and equal to
νx: ν̃z = νx for almost every z ∈ Ω.

(N3) νx satisfies 〈νx, id〉 = Du(x) for almost every x ∈ Ω.
The properties (N1)–(N3) follow in particular from the two estimates formulated
in the next Lemma:

Lemma 3.4. Let Ω be a bounded subset in Rn and (uk)k a sequence in W 1,1
0 (Ω; Rm).

Suppose that there exist r > 0, p > 1 and some constants C, M and L such that

sup
k∈N

∫
Ω

|uk|rdx 6 C

and
sup
k∈N

∫
|uk|6R

|Duk|pdx 6 MR+ L ∀R > 0.

Then the Young measure νx generated by (a subsequence of) Duk has finite p-th
moment for almost every x ∈ Ω and satisfies (N1)–(N3).

For the proof, see [8, Lemma 9]. In particular, (N1)–(N3) hold if the condition
(H1) is fulfilled (actually if (H1) is satisfied, (N1)–(N3) can also be verified directly).
In any case, the conditions (N1)–(N3) will be sufficient to pass to the limit as shown
by the following convergence result for σ:
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Proposition 3.5. Suppose that (H1)–(H5) hold. Further assume that the Young
measure1 νx generated by the gradients Duk satisfies (N1)–(N3) and that one of the
following conditions holds:

(a) The map F 7→ σ(x, u, F ) is monotone and continuously differentiable for
all (x, u) ∈ Ω× Rm.

(b) σ(x, u, F ) = ∂W
∂F (x, u, F ) and F 7→ W (x, u, F ) is a convex C1-function for

all (x, u) ∈ Ω× Rm.
(c) The map F 7→ σ(x, u, F ) is strictly monotone for all (x, u) ∈ Ω× Rm.
(d) The map F 7→ σ(x, u, F ) is strictly p-quasimonotone.

Then (after passage to a subsequence) the sequence σk converges weakly in the space
L1(Ω; Mm×n) as k →∞ and the weak limit σ̄ is given by

σ̄(x) = σ(x, u(x), Du(x)).

If (b), (c) or (d) holds, then

σ(x, uk(x), Duk(x)) → σ(x, u(x), Du(x)) in L1(Ω; Mm×n).

In cases (c) and (d), it follows in addition that (after extraction of a further sub-
sequence if necessary) Duk → Du in measure and almost everywhere in Ω.

Before we prove Proposition 3.5, we state a technical lemma which allows to
localize the support of the Young measures νx.

Lemma 3.6. Suppose that (H1)–(H5) hold. Further assume that νx is the Young
measure generated by the gradients Duk and satisfies (N1)–(N3). If the map F 7→
σ(x, u, F ) is monotone for all (x, u) ∈ Ω× Rm, then

spt νx ⊂ {λ ∈ Mm×n : (σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0}. (3.4)

Proof. By (N1) and (N3), we have (with λ̄ = Du(x))∫
Mm×n

σ(x, u, λ̄) : (λ− λ̄)dνx(λ)

=
∫

Mm×n

σ(x, u, λ̄) : λdνx(λ)−
∫

Mm×n

σ(x, u, λ̄) : λ̄dνx(λ)

= σ(x, u, λ̄) :
∫

Mm×n

λdνx(λ)︸ ︷︷ ︸
=λ̄

−σ(x, u, λ̄) : λ̄
∫

Mm×n

dνx(λ)︸ ︷︷ ︸
=1

= 0.

By conditions (H1)–(H5), we have λ̄ = Du(x) and we infer from inequality (3.3) in
Lemma 3.2 that∫

Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, λ̄)

)
:
(
λ− λ̄

)
dνx(λ)dx 6 0. (3.5)

On the other hand, the integrand in (3.5) is non negative by monotonicity. It follows
that the integrand must vanish almost everywhere with respect to the product
measure dνx ⊗ dx. Hence, the conclusion follows. �

Proof of Proposition 3.5. We start with the easiest case:
Case (c): Since σ is monotone by assumption, (3.4) holds by Lemma 3.6. By strict
monotonicity, it follows from (3.4) that νx = δDu(x) for almost all x ∈ Ω, and hence
Duk → Du in measure for k →∞ by Proposition 2.4. Since we have already that

1The existence of νx is guaranteed by Ball’s Theorem 2.1 (see Convention 2.2).
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uk → u in measure for k → ∞ by (H1) and Lemma 3.1, we may infer that (after
extraction of a suitable subsequence, if necessary [9, Theorem 2.30])

uk → u and Duk → Du almost everywhere in Ω for k →∞.

From the continuity condition (H2), it follows that σ(x, uk, Duk) → σ(x, u,Du)
almost everywhere in Ω. Since, by assumption (H3), σk(x) is equiintegrable, it
follows from the Vitali convergence Theorem [9, Page 180] that

σ(x, uk, Duk) → σ(x, u,Du) in L1(Ω; Mm×n)

for k →∞, which proves the proposition in this case.
Case (d): Assume that νx is not a Dirac mass on a set x ∈M of positive Lebesgue
measure |M | > 0. Then, by the strict p-quasimonotonicity of σ(x, u, ·) and (N2),
we have for a.e. x ∈M (with λ̄ = 〈νx, id〉 = Du(x) by (N3))∫

Mm×n

σ(x, u, λ) : λdνx(λ)

>

∫
Mm×n

σ(x, u, λ̄) : λdνx(λ)︸ ︷︷ ︸
=σ(x,u,λ̄):λ̄

−
∫

Mm×n

σ(x, u, λ̄) : λ̄dνx(λ)︸ ︷︷ ︸
=σ(x,u,λ̄):λ̄·1

+
∫

Mm×n

σ(x, u, λ) : λ̄dνx(λ)

=
∫

Mm×n

σ(x, u, λ) : λ̄dνx(λ),

(3.6)

where we used (N1). We claim now that we obtain a contradiction. Indeed, by
integrating (3.6) over Ω and using the div-curl inequality (3.3) in Lemma 3.2, we
get ∫

Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx >
∫

Ω

∫
Mm×n

σ(x, u, λ) : λ̄dνx(λ)dx

>
∫

Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx

as desired. Hence, we have νx = δλ̄ = δDu(x) for almost every x ∈ Ω. Thus, it
follows again by Proposition 2.4 that Duk → Du in measure for k → ∞. The
reminder of the proof in this case is exactly as in case (c).
Case (b): We start by showing that for almost all x ∈ Ω, the support of νx is
in the set where W agrees with the supporting hyper-plane L≡{(λ,W (x, u, λ̄) +
σ(x, u, λ̄)(λ− λ̄))} in λ̄ = Du(x), i.e. we want to show that

spt νx ⊂ Kx = {λ ∈ Mm×n : W (x, u, λ) = W (x, u, λ̄) + σ(x, u, λ̄) : (λ− λ̄)}.

Since σ admits a potential, σ is monotone and then (3.4) holds by Lemma 3.6.
Thus, if λ ∈ spt νx then by (3.4)

(1− t)(σ(x, u, λ̄)− σ(x, u, λ)) : (λ̄− λ) = 0 for all t ∈ [0, 1]. (3.7)

On the other hand, by monotonicity, we have for t ∈ [0, 1] that

0 6 (1− t)(σ(x, u, λ̄+ t(λ− λ̄))− σ(x, u, λ)) : (λ̄− λ). (3.8)

Subtracting (3.7) from (3.8), we get

0 6 (1− t)(σ(x, u, λ̄+ t(λ− λ̄))− σ(x, u, λ̄)) : (λ̄− λ) (3.9)
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for all t ∈ [0, 1]. But by monotonicity, in (3.9) also the reverse inequality holds and
we may conclude, that

(σ(x, u, λ̄+ t(λ− λ̄))− σ(x, u, λ̄)) : (λ− λ̄) = 0 (3.10)

for all t ∈ [0, 1], whenever λ ∈ spt νx. Now, it follows from (3.10) that

W (x, u, λ) = W (x, u, λ̄) +
(
W (x, u, λ)−W (x, u, λ̄)

)
= W (x, u, λ̄) +

∫ 1

0

σ(x, u, λ̄+ t(λ− λ̄)) : (λ− λ̄)dt

= W (x, u, λ̄) + σ(x, u, λ̄) : (λ− λ̄)

as claimed.
By the convexity of W we have W (x, u, λ) > W (x, u, λ̄) + σ(x, u, λ̄) : (λ− λ̄) for

all λ ∈ Mm×n and thus L is a supporting hyper-plane for all λ ∈ Kx. Since the
mapping λ 7→W (x, u, λ) is by assumption continuously differentiable we obtain

σ(x, u, λ) = σ(x, u, λ̄) for all λ ∈ Kx ⊃ spt νx (3.11)

and thus

σ̄(x)≡
∫

Mm×n

σ(x, u, λ) dνx(λ) = σ(x, u, λ̄) . (3.12)

Now consider the Carathéodory function

ψ(x, u, p) = |σ(x, u, p)− σ̄(x)| .

The sequence ψk(x) = ψ(x, uk(x), Duk(x)) is equiintegrable and thus by Ball’s
Theorem 2.1

ψk ⇀ ψ̄ weakly in L1(Ω)

and the weak limit ψ̄ is given by

ψ̄(x) =
∫

Rm×Mm×n

|σ(x, η, λ)− σ̄(x)| dδu(x)(η)⊗ dνx(λ)

=
∫

spt νx

|σ(x, u(x), λ)− σ̄(x)| dνx(λ) = 0

by (3.11) and (3.12). Since ψk > 0 it follows that

ψk → 0 strongly in L1(Ω).

Thus the proof of the case (b) is finished.
Case (a): First we note that since σ is monotone, (3.4) holds by Lemma 3.6. We
claim that in this case for almost all x ∈ Ω the following identity holds for all
M ∈ Mm×n on the support of νx:

σ(x, u, λ) : M = σ(x, u, λ̄) : M + (∇Fσ(x, u, λ̄)M) : (λ̄− λ), (3.13)

where ∇F is the derivative with respect to the third variable of σ and λ̄ = Du(x).
Indeed, by the monotonicity of σ we have for all t ∈ R

(σ(x, u, λ)− σ(x, u, λ̄+ tM)) : (λ− λ̄− tM) > 0,

whence, by (3.4),

−σ(x, u, λ) : (tM) > −σ(x, u, λ̄) : (λ− λ̄) + σ(x, u, λ̄+ tM) : (λ− λ̄− tM)

= t
(
(∇Fσ(x, u, λ̄)M)(λ− λ̄)− σ(x, u, λ̄) : M

)
+ o(t).
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The claim follows from this inequality since the sign of t is arbitrary. Since the
sequence σk(x) is equiintegrable by (H3) or by (C5), its weak L1-limit σ̄ is given
by

σ̄(x) =
∫

spt νx

σ(x, u, λ)dνx(λ)

=
∫

spt νx

σ(x, u, λ̄)dνx(λ) + (∇Fσ(x, u, λ̄))t

∫
spt νx

(λ̄− λ)dνx(λ)︸ ︷︷ ︸
=λ̄−〈νx,id〉=0

= σ(x, u, λ̄),

where we used (3.13) in this calculation. This finishes the proof of the case (c) and
hence of the proposition. �

Remark 3.7. In case (b), we remark, that the relation (3.12) already states that
σ(x, u, λ̄) is the weak L1-limit of σ(x, uk, Duk), which is enough to pass to the limit
in an equation which holds in the distributional sense. However, we wanted to point
out that in this case, the convergence is even strong in L1(Ω; Mm×n).

4. Existence of a weak solution

To prove Theorem 1.5, we will apply a Galerkin scheme. First we recall that by
the Poincaré and the Sobolev inequalities, there exists a constant A > 1 such that

max(‖u‖p, ‖u‖p∗) 6 A‖Du‖p ∀u ∈W 1,p
0 (Ω; Rm). (4.1)

Note that we write A, in general without further comment, to point to the use of
(4.1). This relation and the Hölder inequality are central to establish the required
estimates to prove the desired results.

Lemma 4.1. For arbitrary u ∈ W 1,p
0 (Ω; Rm) and v ∈ W−1,p′(Ω; Rm), the func-

tional F (u) : W 1,p
0 (Ω; Rm) → R given by

w 7→
∫

Ω

σ(x, u(x), Du(x)) : Dw(x) dx− 〈v, w〉 −
∫

Ω

f(x, u(x)) · w(x) dx

+
∫

Ω

g(x, u(x)) : Dw(x) dx

is well defined, linear and bounded.

Proof. On the one hand, the growth condition in (E1) allows us to estimate
I≡

∫
Ω
σ(x, u,Du) : Dwdx for each w ∈W 1,p

0 (Ω; Rm):

|I| 6
∫

Ω

|σ(x, u,Du)||Dw|dx

6
∫

Ω

λ1|Dw|dx+ c1

∫
Ω

|u|β |Dw|dx+ c1

∫
Ω

|Du|p−1|Dw|dx

6 ‖Dw‖p

(
‖λ1‖p′ + c1(A

p∗
p′ ‖Du‖p∗/p′

p + ‖Du‖p−1
p )

)
,

by the Hölder inequality and the bound for β. Next, the generalized Hölder in-
equality implies that

|〈v, w〉| 6 ‖v‖−1,p′‖w‖1,p 6 A‖v‖−1,p′‖Dw‖p.
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On the other hand, if II≡
∫
Ω
f(x, u) · wdx, it follows from the growth condition

(F1) (Without loss of generality, we may assume that γ = p − 1). An application
of the Hölder inequality to the three functions yields

|II| 6
∫

Ω

|f(x, u)||w|dx 6
∫

Ω

b1|w|dx+
∫

Ω

b2|u|p−1|w|dx

6 ‖b1‖p′‖w‖p + ‖b2‖n
p
‖u‖p−1

p∗ ‖w‖p∗

6 ‖Dw‖p

(
A‖b1‖p′ +Ap‖b2‖n

p
‖Du‖p−1

p

)
.

Finally, the growth condition (G1) (Without loss of generality, we may assume that
η = p− 1) allows us to estimate III≡

∫
Ω
g(x, u) : Dwdx for each w ∈W 1,p

0 (Ω; Rm):

|III| 6
∫

Ω

|g(x, u)||Dw|dx 6
∫

Ω

b4|Dw|dx+
∫

Ω

b5|u|p−1|Dw|dx

6 ‖b4‖p′‖Dw‖p + ‖b5‖ n
p−1

‖u‖p−1
p∗ ‖Dw‖p

6 ‖Dw‖p

(
‖b4‖p′ +Ap−1‖b5‖ n

p−1
‖Du‖p−1

p

)
.

for each w ∈ W 1,p
0 (Ω; Rm). Since these four expressions are finite by our assump-

tions, F (u) is well defined. Moreover, F (u) is trivially linear and we have for all
w ∈W 1,p

0 (Ω; Rm)

|〈F (u), w〉| 6 |I|+ |〈v, w〉|+ |II|+ |III| 6 C‖Dw‖p,

which implies that F (u) is bounded. �

So we can define the operator

F : W 1,p
0 (Ω; Rm) →W−1,p′(Ω; Rm), u 7→ F (u),

which satisfies the following property.

Lemma 4.2. The restriction of F to a finite dimensional linear subspace V of
W 1,p

0 (Ω; Rm) is continuous.

Proof. Let r be the dimension of V and (φi)r
i=1 a basis of V . Let (uj = ai

jφi) be
a sequence in V which converges to u = aiφi in V (with the standard summation
convention). Then on the one hand the sequence (aj) converges to a in Rr and so
uj → u andDuj → Du almost everywhere and on the other hand ‖uj‖p and ‖Duj‖p

are bounded by a constant C. Thus, it follows from the continuity conditions (E0),
(F0)∗ and (G0) that σ(x, uj , Duj) : Dw → σ(x, u,Du) : Dw, f(x, uj) ·w → f(x, u) ·
w and g(x, uj) : Dw → g(x, u) : Dw almost everywhere. Moreover we infer from
the growth conditions (E1), (F1) and (G1) that the sequences (σ(x, uj , Duj) : Dw),
(f(x, uj , Duj) · w) and (g(x, uj) : Dw) are equi-integrable. Indeed, if Ω′ ⊂ Ω is a
measurable subset and w ∈W 1,p

0 (Ω; Rm), then∫
Ω′
|σ(x, uj , Duj) : Dw|dx

6
∫

Ω′

(
λ1 + c1(|uj |β + |Duj |p−1)

)
|Dw|dx

6
( ∫

Ω′
|Dw|pdx

)1/p(
‖λ1‖p′ + c1(Ap∗/p′ ‖Duj‖p∗/p′

p︸ ︷︷ ︸
6 C

+ ‖Duj‖p−1
p︸ ︷︷ ︸

6 C

)
)
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and (Without loss of generality, we may assume that γ = p− 1),∫
Ω′
|f(x, uj) · w|dx 6

∫
Ω′

(
b1 + b2|uj |p−1

)
|w|dx

6 A
( ∫

Ω′
|Dw|pdx

) 1
p
(
‖b1‖p′ +

(
Ap−1‖b2‖n

p

)
‖Duj‖p−1

p︸ ︷︷ ︸
6 C

)
and (Without loss of generality, we may assume that η = p− 1),∫

Ω′
|g(x, uj) : Dw|dx

6
( ∫

Ω′
|Dw|pdx

) 1
p
(
‖b4‖p′ +

(
Ap−1‖b5‖ n

p−1

)
‖Duj‖p−1

p︸ ︷︷ ︸
6 C

)
by the Hölder inequality (see the proof of Lemma 4.1). Applying the Vitali Theo-
rem, it follows that for all w ∈W 1,p

0 (Ω; Rm) we have limj→∞〈F (uj), w〉 = 〈F (u), w〉
as desired. �

Remark 4.3. Note that in all the progress in this subsection we used only the
conditions γ, δ, η 6 p− 1. Thus Lemmas 4.1 and 4.2 are still valid as γ = δ = η =
p− 1.

Now, the problem (1.2) is equivalent to find a solution u ∈ W 1,p
0 (Ω; Rm) such

that
〈F (u), w〉 = 0 for all w ∈W 1,p

0 (Ω; Rm). (4.2)

In order to find such a solution we apply a Galerkin scheme. Let V1 ⊂ V2 ⊂
. . . ⊂W 1,p

0 (Ω; Rm) be a sequence of finite dimensional subspaces with the property
that ∪k∈NVk is dense in W 1,p

0 (Ω; Rm)2. Let us fix some k and assume that Vk has
dimension r and that φ1, . . . , φr is a basis of Vk. Then we define the map

G : Rr → Rr,


a1

a2

...
ar

 7→


〈F (aiφi), φ1〉
〈F (aiφi), φ2〉

...
〈F (aiφi), φr〉

 .

Proposition 4.4. G is continuous and

G(a) · a→∞ as ‖a‖Rr →∞.

Proof. Since F restricted to Vk is continuous by Lemma 4.2, G is continuous. Let
be a ∈ Rr and u = aiφi ∈ Vk. Then G(a) · a = 〈F (u), u〉 and ‖a‖Rr → ∞ is
equivalent to ‖u‖1,p → ∞. Next, we note the following considerations. First the
coercivity condition in (E1) and the Hölder inequality imply that

I ≡
∫

Ω

σ(x, u,Du) : Dudx > −‖λ2‖1 −Aα‖λ3‖( p
α )′‖Du‖α

p + c2‖Du‖p
p.

Next the generalized Hölder inequality implies that

|II| ≡ |〈v, u〉| 6 ‖v‖−1,p′‖u‖1,p 6 A‖v‖−1,p′‖Du‖p.

2Such a sequence (Vk) exists since W 1,p
0 (Ω; Rm) is separable.
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Finally, it follows from the growth conditions (F1) and (G1) that (see the proof of
Lemma 4.1)

III ≡
∫

Ω

f(x, u) · udx 6 A‖b1‖p′‖Du‖p +Aγ+1‖b2‖n
p
‖Du‖γ+1

p

and

|IV | ≡
∣∣ ∫

Ω

g(x, u,Du) : Dudx
∣∣ 6 ‖b4‖p′‖Du‖p +Aη‖b5‖ n

p−1
‖Du‖η+1

p .

From these estimations it follows that

〈F (u), u〉 = I − II − III + IV →∞ as ‖u‖1,p →∞,

since p > max(1, α, γ + 1, δ + 1, η + 1) and A, c2 > 0. �

The properties of G allow us to construct our Galerkin approximations:

Corollary 4.5. For all k ∈ N there exists uk ∈ Vk such that

〈F (uk), w〉 = 0 for all w ∈ Vk. (4.3)

Proof. By Proposition 4.4 there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr

we have G(a) · a > 0 and the usual topological argument [19, Proposition 2.8] gives
that G(x) = 0 has a solution x ∈ BR(0). Hence, for all k there exists uk ∈ Vk such
that (4.3) holds. �

The Galerkin approximations satisfy the following bound:

Proposition 4.6. The sequence of the Galerkin approximations constructed in
Corollary 4.5 is uniformly bounded in W 1,p

0 (Ω; Rm), i.e. there exists a constant
R > 0 such that

‖uk‖1,p 6 R for all k ∈ N. (4.4)

Proof. As in the proof of Lemma 4.4 we see that 〈F (u), u〉 → ∞ as ‖u‖1,p → ∞.
Then it follows that there exists R > 0 with the property, that 〈F (u), u〉 > 1
whenever ‖u‖1,p > R. Thus, for the sequence of Galerkin approximations uk ∈ Vk

which satisfy 〈F (uk), uk〉 = 0 by (4.3), we have the uniform bound (4.4). �

Now, we are able to pass to the limit and so to prove Theorems 1.5. First, in
order to apply Proposition 3.5, we verify that, under our assumptions, the condi-
tions (H1)–(H5) and (N1)–(N3) hold for the Galerkin approximations solutions uk

constructed before.
(H1) holds by Proposition 4.6. Moreover, it follows then by Lemma 3.4 that

(N1)–(N3) hold.
The condition (H2) is equivalent to (E0). To obtain (H3), we observe that by

the growth condition in (E1)∫
Ω

|σ(x, uk, Duk)|p
′
dx 6 C

(∫
Ω

(|λ1(x)|p
′
+ |uk|p

∗
+ |Duk|p)dx

)
,

which is uniformly bounded in k by (4.4) since ‖uk‖p∗ 6 A‖Duk‖p by (4.1).
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Next, to verify (H4), we fix an arbitrary measurable subset Ω′ ⊂ Ω. Then, on
the one hand, the growth condition in (E1) implies that∫

Ω′
|min(σ(x, uk, Duk) : Duk, 0)|dx

6
∫

Ω′
|λ2|dx+

∫
Ω′
|λ3||uk|αdx

6
∫

Ω′
|λ2|dx+

[ ∫
Ω′
|λ3|(

p
α )′dx

]1/( p
α )′ [ ∫

Ω′
|uk|pdx

]α/p

︸ ︷︷ ︸
6 Rα

by the Hölder inequality and (4.4). Since a finite set of integrable functions is
equi-integrable, the equi-integrability of (σk : Duk)− follows.

Finally, we want to prove (H5): According to Mazur’s Theorem (see, e.g., [18,
Theorem 2, page 120]) there exists a sequence vk in W 1,p

0 (Ω) where each vk is a
convex linear combination of {u1, . . . , uk} such that vk → u in W 1,p

0 (Ω; Rm). I.e.

vk belongs to the same space Vk as uk and vk → u in W 1,p
0 (Ω; Rm). (4.5)

This allows us in particular, to use uk − vk as a test function in (4.3). We have∫
Ω

σ(x, uk, Duk) : (Duk −Dvk)dx

= 〈v, uk − vk〉+
∫

Ω

f(x, uk) · (vk − uk)dx−
∫

Ω

g(x, uk) : (Dvk −Duk)dx.
(4.6)

The first term on the right in (4.6) converges to zero since

uk − vk ⇀ 0 in W 1,p
0 (Ω; Rm) (4.7)

by the choice of vk, (H1) and Lemma 3.1. Now, for the second term IIk≡
∫
Ω
f(x, uk)·

(vk − uk)dx in (4.6) it follows from the growth condition (F1) and the Hölder in-
equality that

|IIk| 6 ‖b1‖p′‖vk − uk‖p + ‖b2‖n
p
‖uk‖γ

p∗‖vk − uk‖ p∗
p−γ

.

By (4.1) and (4.4), ‖uk‖p∗ is bounded. Moreover, by the construction of vk, (H1)
and Lemma 3.1 we have

‖uk − vk‖s 6 ‖uk − u‖s + ‖u− vk‖s → 0

for all s < p∗. Since it follows from γ < p−1 that p∗

p−γ < p∗, we infer that the second
term in (4.6) vanishes as k → ∞. Finally, for the last term IIIk≡

∫
Ω
g(x, uk) :

D(vk − uk)dx in (4.6) we note that g(x, uk) → g(x, u) strongly in Lp′(Ω; Mm×n)
by (G0), (G1), (H1) and (3.2) in Lemma 3.1. Indeed we may assume by (H1) that
uk → u almost everywhere (since in the sequel we consider only a subsequence of
uk, not relabeled for convenience, which converges almost everywhere to u). Since
by (G1) |g(x, uk)|p′ is bounded by an integrable function

|g(x, uk)|p
′
6 C(|b4|p

′
+ |b5|p

′
|uk|p) 6 C(|b4|p

′
+ |b5|p

′
(1 + |u|p)) ∈ L1(Ω),
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the claim follows from (G0) and the Dominated Convergence Theorem [9, Theorem
2.24]. We infer then that

|IIIk| 6 ‖g(uk)− g(u)‖p′ ‖Dvk −Duk‖p︸ ︷︷ ︸
6C

+
∣∣ ∫

Ω

g(x, u) : D(vk − uk)dx
∣∣ → 0

as k →∞ by (4.7). Thus the last term in (4.6) disappears also as k →∞ and (H5)
is fulfilled.

So, (H1)–(H5) and (N1)–(N3) hold and we may infer from Proposition 3.5 that

lim
n→∞

∫
Ω

σ(x, uk, Duk) : Dw(x)dx =
∫

Ω

σ(x, u,Du) : Dw(x)dx ∀w ∈
∞⋃

k=1

Vk.

Moreover, since uk → u in measure for k →∞, we may infer that, after extraction
of a suitable subsequence, if necessary, [9, Theorem 2.30]

uk → u almost everywhere for k →∞.

Thus, for arbitrary w ∈W 1,p
0 (Ω; Rm), it follows from the continuity conditions (F0)

and (G0) that f(x, uk) · w(x) → f(x, u) · w(x) and g(x, uk) : Dw(x) → g(x, u) :
Dw(x) almost everywhere. Since, by the growth conditions (F1) and (G1) and
the uniform bound (4.4), f(x, uk) · w(x) and g(x, uk) : Dw(x) are equiintegrable
(see the proof of Lemma 4.2), it follows that f(x, uk) · w(x) → f(x, u) · w(x) and
g(x, uk) : Dw(x) → g(x, u) : Dw(x) in L1(Ω) by the Vitali convergence Theorem.
This implies that

lim
k→∞

∫
Ω

f(x, uk(x)) · w(x)dx =
∫

Ω

f(x, u(x)) · w(x)dx ∀w ∈
∞⋃

k=1

Vk

and

lim
k→∞

∫
Ω

g(x, uk(x)) : Dw(x)dx =
∫

Ω

g(x, u(x)) : Dw(x)dx ∀w ∈
∞⋃

k=1

Vk.

Since
⋃∞

k=1 Vk is dense inW 1,p
0 (Ω; Rm), u is then a weak solution of (1.2), as desired.

5. Improved result in a particular case

In this section we consider again the elliptic system (1.2). In the previous sec-
tion, we optimized the various parameters in the different assumptions on f and
g. However, in some particular case, our main assumptions on f and g may be
weakened. We focus in particular our attention on the case where the limit bound
p− 1 for γ and η is admissible.

We consider only the case p ∈ (1, n). For the cases p = n and p > n, refer to
Remarks 1.6.

As seen in the proofs of Theorem 1.5, the strict bound p− 1 for γ and η in the
growth conditions (F1) and (G1) ensures the coercivity of the operator F introduced
in the previous section. However, when the norms of b2 and b5 are small enough,
the limit bound p− 1 in (F1) and (G1) is allowed for γ, δ, and η. More exactly if

(C) c2 > χ(γ)Aγ+1‖b2‖n
p

+ χ(η)Aη‖b5‖ n
p−1

where

χ(ξ) =

{
1 if ξ = p− 1
0 if 0 < ξ < p− 1

(5.1)
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and A is given by (4.1), the factor multiplying ‖Du‖p
p remains strictly positive. So,

the argumentation is still valid in this special case and Propositions 4.4 and 4.6
hold. Note that the condition (C) is in particular fulfilled when the measure of Ω
is small enough.

However, we cannot infer that Theorem 1.5 holds when γ, η 6 p−1 even though
the condition (C) is satisfied. Indeed, we use the strict bound for γ to verify that the
condition (H5) is fulfilled and then to apply Proposition 3.5. So, in order to allow
the bound p− 1 for the different parameters, we have to set stronger assumptions
on the coefficient b2:

Theorem 5.1. Let be p ∈ (1, n), σ satisfying the conditions (E0)–(E2), v ∈
W−1,p′(Ω; Rm), f satisfying (F0)–(F1) and g satisfying (G0)–(G1) with 0 < η 6
p− 1 where

(F1) (Growth) There exist 0 < γ 6 p − 1, q > n
p , b1 ∈ Lp′(Ω) and b2 ∈ Lq(Ω)

such that
|f(x, u)| 6 b1(x) + b2(x)|u|γ .

If the condition (C) is fulfilled, then the Dirichlet problem (1.2) has a weak solution
u ∈W 1,p

0 (Ω; Rm).

Proof. Note first that the conclusions of Lemmas 4.1 and 4.2 hold in view of Re-
mark 4.3. Moreover Propositions 4.4 and 4.6 hold by (C). Then, as before, we
verify easily that the conditions (H1)–(H4) and (N1)–(N3) are fulfilled. To prove
that (H5) holds, we choose a sequence vk such that (4.5) holds. This allows us in
particular, to use uk − vk as a test function in (4.3). We have∫

Ω

σ(x, uk, Duk) : (Duk −Dvk)dx

= 〈v, uk − vk〉+
∫

Ω

f(x, uk) · (vk − uk)dx−
∫

Ω

g(x, uk) : (Dvk −Duk)dx.
(5.2)

The first and the third terms in (5.2) converge to zero as seen before. For the second
term IIk≡

∫
Ω
f(x, uk) · (vk − uk)dx in (5.2) it follows from the growth condition

(F1) and the Hölder inequality that

|IIk| 6 ‖b1‖p′‖vk − uk‖p + ‖b2‖q‖uk‖p−1
p∗ ‖vk − uk‖s(q),

where

s(q)≡ q′np

np− q′(n− p)(p− 1)
.

By (4.4), ‖uk‖p∗ and ‖Duk‖p are bounded. Moreover, by the construction of vk,
(H1) and Lemma 3.1 we have

‖uk − vk‖s 6 ‖uk − u‖s + ‖u− vk‖s → 0

for all s < p∗. Since it follows from q > n/p that s(q) < p∗, we infer that the second
term in (5.2) vanishes as k →∞ and thus (H5) is fulfilled. Now the proof ends as
in the previous section. �
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