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SOLUTION CURVES OF 2m-TH ORDER BOUNDARY-VALUE
PROBLEMS

BRYAN P. RYNNE

Abstract. We consider a boundary-value problem of the form Lu = λf(u),
where L is a 2m-th order disconjugate ordinary differential operator (m ≥ 2
is an integer), λ ∈ [0,∞), and the function f : R → R is C2 and satisfies

f(ξ) > 0, ξ ∈ R. Under various convexity or concavity type assumptions
on f we show that this problem has a smooth curve, S0, of solutions (λ, u),
emanating from (λ, u) = (0, 0), and we describe the shape and asymptotes of

S0. All the solutions on S0 are positive and all solutions for which u is stable
lie on S0.

1. Introduction

For any integer m ≥ 2, we consider the 2m-th order boundary-value problem

(−1)mu(2m)(x) +
m−1∑
i=0

(−1)ipiu
(2i)(x) = λf(u(x)), x ∈ (−1, 1), (1.1)

u(i)(−1) = u(i)(1) = 0, i = 0, . . . ,m− 1, (1.2)

where pi ≥ 0, i = 0, . . . ,m − 1, are constants and u(i) is the ith derivative of
u ∈ C2m[−1, 1], the number λ ∈ R+ := [0,∞), and the function f : R → R is C2

and satisfies
f(ξ) > 0, ξ ∈ R (1.3)

(we are only interested here in positive solutions so the behaviour of f(ξ) when ξ < 0
is irrelevant). We assume that (1.3) holds throughout the paper and, under various
additional assumptions on f , we show that (1.1)–(1.2) has a curve of solutions (λ, u)
in R+ × C2m[−1, 1], emanating from (λ, u) = (0, 0), and we describe the shape of
this curve. All the solutions on this curve are positive (that is, u is positive on
(−1, 1)), and any solutions for which u is stable lie on this curve.

In the second order case (m = 1) this problem has been considered in many
papers, for example [3], [4], [6], [11], [12], [13], [14], [17]. Detailed results for this
case are obtained in [3] and [14] by using quadrature to derive explicit formulae for
λ = λ(ρ), u = u(ρ) ∈ C2[−1, 1] as functions of a parameter ρ ≥ 0, with ρ = |u(ρ)|0,
such that for each ρ ≥ 0, the pair (λ(ρ), u(ρ)) is a solution. The results on the shape
of the curve of solutions are then obtained by investigating the function ρ→ λ(ρ).

2000 Mathematics Subject Classification. 34B15.

Key words and phrases. Ordinary differential equations, nonlinear boundary value problems.
c©2004 Texas State University - San Marcos.

Submitted December 15, 2003. Published March 3, 2004.

1



2 BRYAN P. RYNNE EJDE-2004/32

Such a formula for the solutions is not available in the higher order case. Similar
results, for the second order case, are also obtained in Section 4 of [4], and in [11],
[12], [13], where the strategy is to use the implicit function theorem to construct
a solution curve in R × C2[−1, 1], and then investigate the structure of this curve
directly. The approach we adopt is similar to this, for the higher order case, and we
obtain most of the results obtained in the above papers for the second order case.
However, many of the standard tools for second order differential equations used in
these papers, such as the the maximum principle, the Sturm comparison theorem
and simplicity of the zeros of solutions of linear equations, are not available in the
higher order case. This leads to considerable complication in some of the proofs here
and forces us to use the sophisticated theory of ‘disconjugate’ differential operators
described in [8].

Higher order problems (m > 1) have also been investigated recently. For appli-
cations to elasticity see [2], [15] and [18], and the references therein. For general
nth-order problems see, for example, [9] and [10], and the references therein (these
papers allow the order n to be odd, and the boundary conditions are more general
than here; the boundary conditions considered here are of the type considered in
[1] and [10], with n = 2m and k = p = m).

2. Preliminary results

For any integer r ≥ 0, let Cr[−1, 1] denote the standard Banach space of real
valued, r-times continuously differentiable functions defined on [−1, 1], with the
norm |u|r =

∑r
i=0 |u(i)|0, where | · |0 denotes the usual sup-norm on C0[−1, 1].

For any u, v ∈ C0[−1, 1], let 〈u, v〉 =
∫ 1

−1
uv. Let H2m(−1, 1) denote the standard

Sobolev space of order 2m on (−1, 1), with the standard norm, which will be denoted
by ‖ · ‖2m.

For any u ∈ C2m[−1, 1], let S(u) denote the number of changes of sign of u in
(−1, 1), and let Z(u) denote the number of zeros of u in (−1, 1) (in the applications
below, u will be a non-trivial solution of a differential equation so these numbers
will be finite). If all the zeros of u in (−1, 1) are simple then S(u) = Z(u).

Let
X = {u ∈ C2m[−1, 1] : u satisfies (1.2)}, Y = C0[−1, 1].

We define the operator L : X → Y by

Lu := (−1)mu(2m) +
m−1∑
i=0

(−1)ipiu
(2i), u ∈ X.

It can be verified that 〈Lu, v〉 = 〈u, Lv〉, for all u, v ∈ X and

〈Lu, u〉 > 0, 0 6= u ∈ X,
that is, L is formally self-adjoint and positive definite on X with respect to the
inner product 〈· , ·〉. It is shown in Remark 2.1 of [16] that this positive definiteness
of L implies that the disconjugacy condition imposed on L in [8] holds, and hence
all the results of [8] hold for the above L (in [8], L need not be formally self-adjoint,
and the order of L is denoted by n, and may be odd). In particular, L has the
following factorisation: there exists functions ρi ∈ C2m−i[−1, 1], with ρi > 0 on
[−1, 1], i = 0, . . . , 2m, such that, if we define

L0w := ρ0w, Liw := ρi(Li−1w)′, i = 1, . . . , 2m,
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for any w ∈ C2m[−1, 1], then L has the form

Lu = (−1)mL2mu, u ∈ X.

We note that the term (−1)m is not included in the definition of L in [8]. This sign
factor is convenient here (in particular, for the spectral properties of L), but must be
borne in mind when results from [8] are quoted. The functions Liu, i = 0, . . . , 2m−
1, will be called quasi-derivatives of u. For any w ∈ C(2m)[−1, 1] we let ν(±1, w)
denote the total number of quasi-derivatives Liw(±1), i = 0, . . . , 2m − 1, which
are zero. If u ∈ X then the boundary conditions (1.2) imply that Liu(±1) = 0,
i = 0, . . . ,m− 1, so that ν(±1, u) ≥ m. Furthermore, Corollary 3 of [8] shows that
the operator L : X → Y is non-singular.

We also need some results from [8] regarding the eigenvalue problem

Lu = µpu, (2.1)

for functions p ∈ C0[−1, 1] with Z(p) = 0. For convenience we state these results
in the following lemma.

Lemma 2.1. There exists a strictly increasing sequence of eigenvalues of (2.1),
denoted by µk(p) > 0, k = 1, 2, . . . . Each eigenvalue µk has multiplicity one (both
geometric and algebraic), and any corresponding eigenfunction φk has only simple
zeros in (−1, 1), and Z(φk) = k − 1. Also, φ(m)

k (±1) 6= 0.

For any u ∈ X, define f(u) ∈ Y by f(u)(x) = f(u(x)), x ∈ [−1, 1]. Then
(1.1)–(1.2) can be rewritten as

Lu = λf(u). (2.2)

Let S denote the set of solutions (λ, u) of (2.2) in R+×X. Since L is non-singular,
there are positive constants b1, b2 such that

b1|u|2m ≤ |Lu|0 = λ|f(u)|0 ≤ b2|u|2m, (λ, u) ∈ S. (2.3)

Also, the only solution of (2.2) with λ = 0 is (0, 0). Let S0 denote the connected
component of S which contains (0, 0). We will be primarily interested in the struc-
ture of S0, and the stability of the solutions on S0.

We say that a function u ∈ X is positive if u(x) > 0 for x ∈ (−1, 1); we say that
a solution (λ, u) ∈ S is positive if u is positive.

Lemma 2.2. Every solution (λ, u) ∈ S \ {(0, 0)} is positive and

u(m)(±1) 6= 0. (2.4)

Proof. If u ≡ 0 then since f(0) > 0 it follows from (2.2) that λ = 0. Now suppose
that u 6≡ 0 and λ > 0. Corollary 1 of [8] shows that Z(u) ≤ S(Lu) = S(f(u)) = 0
(since f(u) is positive), that is, u has no zeros in (−1, 1). If u < 0 on (−1, 1) then
0 < 〈Lu, u〉 = λ〈f(u), u〉 ≤ 0, which is impossible. Finally, since u and Lu are
positive we have S(u) = S(Lu) = 0, so setting h = 2m in (6) in [8] yields,

0 ≥ S(u) + ν(−1, u) + ν(1, u)− 2m− S(Lu) = ν(−1, u) + ν(1, u)− 2m

(it follows easily from its definition, which we will not repeat here, that the quantity
N2m(u) occurring in [8] satisfies N2m(u) ≥ ν(−1, u) + ν(1, u)). This inequality,
together with (1.2) and the definition of ν(±1, u), shows that (2.4) must hold. �
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We now define a C2 mapping F : R × X → Y by F (λ, u) = Lu − λf(u),
(λ, u) ∈ R × X. Clearly, (2.2) is equivalent to the equation F (λ, u) = 0. At any
(λ, u) ∈ R×X the Fréchet derivative, D(λ,u)F (λ, u) : R×X → Y , is given by

D(λ,u)F (λ, u)(µ, v) = (L− λf ′(u))v − µf(u), (µ, v) ∈ R×X,

and this operator is Fredholm with index 1. We now show that if this derivative
satisfies a suitable condition everywhere on S0 then S0 is a C2 curve with a global
C2 parametrisation (this condition will be verified in the following sections under
various hypotheses on f).

Lemma 2.3. Suppose that at every (λ, u) ∈ S0 the operator D(λ,u)F (λ, u) is sur-
jective. Then S0 has a C2 parametrisation s → (λ(s), u(s)) : R+ → R+ ×X, such
that (λ(0), u(0)) = (0, 0), λs(0) > 0,

lim
s→∞

λ(s)|f(u(s))|0 = ∞, (2.5)

and, for any s ≥ 0, the s-derivative (λs(s), us(s)) satisfies

λ2
s(s) +

2m∑
i=0

〈u(i)
s (s), u(i)

s (s)〉 = 1, (2.6)(
L− λ(s)f ′(u(s))

)
us(s) = λs(s)f(u(s)). (2.7)

Proof. Since L is non-singular we can construct (using the implicit function theo-
rem) a δ0 > 0 and a parametrisation s → (λ(s), u(s)) : [0, δ0) → R+ × X such
that (λ(0), u(0)) = (0, 0), λs(0) > 0, and (2.6) holds. Furthermore, the sur-
jectivity hypothesis in the lemma implies that the set S0 \ {(0, 0)} is a C2 con-
nected curve in R+ ×X (see Sections 4.15 and 4.18 in [19] for details) and a local
parametrization with the property (2.6) can be constructed for this curve near any
(λ, u) ∈ S0 \ {(0, 0)} (by the implicit function theorem). Thus the above local
parametrisation near (0, 0) can be extended to a maximal interval [0, smax). Sup-
pose that smax < ∞, and for each n = 1, 2, . . . , let sn = smax − 1/n, and let
λn = λ(sn), un = u(sn). Then, by (2.6), |λn|+ ‖un‖2m ≤ C, for some C > 0, and
so, by compactness of the embedding of H2m(−1, 1) in C2m−1[−1, 1], we may sup-
pose that λn → λ∞ and un → u∞ in C2m−1[−1, 1], and hence, by (2.2), un → u∞ in
C2m[−1, 1], and (λ∞, u∞) ∈ S0. But now, by the above local result, the parametri-
sation can be extended to the right of smax, which contradicts the maximality of
the interval [0, smax) and shows that the parametrisation extends to [0,∞).

A similar argument shows that

lim
s→∞

(
|λ(s)|+ ‖u(s)‖2m

)
= ∞. (2.8)

Now suppose that there exists a sequence (sn) in R+ such that sn → ∞ and the
sequence (|un|2m) is bounded. Then λn →∞ and un → u∞ in C2m−1[−1, 1] (after
taking a subsequence if necessary), and hence |f(un)|0 → |f(u∞)|0 > 0 (by (1.3)).
But these results contradict (2.3), which proves that lims→∞ |u(s)|2m = ∞; (2.5)
then follows from (2.3).

Finally, differentiating the equation F (λ(s), u(s)) ≡ 0 with respect to s, at any
s ≥ 0, yields (2.7). �

Derivatives with respect to s will always be denoted by a subscript s, to avoid
confusion with derivatives with respect to x.
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Remark 2.4. The condition (2.6) says that the chosen parametrisation of the curve
C0 is a ‘unit speed’ parametrisation in the space R×H2m(−1, 1).

Remark 2.5. Equation (2.7) says that the derivative (λs(s), us(s)) lies in the null
space of D(λ,u)F (λ(s), u(s)), and the surjectivity condition in Lemma 2.3 implies
that this null-space is 1-dimensional, so (2.7) determines (λs(s), us(s)) uniquely, up
to a scale factor, whose magnitude is determined by the unit speed condition (2.6).

We will also consider the stability of the solutions on S0 and relate this to the
shape of S0. A solution (λ, u) ∈ S is said to be stable if all the eigenvalues of the
operator DuF (λ, u) = L − λf ′(u) are strictly positive. Suppose that Lemma 2.3
holds and, for s ≥ 0, let σ(s) denote the principal (that is, the least) eigenvalue
of the operator L − λ(s)f ′(u(s)). By definition (λ(s), u(s)) ∈ S0 is stable if and
only if σ(s) > 0. By standard continuous dependence results the function σ(·) is
continuous on R+. Also, letting σ0 denote the principal eigenvalue of L, we have
σ(0) = σ0, and our assumptions ensure that L is positive definite, that is σ0 > 0.
Thus, if s is sufficiently small, (λ(s), u(s)) is stable.

3. Increasing f

Throughout this section we suppose that

f ′(ξ) > 0, ξ > 0. (3.1)

Lemma 3.1. If (λ, u) ∈ S and

(L− λf ′(u))w = 0, 0 6= w ∈ X, (3.2)

then Z(w) 6= 1.

Proof. Differentiating (1.1) with respect to x and letting v = u′ := u(1) yields

L̃v = λf ′(u)v, (3.3)

v(i)(−1) = v(i)(1) = 0, i = 0, . . . ,m− 2, (3.4)

where L̃ is defined in the same way as L, except that we apply it to functions in
C2m[−1, 1], not just in X. From (1.2) and (3.2)–(3.4) we obtain, by integration by
parts,

λ〈f ′(u)v, w〉 = (−1)m[v(m−1)w(m)]1−1 + λ〈v, f ′(u)w〉
and hence,

u(m)(−1)w(m)(−1) = u(m)(1)w(m)(1). (3.5)

Now, by (3.1), f ′(u) > 0 on (−1, 1), so the results in Lemma 2.1 hold for the
eigenvalue problem Lw = λf ′(u)w and show that if Z(w) = 1 then S(w) = 1,
and so (after multiplying w by −1 if necessary) w(m)(−1) > 0, (−1)mw(m)(1) < 0.
Also, since u is positive and satisfies (1.2) and (2.4), we must have u(m)(−1) >
0, (−1)mu(m)(1) > 0. However, combining these results contradicts (3.5), which
completes the proof. �

Lemma 3.2. If (λ, u) ∈ S0 then λ < µ2(f ′(u)). Hence, if (3.2) holds then λ =
µ1(f ′(u)) and Z(w) = 0.
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Proof. It follows from Lemmas 2.1 and 3.1 that if (λ, u) ∈ S0 then λ 6= µ2(f ′(u)).
Since 0 < µ2(0)), the first result follows from the continuity of the eigenvalues with
respect to (λ, u) on S0. The second result now follows from this and Lemma 2.1,
since the hypothesis implies that λ = µk(f ′(u)), for some k ≥ 1, and w is a
corresponding eigenfunction. �

Theorem 3.3. S0 has the global parametrisation described in Lemma 2.3.

Proof. We must show that if (λ, u) ∈ S0 then D(λ,u)F (λ, u) is surjective. Firstly,
this is clearly true if the operator L − λf ′(u) is non-singular. On the other hand,
if L−λf ′(u) is singular then, by Lemma 3.2, λ = µ1(f ′(u)) and (L−λf ′(u))w = 0
for some positive w ∈ X. So, by Lemma 2.1,

1 = dimN(L− λf ′(u)) = codimR(L− λf ′(u))

(here, N and R denote null space and range respectively). Thus D(λ,u)F (λ, u) is
surjective if f(u) 6∈ R(L− λf ′(u)), which by standard spectral theory is equivalent
to 〈f(u), w〉 6= 0. However, this is clearly true since w and f(u) are positive (by
(1.3)), which proves that D(λ,u)F (λ, u) is surjective. �

The stability of solutions on the curve S0 is related to the shape of the curve as
described in the following theorem. We note that (3.1), together with the results of
[8], ensure that if σ(s) ≥ 0 then σ(s) is a simple eigenvalue, with a corresponding
normalised, positive eigenfunction ψ(s), satisfying the equation

(L− λ(s)f ′(u(s)))ψ(s) = σ(s)ψ(s). (3.6)

Theorem 3.4. For s ≥ 0, we have λs(s) = 0 if and only if σ(s) = 0. If λs(s) = 0
then Z(us(s)) = 0. If λs(s) 6= 0 then sgnλs(s) = sgnσ(s). If λs(s) > 0 then us(s)
is positive.

Proof. If λs(s) = 0 then, by (2.6), us(s) 6= 0 and, by (2.7),

(L− λ(s)f ′(u(s)))us(s) = 0, (3.7)

so by Lemma 3.2, Z(us(s)) = 0, and hence σ(s) = 0. Conversely, if σ(s) = 0 then
comparing (3.6) with (2.7) shows that λs(s) = 0 (see Remark 2.5). Thus the set
of zeros of λs and σ coincide; we denote the complement of this set in R+ by M .
This proves the first part of the theorem.

To prove the second part we require the following result, see Theorem 3.6 in [4]:
if λs(s0) = 0 then there exists δ(s0) > 0 such that if |s − s0| < δ(s0) and s ∈ M
then the quantities σ(s)〈us(s), us(s)〉 and λs(s)〈us(s), f(u(s))〉 are both nonzero
and have the same sign.

Define t1 (respectively t2) to be the supremum of the set of t ∈M (respectively
t ∈ R+) such that sgnλs(s) = sgnσ(s) for all s ∈ [0, t] ∩M . Suppose that t2 <∞.
Since λs(0) > 0, σ(0) > 0, we have 0 < t1 ≤ t2. By continuity, t2 6∈ M , but by
definition there exists s ∈ M arbitrarily close to t2 with s > t2, and sgnλs(s) =
− sgnσ(s). Thus, by Theorem 3.6 of [4] (quoted above), the function us(t2) is
negative. By a similar argument, us(t1) is positive. Thus, t1 < t2, and [t1, t2]∩M =
∅. However, by the first part of the proof, for all s ∈ [t1, t2] we have Z(us(s)) = 0,
so by continuity the sign of us(s) is constant for s ∈ [t1, t2], which is a contradiction.
Thus we deduce that t2 = ∞, which proves the desired result.

Now suppose that λs(s) > 0 on some interval (t3, t4), with either t3 = 0 or
λs(t3) = 0, and either t4 = ∞ or λs(t4) = 0. The above results show that us(t3) is
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positive. Let t5 be the supremum of the set of t ∈ [t3, t4] such that us(s) is positive
for all s ∈ [t3, t]. Suppose that t5 < t4. Then, by (2.7) and continuity, there exists
δ > 0 such that if |s − t5| < δ then S(Lus(s)) = 0 and so, by Corollary 1 of [8],
Z(us(s)) = 0. However, this contradicts the definition of t5, and so proves that
t5 = t4, which completes the proof of the theorem. �

The following theorem shows that for any s > 0, u(s) is even, with a single local
maximum at x = 0 (this is easy to prove in the second order case).

Theorem 3.5. For all s > 0, u(s) is even and u′(s) has exactly one zero in (−1, 1)
(at x = 0, since u′(s) must be odd), so that |u(s)|0 = u(s)(0).

Proof. Clearly, u(0) = 0 is even and the set

Σ := {s ∈ R+ : u(s) is even}

is closed. Now suppose that s0 ∈ Σ and there exists a sequence (δn) such that
δn → 0 and 0 ≤ s0 + δn 6∈ Σ. For any s ≥ 0, define ũ(s) by ũ(s)(x) := u(s)(−x),
x ∈ [−1, 1]. Then the curve s → (λ(s), ũ(s)), s ≥ 0, is a curve of solutions of
(2.2) satisfying the properties in Lemma 2.3, with (λ(s0), ũ(s0)) = (λ(s0), u(s0)),
but which is distinct from the curve s→ (λ(s), u(s)) near (λ(s0), u(s0)). However,
this contradicts the implicit function theorem construction of the local curve in the
proof of Lemma 2.3. This shows that such a sequence cannot exist for any s0, and
hence the set Σ is also open in R+, which implies that Σ = R+.

Next, for any s > 0, let v(s) := u′(s). Then v(s) is odd and satisfies (3.3)–(3.4)
(with λ = λ(s), u = u(s)) and, by (2.4),

v(m−1)(s)(±1) 6= 0. (3.8)

We will show that S(v(s)) = 1 for all s > 0.
Firstly, when s is small, (λ(s), u(s)) ' sγ(1, f(0)η), in R+ × X, where γ is a

suitable scaling factor and η ∈ X satisfies Lη = 1 (η is even since, if not, the
function φ̃ defined by φ̃(x) = η(−x), x ∈ [−1, 1], would provide a second solution
of this equation, contradicting the non-singularity of L). Thus, for small s, we have
S(v(s)) = S(ζ), where ζ := η′, and since ζ is non-trivial and odd we must have
S(ζ) ≥ 1. Now, differentiating the equation Lη = 1 yields L̃ζ = 0, and hence
L2m−1ζ = c1, for some constant c1. If c1 6= 0 then (6) in [8] (with h = 2m − 1)
shows that

0 ≥ S(ζ) +N2m−1(ζ)− (2m− 1)− S(L2m−1ζ) ≥ S(ζ)− 1

(again, we omit the definition of N2m−1(ζ) given in [8], but we note that (3.4)
implies that N2m−1(ζ) ≥ 2m − 2), and hence S(ζ) = 1 in this case. Now suppose
that c1 = 0, and so L2m−2ζ = c2, for some constant c2. By Corollary 3 in [8] it
follows from this, together with (3.4), that c2 = 0 implies that ζ = 0, so we must
have c2 6= 0. On the other hand, repeating the above argument (with h = 2m− 2)
yields 0 ≥ S(ζ), which contradicts S(ζ) ≥ 1, so we conclude that c1 6= 0, and hence
S(ζ) = 1.

Now suppose that there exists s0 > 0 such that v(s0) has a double zero in
(−1, 1). We consider the quantityN(v(s0)) defined in [8] (the definition is somewhat
complicated so we will not repeat it here; essentially, N(v(s0)) is a count of the
multiple zeros of v(s0)). Since v satisfies (3.3) it follows from Lemma 1 in [8] and
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the definition of N(v(s0)) that

ν(−1, v(s0)) + ν(1, v(s0)) + 2 ≤ N(v(s0)) ≤ 2m (3.9)

(the 2 here is a lower bound on the contribution from the assumed double zero
of v(s0)). However, (3.4) implies that ν(±1, v(s0)) ≥ m − 1, so we must have
N(v(s0)) = 2m. Lemma 1 in [8] now shows that ν(±1, v(s0)) are even (odd) if m
is even (odd), which implies that we must actually have ν(±1, v(s0)) ≥ m (this
parity argument relies on the positivity of f ′, that is, on (3.1)). But then (3.9) is
contradictory, so we conclude that v(s) cannot have a double zero in (−1, 1) for
any s > 0.

It follows from this that Z(v(s)) = S(v(s)) and that S(v(s)) = S(ζ) = 1, for all
s > 0, since if S(v(s)) changes at some s = s0 then, by (3.8), v(s0) would have a
double zero in (−1, 1). �

Remark 3.6. In certain second order problems S0 can be parametrised by |u|0,
that is, the function s → |u(s)|0 is strictly increasing on R+, see for instance, [6].
We cannot show this here for the whole of S0, but Theorem 3.4 shows that this holds
on the stable portions of S0, that is, |u(·)|0 is strictly increasing on any interval on
which λs(·) > 0.

We now examine the behaviour of S0 as s→∞.

Theorem 3.7. We have

lim
s→∞

|u(s)|0 = ∞. (3.10)

If, in addition, the limit γ∞ := limξ→∞ f(ξ)/ξ exists then λ∞ := lims→∞ λ(s)
exists, and λ∞ = σ0/γ∞ (we allow γ∞ = ∞ (or γ∞ = 0) here, in which case
λ∞ = 0 (or λ∞ = ∞).

Proof. We follow the proof of Lemma 4 in [8] to a certain extent, but for brevity
we merely describe the necessary changes. As in [8], for any u ∈ X let

r(u, x) =
( 2m−1∑

i=0

(Liu)2(x)
)1/2

, x ∈ [−1, 1].

Now let (sn) be an arbitrary sequence in R+ with sn → ∞, and for each n let
λn = λ(sn), un = u(sn). Following the proof in [8], without the normalization (11)
used there, (16) in [8] becomes

λn

∣∣ ∫ 1/2

−1/2

f(un(x))
ρ2m(x)

dx
∣∣ ≤ Br(un,−1/2), (3.11)

while (17) becomes

|(Lqun)(x)| ≤ Cr(un,−1/2), −1/2 ≤ x ≤ 1/2, 0 ≤ q ≤ 2m− 1, (3.12)

for positive constants B, C (replacing α, δ, yλ, n in [8] with −1/2, 1/2, un, 2m,
respectively, here). Now, if the sequence (r(un,−1/2)) were bounded then it would
follow from (3.11) and (3.12) (together with Theorem 3.5) that the sequences (λn)
and (|un|0) are bounded, which would contradict (2.5). Thus we may suppose that
r(un,−1/2) →∞.
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Let vn = un/r(un,−1/2), n = 1, 2, . . . . The argument in [8] shows that vn → v∞
in C2m−2[−1/2, 1/2] and L2m−1vn → L2m−1v∞ pointwisely in (−1/2, 1/2] (after
choosing a subsequence if necessary), and so either v∞ 6≡ 0 or, by definition,

r(un, 1/2)
r(un,−1/2)

→ 0.

A similar argument using the functions ṽn = un/r(un, 1/2), n = 1, 2, . . . , and the
limit ṽn → ṽ∞ on [−1/2, 1/2], shows that either ṽ∞ 6≡ 0 or,

r(un,−1/2)
r(un, 1/2)

→ 0.

From these alternatives we conclude that we must have v∞ 6≡ 0 or ṽ∞ 6≡ 0 (or
both). The first result of the theorem now follows immediately from this. To prove
the second result we now suppose that the limit γ∞ exists, and that v∞ 6≡ 0 (the
case ṽ∞ 6≡ 0 is similar), and hence v∞ ≥ ε, for some ε > 0, on some non-trivial
interval J ⊂ [−1/2, 1/2].

If γ∞ = ∞ then f(un(x))/r(un,−1/2) → ∞, uniformly for x ∈ J , and so it
follows from (3.11) that λn → 0.

If γ∞ = 0 then |f(un)|0/|un|0 → 0 (using |un|0 →∞), so by (2.3), λn →∞.
If 0 < γ∞ < ∞ then, for n sufficiently large, f(un) ≥ εγ∞/2r(un,−1/2) on J ,

so by (3.11) the sequence (λn) must be bounded and, after taking a subsequence
if necessary, we have λn → λ∞, for some λ∞. Also, |f(un)|0/|un|0 → γ∞, so by
(2.3), |un|2m/|un|0 ≤ c for some constant c. Now, defining the functions wn =
un/|un|2m, n = 1, 2, . . . , we may suppose that wn → w∞ 6= 0 in C2m−1[−1, 1], and
f(un)/|un|2m ⇀ γ∞w∞ in L2(−1, 1) (by the argument on p. 648 of [7]). Thus,
taking the limit in (2.2), it follows readily that w∞ is a non-trivial, weak solution of
the equation Lw∞ = λ∞γ∞w∞, and hence λ∞γ∞ = σ0 (since w∞ ≥ 0 on [−1, 1]).
This completes the proof. �

4. Convex f

Throughout this section we suppose that (3.1) holds and, in addition,

f ′′(ξ) > 0, ξ > 0 (4.1)

(thus f is convex). Hence the results of Sections 2 and 3 hold. Also, by (3.1)
and (4.1) the limits γ∞ (see Theorem 3.7) and f ′∞ := limξ→∞ f ′(ξ) exist (we allow
f ′∞ = ∞), and it can be verified that γ∞ = f ′∞ > 0. Thus, by Theorem 3.7, we
have the following result.

Lemma 4.1. The limit λ∞ exists and λ∞ = σ0/f
′
∞ <∞.

We now study the shape of S0 further.

Lemma 4.2. If, for some s > 0, λs(s) = 0 then λss(s) < 0.

Proof. Differentiating (2.7) with respect to s and using λs(s) = 0 yields

(L− λ(s)f ′(u(s)))uss(s)− λ(s)f ′′(u(s))(us(s))2 = λss(s)f(u(s)). (4.2)

Taking the inner product of this with us(s), integrating by parts, and using (2.7)
yields

−λ(s)〈f ′′(u(s))(us(s))2, us(s)〉 = λss(s)〈f(u(s)), us(s)〉,
and so it follows from Theorem 3.4, (1.3) and (4.1) that λss(s) < 0. �
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Since λs(0) > 0, Lemma 4.2 shows that there is at most one ‘turning point’
st > 0 such that λs(st) = 0, so Theorem 3.4 and Lemma 4.1 give the following
result on the shape of S0.

Theorem 4.3. S0 must look like one of the curves (a)–(c) in Fig. 1. Case (c)
occurs if and only if f ′∞ = ∞. Furthermore, all the solutions on S0 are stable in
case (a), while in cases (b) and (c) only the solutions on the ‘lower’ portion of the
curve before the turning point are stable.

↑

→

|u|0

λ∞ λ

(a)

↑

→

|u|0

λ∞ λ

(b)
↑

→

|u|0

λ∞ λ

(c)

↑

→

|u|0

λ

(d)

Figure 1. Possible forms of the solution curve S0

Note that, as mentioned in Remark 3.6, we have not shown that S0 can be
parametrised by |u|0, so we cannot preclude ‘vertical oscillations’ in the curves in
Fig. 1, that is, multiple solutions for a given |u|0.

If the turning point st exists we have the following simple estimate of the location
of λ(st) (analogous to Lemma 4.3 in [4]).

Lemma 4.4. If st exists, then λ(st) < σ0/f
′(0).

Proof. By definition, the operator L−λ(st)f ′(u(st)) is positive semi-definite on X,
and by (4.1), f ′(u(st)) > f ′(0) on (−1, 1), so the operator L−λ(st)f ′(0) is positive
definite, and hence λ(st)f ′(0) < σ0. �

We now give a necessary and sufficient condition for a turning point to exist,
that is, to distinguish between cases (a) and (b). Defining g(ξ) := f(ξ) − f ′(ξ)ξ,
ξ ≥ 0, it is clear that g(0) > 0 and, by (4.1), g′(ξ) < 0, ξ > 0.
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Theorem 4.5. Suppose that f ′∞ <∞. Then S0 has a turning point if and only if
g(ξ0) = 0 for some ξ0 > 0.

Proof. Suppose that λs(s) = 0 for some s > 0. Taking the inner product of (2.7)
with u(s) yields

λ(s)〈f ′(u(s))us(s), u(s)〉 = 〈Lus(s), u(s)〉 = 〈us(s), Lu(s)〉 = λ(s)〈us(s), f(u(s))〉,
and hence 〈us(s), g(u(s))〉 = 0. Now, by Theorem 3.4, Z(us(s)) = 0 so g must
change sign, and hence we must have g(ξ0) = 0 for some ξ0 > 0.

Now suppose that g(ξ0) = 0 for some ξ0 > 0, and let −δ := g(ξ0 + 1) < 0, so
that g(ξ) ≤ −δ for all ξ ≥ ξ0 + 1. We can choose a sequence (sn) in R+ such that
un/|un|2m → w∞ in C2m−1[−1, 1], with w∞ positive (see the final part of the proof
of Theorem 3.7), and hence limn→∞ un(x) = ∞ for x ∈ (−1, 1). Letting

Gn = {x ∈ [−1, 1] : un(x) > ξ0 + 1}, Bn = {x ∈ [−1, 1] : un(x) ≤ ξ0 + 1},
it follows that limn→∞ |Bn| = 0 (where |Bn| denotes the Lebesgue measure of Bn).
Hence, for sufficiently large n,

〈f(un), un〉 ≤
∫

Bn

f(un)un +
∫

Gn

(
f ′(un)(un)2 − δ

)
≤ f(ξ0 + 1)(ξ0 + 1)|Bn| − δ|Gn|+ 〈f ′(un)un, un〉
< 〈f ′(un)un, un〉,

and so, by Theorem 4.1 and (4.1),

λ∞f
′
∞〈un, un〉 = σ0〈un, un〉 ≤ 〈Lun, un〉 = λn〈f(un), un〉

< λn〈f ′(un)un, un〉 < λnf
′
∞〈un, un〉.

Thus λ∞ < λn for sufficiently large n, so S0 must have a turning point. �

Remark 4.6. In the second order case it is shown in Theorem 3.2 of [14] that if
g has a zero then S0 has a turning point; the discussion in [3] proves the reverse
implication.

Remark 4.7. The above proof that the existence of a turning point implies that g
has a zero did not use condition (4.1). Thus, if we merely suppose that (3.1) holds,
and that g does not have a zero, then S0 must look like one of the curves (a) or (d)
in Fig. 1, depending on whether γ∞ < ∞ or γ∞ = ∞ (positivity of g implies that
the function f(ξ)/ξ is increasing, so γ∞ exists).

In the second order case it can be shown that there is only one curve of solutions,
see Theorem 1 of [6] and the argument at the bottom of p. 1016 of [12]. Although we
cannot prove here that the only solutions of (2.2) lie on S0, the following theorem
shows that all the stable solutions do.

Theorem 4.8. If (λ, u) ∈ S is stable then (λ, u) ∈ S0.

Proof. Suppose, on the contrary, that there exists a stable solution (λ1, u1) ∈ S\S0.
We may also suppose, without loss of generality, that 0 < f ′∞ < ∞ (by suitably
redefining f on the interval [1 + |u1|0,∞), if necessary, which does not affect the
solution (λ1, u1)). Now, by stability, 〈(L−λ1f

′(u1))v, v〉 > 0 for all non-zero v ∈ X,
and hence, λ1 < µ1(f ′(u1)). Thus the proof of Theorem 3.3 shows that there is
a global, connected C2 solution curve S1 ⊂ R+ × X with (λ1, u1) ∈ S1, and that
we may apply the implicit function theorem at any point (λ, u) ∈ S1 (the proof
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relies on the point (λ1, u1) ∈ S1 satisfying λ1 < µ2(f ′(u1)), which follows from the
stability assumption). All the other results proved above for S0 also hold for S1.
Since S0 and S1 are closed and connected, but not equal to each other, they must
be disjoint. In particular, S1 must be bounded away from the point (0, 0). Also,
Lemma 4.2 shows that S1 cannot be a ‘loop’ (homeomorphic to the unit circle), so
it must be an ‘open curve’ (homeomorphic to R), and there is a global unit speed
parametrisation t → (λ1(t), u1(t)) : R → R+ × X, with (λ1(0), u1(0)) = (λ1, u1),
and

lim
t→±∞

|u1(t)|0 = ∞, lim
t→±∞

λ1(t) = σ0/f
′
∞.

However, the results in [5] on bifurcation from infinity at a ‘simple’ eigenvalue
show that this cannot happen (there cannot be two curves with the same ‘limit at
infinity’), and hence (λ1, u1) cannot exist. �

5. Concave f

Throughout this section we suppose that (3.1) holds and, in addition,

f ′′(ξ) < 0, ξ > 0 (5.1)

(thus f is concave). Again, the results of Sections 2 and 3 hold, and the limits γ∞,
f ′∞ exist, with 0 ≤ γ∞ = f ′∞ <∞ here.

Theorem 5.1. For all s ≥ 0, λs(s) > 0 and σ(s) > 0, and λ∞ = σ0/f
′
∞ Theo-

rem 4.8 also holds.

Proof. Changing the sign of f ′′ in the proof of Lemma 4.2 shows that if λs(s) = 0
then λss(s) > 0 (by (5.1)). However, since λs(0) > 0, this precludes the existence
of a point s > 0 for which λs(s) = 0, so we must have λs(s) > 0 for all s. It now
follows from Theorem 3.4 that σ(s) > 0 for all s. The value of λ∞ follows from
Theorem 3.7, and the proof of Theorem 4.8 also holds here. �

Corollary 5.2. S0 must look like one of the curves (a) or (d) in Fig. 1, depending
on whether f ′∞ < ∞ or f ′∞ = 0. All the solutions on S0 are stable, and all stable
solutions lie on S0.

6. Decreasing f

Throughout this section we suppose that

f ′(ξ) ≤ 0, ξ > 0. (6.1)

Here, f ′∞ may not exist, but γ∞ exists, with γ∞ = 0. The results of Section 2 hold.

Theorem 6.1. S0 has the global parametrisation described in Lemma 2.3. Also,
λs(s) > 0 and σ(s) > 0 for all s ≥ 0, and λ∞ = ∞. Hence, for each λ > 0,
equation (2.2) has a solution (λ, u) ∈ S0; for fixed λ this solution is unique (thus,
S = S0).

Proof. If (λ, u) ∈ S0 then it follows from (6.1) and the positivity of L that the
operator L− λf ′(u) is positive definite, and hence non-singular, so the surjectivity
hypothesis in Lemma 2.3 holds. Next, if we had λs(s) = 0, for some s > 0, then
(3.7) would hold, with non-zero us(s), which would contradict the non-singularity
of L − λf ′(u(s)). Thus λs(s) 6= 0 for all s ≥ 0, so by continuity we must have
λs(s) > 0 (since λs(0) > 0). Similarly, σ(s) > 0 for all s ≥ 0. Next, by (6.1),
|f(u(s))|0 = f(0), so it follows from (2.5) that λ∞ = ∞.
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Finally, suppose that for some λ > 0 there exists ui ∈ X such that Lui = λf(ui),
i = 1, 2. If u1 − u2 6= 0 then by (6.1)

0 < 〈L(u1 − u2), u1 − u2〉 = λ〈f(u1)− f(u2), u1 − u2〉 ≤ 0,

and this contradiction shows that we must have u1 − u2 = 0. �

The following result shows that in this case the whole of S0 can be parametrised
by |u|0, see Remark 3.6.

Corollary 6.2. The function |u(·)|0 is strictly increasing on R+.

Proof. For any s ≥ 0 the operator L − λf ′(u(s)) is positive definite so the results
of [8] apply to this operator (see Section 2), and hence, by (2.7) and Corollary 1
of [8], Z(us(s)) = 0. Since us(0) is positive, us(s) must be positive for all s ≥ 0,
which proves the result. �

Corollary 6.3. S0 must look like the curve (d) in Fig. 1. All the solutions on
S0 = S are stable.

Remark 6.4. It is not clear if lims→∞ |u(s)|0 = ∞, in general in this case, although
this is true if f(ξ) ≥ δ > 0 for all ξ ≥ 0. To see this, choose a positive function
φ ∈ X, and observe that

〈u(s), Lφ〉 = 〈Lu(s), φ〉 = λ(s)〈f(u(s)), φ〉 ≥ δλ(s)〈1, φ〉 → ∞.

7. S-shaped S0

Throughout this section we suppose that (3.1) holds, so that the results of Sec-
tions 2 and 3 hold on S0, and we will give a sufficient condition for S0 to be
‘S-shaped’, that is, to have at least two turning points. We first give a sufficient
condition for a turning point to occur in S0 which gives more explicit information
on where the turning point occurs than the necessary and sufficient condition given
in Theorem 4.5. This result is based on Theorem 1 in [13], and the proof here is
an adaptation of the proof in [13] to deal with the higher order equation.

We will require the following notation. For ξ ≥ 0, let F (ξ) =
∫ ξ

0
f(t) dt and

G(ξ) = 2F (ξ)−ξf(ξ). Note that G′(ξ) = g(ξ) (where g(ξ) := f(ξ)−f ′(ξ)ξ was used
in Theorem 4.5), and g′(ξ) = −f ′′(ξ)ξ. Clearly, G(0) = 0 and G′(0) = g(0) > 0.

Lemma 7.1. Suppose that there exist numbers ξ0, α such that 0 < ξ0 < α and

g(ξ) > 0, 0 < ξ < ξ0, and g(ξ) < 0, ξ0 < ξ < α, (7.1)

G(α) ≤ 0. (7.2)

Then for any sα satisfying |u(sα)|0 = α, we have λs(sα) ≤ 0 (by (3.10), there exists
at least one such sα).

Proof. Suppose, on the contrary, that λs(sα) > 0, and so, by Theorem 3.4, σ(sα) >
0. For any τ > 0 let Φτ := τψ(sα) + u′(sα).

Lemma 7.2. For any τ > 0, Z(Φτ ) = 1, and the zero of Φτ is simple.

Proof. From (1.2), (2.4) and Theorem 3.5, Φτ satisfies

Φ(i)
τ (±1) = 0, i = 0, . . . ,m− 2, (7.3)

Φ(m−1)
τ (±1) = u(m)(sα)(±1) 6= 0, (7.4)

Φτ (0) = τψ(sα)(0) > 0. (7.5)



14 BRYAN P. RYNNE EJDE-2004/32

It follows from (7.4) that there exists δτ > 0 such that

±Φτ (x) > 0, 0 < |x± 1| < δτ . (7.6)

Hence, by (7.5), Φτ changes sign in (0, 1) and S(Φτ ) ≥ 1.
Next, from (3.6) and (3.3), Φτ satisfies the differential equation

L̃αΦτ := (L̃− λ(sα)f ′(u(sα)))Φτ = τσ(sα)ψ(sα).

Furthermore, since σ(sα) > 0, the operator L̃α is disconjugate, so the results of [8]
apply to this equation (see Section 2 above). In particular, by (6) in [8], we have

S(Φτ ) ≤ S(L̃αΦτ ) + 2m−N2m(Φτ ) = 2m−N2m(Φτ ) ≤ 2 (7.7)

(since ψ(sα) is positive, and the boundary conditions (7.3) imply that N2m(Φτ ) ≥
2m−2, see [8]). Now, if Φτ had a double zero in (−1, 1) then this would contribute
a further 2 to N2m(Φτ ), so that S(Φτ ) = 0, but we already know that S(Φτ ) ≥ 1,
so Φτ can only have simple zeros in (−1, 1). Thus, Z(Φτ ) = S(Φτ ) ≥ 1 and, by
(7.6), Z(Φτ ) must be odd, so by (7.7) we have Z(Φτ ) = 1. �

By Theorem 3.5 we can now define xα ∈ (0, 1) by u(sα)(xα) = ξ0, and let
τα := −u′(sα)(xα)/ψ(sα)(xα) > 0. Then Φτα(xα) = 0 and g(u(sα)(xα)) = 0, so
from (7.1) and Lemma 7.2, we have

g(u(sα)) < 0 and ταψ(sα) + u′(sα) > 0, on (0, xα),

g(u(sα)) > 0 and ταψ(sα) + u′(sα) < 0, on (xα, 1).

Hence,

τα
2
〈g(u(sα)), ψ(sα)〉 = τα

∫ 1

0

g(u(sα))ψ(sα) dx <
∫ 1

0

g(u(sα))(−u′(sα)) dx

= −
∫ 1

0

d

dx
G(u(sα)) dx = G(α) ≤ 0

(using Theorem 3.5). On the other hand, taking the inner product of (3.6) with
u(sα) and the inner product of (2.2) with ψ(sα), and subtracting, yields

λ(sα)〈g(u(sα)), ψ(sα)〉 = σ(sα)〈u(sα), ψ(sα)〉 ≥ 0.

This contradiction proves that we must have λs(sα) ≤ 0. �

We now give conditions for S0 to be S-shaped, in the sense of the following
theorem.

Theorem 7.3. Suppose that (7.2) holds, for some α > 0, and that

f ′′(ξ) > 0, 0 < ξ ≤ α. (7.8)

Suppose also that γ∞ exists, with 0 ≤ γ∞ ≤ f ′(0). Then there exists t1, t2 such
that: (i) 0 < t1 < t2; (ii) λs(t1) = λs(t2) = 0; (iii) 0 < λ(t2) < λ(t1) < σ0/f

′(0);
(iv) λ∞ = σ0/γ∞ > λ(t1).

Proof. It follows from (7.2) and (7.8) that g(α) < 0 and there exists ξ0 ∈ (0, α)
such that (7.1) holds, and hence the result of Lemma 7.1 holds. Thus we can
define t1 = inf{s ≥ 0 : λs(s) ≤ 0}, and we have |u(s)|0 ≤ α for s ∈ [0, t1].
It now follows from (7.8) that (4.1) holds for 0 < ξ ≤ α, and so the results of
Section 4 hold for s ∈ [0, t1]. Thus λs(t1) = 0, and it follows from Lemma 4.4 that
λ(t1) < σ0/f

′(0), and from Lemma 4.2 that λs(s) < 0 for s − t1 > 0 sufficiently
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small. Also, Theorem 3.7 shows that λ∞ = σ0/γ∞. Hence, letting t2 be the point
at which λ(·) attains its minimum on the interval [t1,∞), the results (i)–(iv) follow
immediately. �

Remark 7.4. Figs. 1 (a) and (b) on p. 1012 of [12] illustrate the above result when
S0 is ‘exactly S-shaped’ (that is, when S0 has exactly two turning points). Fig. (a)
corresponds to γ∞ = 0, while Fig. (b) corresponds to γ∞ > 0. Exact S-shapedness
is also obtained in [17]. We have been unable to obtain exact S-shapedness of S0

here — the arguments in [12] and [17] rely on the problem being second order.

It follows from Theorem 7.3 that if λ ∈ (λ(t2), λ(t1)) then equation (2.2) has at
least three solutions (λ, u(si)) ∈ S0, i = 1, 2, 3, with s1 < t1 < s2 < t2 < s3 and,
by Theorem 3.4 and the geometry of S0, (λ, u(s1)) will be stable, (λ, u(s2)) will
not be stable, and (λ, u(s3)) (on the ‘upper’ branch) will be stable if λs(s3) > 0
(that is, the curve S0 is moving to the right at this point). We cannot rule out the
possibility of more turning points, or ‘vertical’ points where λs = 0 (so that the
corresponding solution is not stable). However, we have the following corollary.

Corollary 7.5. If the hypotheses of Theorem 7.3 hold then, for almost all λ ∈
(λ(t2), λ(t1)), equation (2.2) has at least two stable solutions.

References

[1] R. P. Agarwal, D. O’Regan, Positive solutions for (p, n − p) conjugate boundary value

problems, J. Differential Equations 150 (1998), 462–473.
[2] Z. Bai, H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J.

Math. Anal. Appl. 270 (2002), 357–368.

[3] K. J. Brown, M. M. A. Ibrahim, R. Shivaji, S-shaped bifurcation curves, Nonlinear Anal.
5 (1981), 475–486.

[4] M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and
linearized stability. Arch. Rat. Mech. Anal. 52 (1973), 161–180.

[5] E. N. Dancer, A note on bifurcation from infinity. Quart. J. Math. 25 (1974), 81–84.

[6] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a
parameter is large, J. Differential Equations 37 (1980), 404–437.

[7] P. Drabek and S. Invernizzi, On the periodic BVP for the forced Duffing equation with

jumping nonlinearity, Nonlinear Analysis 10 (1986), 643–650.
[8] U. Elias, Eigenvalue problems for the equation Ly + λp(x)y = 0, J. Differential Equations

29 (1978), 28–57.
[9] P. W. Eloe, J. Henderson, Positive solutions for higher order ordinary differential equations,

Electronic J. Differential Equns. 1995 (1995), 1–8.

[10] P. W. Eloe, J. Henderson, Singular nonlinear (k, n−k) conjugate boundary value problems,

J. Differential Equations 133 (1997), 136–151.
[11] P. Korman, A global solution curve for a class of semilinear equations, Electron. J. Differ.

Equ. Conf. 1 (1997), 119–127.

[12] P. Korman, Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math.
Soc. 127 (1999), 1011–1020.

[13] P. Korman, J. Shi, Instability and exact multiplicity of solutions of semilinear equations,
Electron. J. Differ. Equ. Conf., 5, Electron. J. Differ. Equ. Conf. 5 (2000), 311–322.

[14] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,

Indiana Univ. Mat. J. 20 (1970), 1–13.
[15] J. W. Lee, D. O’Regan, Boundary value problems for nonlinear fourth order equations with

applications to nonlinear beams, Utilitas Math. 44 (1993), 57–74.

[16] B. P. Rynne, Global bifurcation for 2m’th order boundary value problems and infinitely
many solutions of superlinear problems, J. Differential Equations 188 (2003), 461–472.

[17] S.-H. Wang, On S-shaped bifurcation curves, Nonlinear Analysis 22 (1994), 1475–1485.

[18] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104
(1988), 175–180.



16 BRYAN P. RYNNE EJDE-2004/32

[19] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol I, Springer, 1986.

Bryan P. Rynne
Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

E-mail address: bryan@ma.hw.ac.uk


	1. Introduction
	2. Preliminary results
	3. Increasing f
	4. Convex f
	5. Concave f
	6. Decreasing f
	7. S-shaped S0
	References

