
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 64, pp. 1–18.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

A LIMIT SET TRICHOTOMY FOR ORDER-PRESERVING
SYSTEMS ON TIME SCALES

CHRISTIAN PÖTZSCHE & STEFAN SIEGMUND

Abstract. In this paper we derive a limit set trichotomy for abstract order-
preserving 2-parameter semiflows in normal cones of strongly ordered Banach

spaces. Additionally, to provide an example, Müller’s theorem is generalized
to dynamic equations on arbitrary time scales and applied to a model from

population dynamics.

1. Introduction

In certain relevant situations it happens that a dynamical system preserves a
(partial) order relation on its state space. These systems are called order-preserving
or monotone and the ground for their qualitative theory was laid by Krasnoselskii
in his two books [19, 20]. Meanwhile many others made further important contri-
butions for different types of such dynamical systems like (semi-)flows of ordinary
differential equation [15, 16, 17, 30], functional differential equations [31, 1], semi-
linear parabolic equations [18, 34], ordinary difference equations [17, 33], [21, 22],
[26, 13], random dynamical systems [2] or general skew-product flows [7]; compare
also the monographs [32] and [8] for numerous examples and applications.

The essential property of order-preserving dynamical systems is that they possess
a surprisingly simple asymptotic behavior. In fact Krause et al. [21, 22] proved a so-
called limit set trichotomy (cf. also [25] for nonautonomous difference equations or
[3] for random dynamical systems), describing the only three asymptotic scenarios
of such systems under a certain kind of concavity.

In this paper we prove such a limit set trichotomy for a general model of non-
expansive dynamical processes, namely 2-parameter semiflows in normal cones on
time scales. They include the solution operators of dynamic equations on time
scales (cf. [14, 6]) and in particular of nonautonomous difference and differential
equations. Beyond the unification aspect, dynamic equations on time scales are pre-
destinated to describe the interaction of biological species with hibernation periods.
The crucial point is that we provide sufficient criteria for the nonexpansiveness of

2000 Mathematics Subject Classification. 37C65. 37B55, 92D25.
Key words and phrases. Limit set trichotomy, 2-parameter semiflow, dynamic equation,
time scale.
c©2004 Texas State University - San Marcos.

Submitted April 15, 2004. Published April 27, 2004.

The first author is supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analysis,
Geometrie und Physik” (GRK 283) financed by the DFG and the State of Bavaria. The second

author is an Emmy Noether Fellow supported by the DFG.

1
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such solution operators in terms of concavity and cooperativity conditions on the
right-hand sides of the corresponding equations.

On this occasion we generalize the classical theorem of Müller (cf., e.g., [24])
to dynamic equations in real Banach spaces. Thereby we closely follow the argu-
ments of [36], who considers finite-dimensional ordinary differential equations and
orderings with respect to arbitrary cones. However, although our state spaces are
allowed to be infinite-dimensional, we have to make the assumption that cones have
nonempty interior. The use of arbitrary order cones instead of Rd

+ even in finite
dimensions has the advantage that certain equations are cooperative (see Defini-
tion 5.6) with respect to an ordering different from the component-wise.

2. Preliminaries

Let T be an arbitrary time scale, i.e., a canonically ordered closed subset of the
real axis R. Since we are interested in the asymptotic behavior of systems on such
sets T, it is reasonable to assume that T is unbounded above in the whole paper.
Moreover, T is called homogeneous, if T = R or T = hZ, h > 0. A T-interval is the
intersection of a real interval with the set T, for a, b ∈ R we write [a, b]T := [a, b]∩T
and (half-)open intervals are defined analogously. (X, d) denotes a metric space
from now on.

Definition 2.1. A mapping ϕ : {(t, τ) ∈ T2 : τ ≤ t} × X → X is denoted as a
2-parameter semiflow on X, if the mappings ϕ(t, τ, ·) = ϕ(t, τ) : X → X, τ ≤ t,
satisfy the following properties:

(i) ϕ(τ, τ)x = x for all τ ∈ T, x ∈ X,
(ii) ϕ(t, s)ϕ(s, τ) = ϕ(t, τ) for all τ, s, t ∈ T, τ ≤ s ≤ t,
(iii) ϕ( ·, ·)x : {(t, τ) ∈ T2 : τ ≤ t} → X is continuous for all x ∈ X.

Remark 2.2. (1) Sometimes 2-parameter semiflows are also called (evolutionary)
processes (cf., e.g., [12, p. 100, Definition 1.1]).

(2) To provide some concepts from classical (1-parameter) semiflows, we denote
a point x0 ∈ X as an equilibrium of ϕ, if ϕ(t, τ)x0 = x0 for all τ ≤ t holds.
Moreover, for τ ∈ T and x ∈ X, the orbit emanating from (τ, x) is

γ+
τ (x) := {ϕ(t, τ)x ∈ X : τ ≤ t}

and the ω-limit set of (τ, x) is given by

ω+
τ (x) :=

⋂
τ≤t

closure{ϕ(s, τ)x ∈ X : t ≤ s}.

Equivalently, ω+
τ (x) consists of all the points x∗ ∈ X such that there exists a

sequence tn →∞ in T with x∗ = limn→∞ ϕ(tn, τ)x. A subset U ⊂ X is denoted as
forward invariant, if ϕ(t, τ)U ⊂ U holds for τ ≤ t.

Example 2.3. (1) For homogeneous time scales T, any strongly continuous dis-
crete (T := hZ, h > 0) or continuous (T := R) 1-parameter semiflow {φt}t≥0

evidently generates a 2-parameter semiflow ϕ via ϕ(t, τ) := φt−τ .
(2) Let X be some Banach space V and f : T × V → V . Then the standard

examples for 2-parameter-semiflows are the solution operators ϕ(t, τ, ·) : V → V ,
τ ≤ t, of nonautonomous difference equations v(t + 1) = f(t, v(t)), t ∈ T := Z, or
of nonautonomous ordinary differential equations v̇(t) = f(t, v(t)), t ∈ T := R in
V , provided that in the ODE case, f is e.g. measurable in t, (locally) Lipschitzian
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in v, and satisfies a certain growth condition to exclude finite escape times. The
general situation, where T is an arbitrary closed subset of the reals, occurs in the
context of dynamic equations v∆ = f(t, v) on time scales (see Section 5).

(3) Let r ≥ 0 be real, X := C([−r, 0], Rd) the space of continuous functions
endowed with the sup-norm, and f : R × X → Rd be continuous and (locally)
Lipschitzian in the second argument. Then, if no finite escape times appear, the
solution v(·, τ, v0) : [τ,∞) → Rd of the retarded functional differential equation

v̇(t) = f(t, vt),

vt(θ) := v(t + θ) for all θ ∈ [−r, 0]

satisfying the initial condition vτ = v0 for τ ∈ R, v0 ∈ X, defines a 2-parameter
semiflow on X with T = R via ϕ(t, τ)v0 := vt(·, τ, v0) (cf. [12]).

(4) Criteria for more abstract nonautonomous evolutionary equations to gener-
ate a 2-parameter semiflow can be found in [4] and the references therein.

We need some further terminology. A self-mapping Φ : X → X will be called
nonexpansive (on (X, d)), if d(Φx,Φx̄) ≤ d(x, x̄) for all x, x̄ ∈ X, and Φ will be
called contractive, if d(Φx,Φx̄) < d(x, x̄) for all x, x̄ ∈ X, x 6= x̄. If P is a nonempty
set, then a family of parameter-dependent self-mappings Φ(p) : X → X, p ∈ P , is
called uniformly contractive, if there exists a continuous function c : X ×X → R+,
such that the following two conditions are fulfilled (cf. [25]):

(i) c(x, x̄) < d(x, x̄) for all x, x̄ ∈ X, x 6= x̄,
(ii) d(Φ(p)x, Φ(p)x̄) ≤ c(x, x̄) for all p ∈ P , x, x̄ ∈ X.

Assume from now on that the metric space X is a cone V+ in a real Banach space
(V, ‖ · ‖). Recall that a cone is a nonempty closed convex set V+ ⊂ V such that
αV+ ⊂ V+ for α ≥ 0 and V+ ∩ (−V+) = {0}. Moreover, define V ∗+ := V+ \ {0}. Any
cone defines a partial order relation on V via u ≤ v, if v−u ∈ V+, which is preserved
under addition and scalar multiplication with nonnegative reals. Furthermore, we
write u < v when u ≤ v and u 6= v. If V+ has nonempty interior int V+, we
say that V is strongly ordered and write u � v, if v − u ∈ intV+. A cone V+ is
called normal, if there exists a real number M ≥ 0 such that ‖u‖ ≤ M‖v‖ for all
u, v ∈ V+ with u ≤ v. In fact, without loss of generality, one can assume the norm
‖ · ‖ to be monotone, i.e., ‖u‖ ≤ ‖v‖, if u ≤ v; otherwise an equivalent norm on
V can be found for which M = 1 (cf. [29]). Finally we define the order interval
[u, v] := {w ∈ V : u ≤ w ≤ v} for u, v ∈ V , u ≤ v. Explicit examples of normal
cones and strongly ordered Banach spaces can be found in, e.g., [10, pp. 219ff].

Although forthcoming results on the boundedness of orbits are stated in the
norm topology on V+, our contractivity condition for 2-parameter semiflows will be
formulated in a different metric topology:

Definition 2.4. (i) The equivalence classes under the equivalence relation de-
fined by u ∼ v, if there exists α > 0 such that α−1u ≤ v ≤ αu on the cone
V+ are called the parts of V+.

(ii) Let C be a part of V+. Then p : C × C → R+,

p(u, v) := inf{log α : α−1u ≤ v ≤ αu} for all u, v ∈ C,

defines a metric on C called the part metric of C.

Remark 2.5. (1) u and v lie in the same part, if and only if p(u, v) < ∞.
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(2) Clearly intV+ is a part and the closure of every part is also a convex cone in
the Banach space V . For a proof of the fact that p is a metric on C and for other
properties of the part metric we refer to [5] or [8, pp. 83–86].

(3) If the cone V+ is normal, then intV+ is a complete metric space with respect
to the part metric p (cf. [35]).

Norm distance and the part metric are related by the following inequality:

Lemma 2.6. (a) If V+ is normal with monotone norm, then

‖v − v̄‖ ≤
(
2ep(v,v̄) − e−p(v,v̄) − 1) min{‖v‖, ‖v̄‖} for all v, v̄ ∈ V ∗+,

(b) p|int V+×int V+ is continuous in the norm topology on int V+ × intV+.

Proof. See [21, Lemma 2.3] for (a), while assertion (b) can be found in [25, Proof
of Theorem 2]. �

3. A Limit Set Trichotomy

The following theorem is a clear manifestation of the general experience that
contractivity drastically simplifies the possible long-term behavior of a dynamical
system. It is the main result in the abstract part of this paper.

In the autonomous discrete time case a limit set trichotomy was discovered (and
so named) by Krause and Ranft [22] and generalized in [21] to infinite-dimensional
autonomous difference equations; in addition, [25] considers such nonautonomous
systems.

Theorem 3.1 (Limit Set Trichotomy). Let V+ ⊂ V be a normal cone, int V+ 6= ∅
and assume that ϕ is a 2-parameter semiflow on V+ with the following properties:

(i) There exists a real T > 0 such that for all t, τ ∈ T satisfying T ≤ t− τ , one
has ϕ(t, τ)V ∗+ ⊂ intV+ and that the mapping ϕ(t, τ)|int V+ is nonexpansive,

(ii) for all (τ, v) ∈ T × V+ every bounded orbit γ+
τ (v) is relatively compact in

the norm topology.
Then for every τ ∈ T the following trichotomy holds, i.e., precisely one of the
following three cases applies:

(a) For all v ∈ V ∗+ the orbits γ+
τ (v) are unbounded in norm,

(b) for all v ∈ V+ the orbits γ+
τ (v) are bounded in norm and for all v ∈ V ∗+ we

have limt→∞ ‖ϕ(t, τ)v‖ = 0,
(c) for all v ∈ V+ the orbits γ+

τ (v) are bounded in norm, the ω-limit sets ω+
τ (v)

are nonempty and for all v ∈ V ∗+ they have a nontrivial accumulation point.
If, moreover, ω+

τ (v) ⊂ int V+ ∪ {0} for all v ∈ V ∗+ and the mappings ϕ(t, τ)|int V+

are uniformly contractive for all t, τ ∈ T with T ≤ t− τ , then in case (c) we have

lim
t→∞

[
ϕ(t, τ)v1 − ϕ(t, τ)v2

]
= 0 for all v1, v2 ∈ V ∗+. (3.1)

Remark 3.2. (1) Condition (3.1) implies that all ω-limit sets ω+
τ (v), v ∈ V ∗+,

are identical, and it excludes the existence of two different equilibria of ϕ. In fact,
if ϕ possesses an equilibrium v0 ∈ V ∗+, then (3.1) guarantees ω+

τ (v) = {v0} for
all v ∈ V ∗+. In the “autonomous” situation of a homogeneous time scale T and a
2-parameter semiflow induced by a 1-parameter semiflow (cf. Example 2.3(1)), the
assumption ω+

τ (v) ⊂ intV+∪{0} becomes superfluous. This yields by the invariance
of ω+

τ (v) and hypothesis (ii), i.e., ω+
τ (v) = ϕ(t, τ)ω+

τ (v) ⊂ int V+ for T ≤ t− τ .
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(2) One can show a stronger limit set trichotomy, if ϕ is induced by a discrete 1-
parameter semiflow (cf. [21, Theorem 3.1]). More results in the finite-dimensional
situation V+ = Rd

+ can be found in [22, Theorems 1, 2] and related topics are
contained in [33, Theorem 1.1] or [26, Theorem 4.1]. Furthermore, [25, Lemma
4] provides sufficient conditions for the right-hand side of nonautonomous differ-
ence equations to generate a uniformly contractive 2-parameter semigroup. On
general time scales, stronger limit set trichotomies can be found in [28] under the
assumption that ϕ is uniformly ascending.

(3) We also briefly comment the situation when ϕ comes from an ordinary dif-
ferential equation (T = R). For autonomous cooperative systems in R2, a prototype
result has been given by [15, Theorem 2.3]. If ϕ comes from a time-periodic equa-
tion, [30, Theorem 3.1] proved a “limit set dichotomy” under certain assumptions
on the Floquet multipliers. Similar results are given by [22, Theorems 3, 4]; [18,
Theorem 6.8] considers general continuous 1-parameter semiflows, and [7, Theo-
rem 3.1] proves a limit set trichotomy for order-preserving skew-product flows.

(4) Finally, the case of random dynamical systems is considered in [3, Theo-
rem 4.2] and [8, pp. 123–124, Theorem 4.4.1].

Proof. Let τ ∈ T be arbitrary, but fixed. If (a) holds, then obviously (b) and (c)
cannot hold. If (a) does not hold, then there exists a v1 ∈ V ∗+ such that the orbit
γ+

τ (v1) is bounded, i.e., ‖ϕ(t, τ)v1‖ ≤ M for some M ≥ 0 and all t ≥ τ . Now we
show that in this case every orbit γ+

τ (v), v ∈ V+, is bounded in norm. Let the vector
v2 ∈ V+ be arbitrary. Then either (i) γ+

τ (v2) is bounded or (ii) there exists a t′ ∈ T
with T ≤ t′ − τ such that ϕ(t′, τ)v2 6= 0. In case (ii) it follows from assumption (i)
that ϕ(t, τ)v1, ϕ(t, τ)v2 ∈ intV+ for t ≥ t′. The Remarks 2.5 (1) and (2) imply
K := p(ϕ(t′, τ)v1, ϕ(t′, τ)v2) < ∞. Using the 2-parameter semiflow property of ϕ
(cf. Definition 2.1(ii)) together with the fact that the mappings ϕ(t, t′), t ≥ t′ + T ,
are nonexpansive, we obtain

p(ϕ(t, τ)v1, ϕ(t, τ)v2) ≤ K for t ≥ t′ + T .

Consequently, Lemma 2.6(a) provides the estimate

‖ϕ(t, τ)v2‖ ≤ ‖ϕ(t, τ)v2 − ϕ(t, τ)v1‖+ ‖ϕ(t, τ)v1‖ ≤ 2eKM

for all t ≥ t′ + T , proving that γ+
τ (v2) is bounded.

Now we show that either (b) or (c) holds. By assumption (ii) the orbits γ+
τ (v),

v ∈ V+, are relatively compact and therefore ω+
τ (v) 6= ∅, moreover, the relation

ω+
τ (v) = {0} is equivalent to limt→∞ ϕ(t, τ)v = 0. We show that

ω+
τ (v1) = {0} for a single v1 ∈ V ∗+ =⇒ ω+

τ (v) = {0} for any v ∈ V ∗+ .

To this end, we assume that there exist v1, v2, v
∗
2 ∈ V ∗+ with ω+

τ (v1) = {0} and
v∗2 ∈ ω+

τ (v2) \ {0}. Then there exists a sequence tn →∞ in T with

lim
n→∞

ϕ(tn, τ)v1 = 0 and lim
n→∞

ϕ(tn, τ)v2 = v∗2 ,

where we assume without lost of generaliry that t0 = τ and tn+1 − tn ≥ T , which
implies by assumption (i) that ϕ(tn, τ)vi ∈ intV+ for i = 1, 2 and n ∈ N. Using the
2-parameter semiflow property and the fact that the mappings ϕ(tn+1, tn), n ∈ N,
are nonexpansive, we get

p(ϕ(tn, τ)v1, ϕ(tn, τ)v2) ≤ · · · ≤ p(ϕ(t1, τ)v1, ϕ(t1, τ)v2) ≤ p(v1, v2)
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for n ∈ N. Choosing N ∈ N such that ‖ϕ(tn, τ)v1‖ ≤ ‖ϕ(tn, τ)v2‖ for n ≥ N ,
Lemma 2.6(a) implies the contradiction

‖ϕ(tn, τ)v2‖ ≤ ‖ϕ(tn, τ)v2 − ϕ(tn, τ)v1‖+ ‖ϕ(tn, τ)v1‖

≤ 3ep(v1,v2)‖ϕ(tn, τ)v1‖ → 0 for n →∞ ,

proving that either (b) or (c) is true.
It remains to show (3.1) under the additional assumptions that the mappings

ϕ(t, s), T ≤ t− s, are uniformly contractive, and that ω+
τ (v) ∈ intV+ ∪ {0} for all

v ∈ V ∗+. Assume that (3.1) does not hold. Then there exists v1, v2 ∈ V ∗+, an ε > 0
and a sequence tn →∞ in T with

‖ϕ(tn, τ)v1 − ϕ(tn, τ)v2‖ ≥ ε for all n ∈ N, (3.2)

where we assume without lost of generaliry t1 ≥ τ + T and tn+1 − tn ≥ T , which
implies that ϕ(tn, τ)vi 6= 0 for i = 1, 2 and n ∈ N. Since the orbits γ+

τ (v1) and
γ+

τ (v2) are relatively compact there exists a subsequence of (tn)n∈N, which we
denote by (tn)n∈N again, such that the limits

v∗1 := lim
n→∞

ϕ(tn, τ)v1 and v∗2 := lim
n→∞

ϕ(tn, τ)v2

exist. By assumption v∗1 , v∗2 ∈ intV+ ∪ {0} and by (3.2) v∗1 6= v∗2 . We can also rule
out that v∗1 = 0 and v∗2 ∈ intV+, since in this case, choosing N ∈ N such that
‖ϕ(tn, τ)v1‖ ≤ ‖ϕ(tn, τ)v2‖ for n ≥ N , Lemma 2.6(a) would imply

‖ϕ(tn, τ)v2‖ ≤ ‖ϕ(tn, τ)v2 − ϕ(tn, τ)v1‖+ ‖ϕ(tn, τ)v1‖

≤ 3ep(ϕ(t1,τ)v1,ϕ(t1,τ)v2)‖ϕ(tn, τ)v1‖ → 0 for n →∞ ,

contradicting v∗1 6= v∗2 . Hence we have v∗1 , v∗2 ∈ intV+. The 2-parameter semi-
flow property and the fact that the mappings ϕ(tn+1, tn), n ∈ N, are uniformly
contractive, imply the estimates

p(ϕ(tn, τ)v1, ϕ(tn, τ)v2) ≤ c(ϕ(tn, τ)v1, ϕ(tn, τ)v2) < . . .

< p(ϕ(t1, τ)v1, ϕ(t1, τ)v2) ≤ c(ϕ(t1, τ)v1, ϕ(t1, τ)v2) .

Since monotone and bounded sequences converge and the mappings p and c are
continuous in (v∗1 , v∗2) by Lemma 2.6(b) and assumption, respectively, we get

p(v∗1 , v∗2) = c(v∗1 , v∗2)

in contradiction to c(v∗1 , v∗2) < p(v∗1 , v∗2), thus proving that (3.1) holds. �

4. Subhomogeneous Order-Preserving Semiflows

The results of Section 3 are only helpful, if one has verifiable conditions which
guarantee that a 2-parameter semiflow is nonexpansive with respect to the part-
metric. Sufficient conditions will be given by the following notions.

Definition 4.1. Let U ⊂ V+. A 2-parameter semiflow ϕ on V+ is said to be
(i) order-preserving on U if

u, v ∈ U, u ≤ v =⇒ ϕ(t, τ)u ≤ ϕ(t, τ)v for all τ ≤ t;

(ii) strictly order-preserving on U , if it is order-preserving on U and

u, v ∈ U, u < v =⇒ ϕ(t, τ)u < ϕ(t, τ)v for all τ ≤ t;
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(iii) strongly order-preserving on U , if int V+ 6= ∅, if ϕ is order-preserving on U
and

u, v ∈ U, u � v =⇒ ϕ(t, τ)u � ϕ(t, τ)v for all τ ≤ t.

We now introduce a class of order-preserving 2-parameter semiflows which pos-
sess a certain concavity property we call subhomogeneity (sometimes also named
sublinearity). Subhomogeneity means concavity for the particular case in which
one of the reference points is 0, hence asks less and is thus more general than clas-
sical concavity. The autonomous version of this property plays an important role
in many studies and applications, see [19, 20], [21, 22], [30, 33] and the references
therein.

Definition 4.2. A 2-parameter semiflow ϕ, which is order-preserving on V+, is
said to be

(i) subhomogeneous, if for any v ∈ V+ and for any α ∈ (0, 1) we have

αϕ(t, τ)v ≤ ϕ(t, τ)αv for all τ < t; (4.1)

(ii) strictly subhomogeneous, if we have in addition for any v ∈ intV+ the strict
inequality

αϕ(t, τ)v < ϕ(t, τ)αv for all τ < t. (4.2)

Remark 4.3. Inequality (4.1) holds automatically for t = τ and for α ∈ {0, 1}; it
can be equivalently rewritten as follows: For any v ∈ V+ and for any α > 1 we have

ϕ(t, τ)αv ≤ αϕ(t, τ)v for all τ < t (4.3)

and ϕ(t, τ)αv < αϕ(t, τ)v instead of (4.2), respectively.

Lemma 4.4. Let ϕ be a subhomogeneous 2-parameter semiflow on V+, which is
order-preserving on V+. Then

(a) ϕ preserves the equivalence relation from Definition 2.4(i) and is nonex-
pansive under the part metric on every part C of V+.

(b) If, moreover, ϕ is strictly subhomogeneous on a part C of V+, it is contrac-
tive under the part metric on C.

Remark 4.5. It is easy to see that a contractive 2-parameter semiflow possesses
at most one equilibrium in C.

Proof. (a) It follows from (4.1) and (4.3) that, if for v, v̄ ∈ C and some α ≥ 1 the
estimate α−1v ≤ v̄ ≤ αv̄ implies

α−1ϕ(t, τ)v ≤ ϕ(t, τ)v̄ ≤ αϕ(t, τ)v for all τ ≤ t

and hence by the definition of the part metric

p(ϕ(t, τ)v, ϕ(t, τ)v̄) ≤ p(v, v̄) for all τ ≤ t.

(b) Analogously, under the assumption (4.2), it follows

α−1ϕ(t, τ)v < ϕ(t, τ)v̄ < αϕ(t, τ)v for all t > τ

and this leads to the contractivity of ϕ. �
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5. Order-Preserving Dynamic Equations

Supplementing our explanations from Section 2, we need some further terminol-
ogy. IV denotes the identity map on V . The dual cone V ′+ of V+ is the set of all
linear and continuous mappings v′ : V → R such that 〈v, v′〉 ≥ 0 for all v ∈ V+,
where 〈v, v′〉 := v′(v) is the duality mapping. If V is a Hilbert space, then V ′+ can
be identified with a subset of V through the Riesz representation theorem (cf. [23,
p. 104, Theorem 2.1]). The elements of V ?

+ := V ′+ \ {0} are called supporting forms
and we define L(V+) := {T ∈ L(V ) : T (V+) ⊂ V+}. Any such operator T ∈ L(V+)
is called positive, and strictly positive, if Tv = 0 implies v = 0 for any v ∈ V+.

First of all, we can characterize the (interior) points of a cone in terms of linear
functionals.

Lemma 5.1. For any v ∈ V the following holds:
(a) v ∈ V+ ⇔ 〈v, v′〉 ≥ 0 for all v′ ∈ V ?

+,
(b) v ∈ intV+ ⇔ 〈v, v′〉 > 0 for all v′ ∈ V ?

+.

Proof. See [10, p. 221, Proposition 19.3]. �

At this point we introduce some further notation concerning the calculus on time
scales (see also [6]). Remember that T is a closed subset of R which is assumed
to be unbounded above. σ(t) := inf{s ∈ T : t < s} defines the forward jump
operator σ : T → T and µ(t) := σ(t) − t the graininess of T. A point t ∈ T is
called right-dense, if σ(t) = t and otherwise right-scattered. Analogously, in case
sup{s ∈ T : s < t} = t, the point t ∈ T is said to be left-dense. It is worth to
mention that all the results of this paper remain true with obvious modifications,
if the time scale T is replaced by a general measure chain (cf. [14]).

Now we will discuss dynamic equations in real Banach spaces of the form

v∆ = f(t, v), (5.1)

where the right-hand side f : T× V → V satisfies the following assumptions:
(H0) V is a strongly ordered Banach space with cone V+, i.e., int V+ 6= ∅,
(H1) f : T× V → V is rd-continuously differentiable with respect to the second

variable, i.e., the partial derivative D2f : T × V → V is assumed to exist
and, furthermore, is rd-continuous,

(H2) for any τ ∈ T and v ∈ V the solution t 7→ ϕ(t, τ, v) of (5.1) starting at time
τ in v exists for all τ ≤ t.

Under the condition (H1) the solutions of (5.1) exist and are unique locally in
forward time (cf. [6, p. 324, Theorem 8.20]), with continuous partial derivatives
D3ϕ(t, τ, v) ∈ L(V ), τ ≤ t, v ∈ V (cf. [27, pp. 47–48, Satz 1.2.22]) and by the
absence of finite escape times, obviously ϕ defines a 2-parameter semiflow on V
(cf. [27, p. 42, Korollar 1.2.19]), where all the results from the previous sections
apply to ϕ under certain assumptions on f .

Lemma 5.2 (Characterization of Forward Invariance). The following three state-
ments are equivalent.

(a) The cone V+ is forward invariant for (5.1).
(b) For every right-dense t0 ∈ T, any v ∈ ∂V+, v′ ∈ V ?

+ such that 〈v, v′〉 = 0
satisfy 〈f(t0, v), v′〉 ≥ 0, and, for every right-scattered t0 ∈ T any v ∈ V+

satisfies v + µ(t0)f(t0, v) ∈ V+.
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(c) For every t0 ∈ T it holds

lim
h↘µ(t0)

dist(v + hf(t0, v), V+)
h

= 0, (5.2)

if v ∈ ∂V+ and t0 is right-dense, or, v ∈ V+ and t0 is right-scattered.

Remark 5.3. The condition (5.2) provides a descriptive geometric interpretation:
In a right-scattered point t0 ∈ T it simply means that v + µ(t)f(t, v) ∈ V+, if
v ∈ V+. In a right-dense point t0 ∈ T, and at a boundary point ν(t0) ∈ ∂V+ with a
tangent, f(t0, ν(t0)) and hence the vector ν∆(t0) have to be directed to the interior
of V+, i.e., this vector does not point into the outer half space. Both conditions
force the solutions to remain in V+.

Proof. Let t0 ∈ T be arbitrary. We proceed in four steps:
(I) In case of a right-dense t0 the equivalence of (b) and (c) is shown in [9, p. 51,

Example 4.1]. In a right-scattered t0 the relation (5.2) obviously holds, if and only
if v + µ(t0)f(t0, v) ∈ V+, since V+ is closed.

(II) We show that the forward invariance of V+ implies (b). Thereto let t0 ∈ T,
v ∈ V+ be arbitrary and let ν be the solution of (5.1) with ν(t0) = v. In a right-
scattered t0 the invariance of V+ implies

v + µ(t0)f(t0, v) = ν(t0) + µ(t0)f(t0, ν(t0)) = ν(σ(t0)) ∈ V+ .

On the other hand, if t0 is right-dense and v ∈ ∂V+, choose v′ ∈ V ?
+ such that

〈v, v′〉 = 0 (cf. Lemma 5.1). Then the assumption 〈f(t0, v), v′〉 < 0 would imply
the existence of a right-sided T-neighborhood N of t0 with 〈ν(t), v′〉 < 0 for t ∈ N
and hence the contradiction ν(t) 6∈ V+ (cf. Lemma 5.1(a)).

(III) In the remaining two steps we show the forward invariance of V+ under the
condition (b). For the present, we strengthen (b) to the hypothesis that for any
right-dense point t0, every v ∈ ∂V+ and every v′ ∈ V ?

+ such that 〈v, v′〉 = 0, one
has 〈f(t0, v), v′〉 > 0. Thus, let ν denote a solution of (5.1) starting at τ ∈ T in
ν(τ) ∈ intV+. If the claim were false, then there exists a finite t∗ ∈ T given by

t∗ := sup T, T := {t ≥ τ : ν(s) ∈ V+ for all s ∈ [τ, t]T}.
Since the cone V+ is closed we have ν(t∗) ∈ V+. The point t∗ is right-dense, because
otherwise ν(σ(t∗)) = ν(t∗) + µ(t∗)f(t∗, ν(t∗)) ∈ V+ would yield the contradiction
t∗ < σ(t∗) ∈ T . Moreover, ν(t∗) ∈ ∂V+, because the assumption ν(t∗) ∈ intV+

would imply the existence of a neighborhood U ⊂ V+ of ν(t∗) and a T-neighborhood
N of t∗ with ν(t) ∈ U for t ∈ N , since ν is continuous as the solution of (5.1).
This again contradicts the definition of t∗. Now by Lemma 5.1(b) there exists a
supporting form v′ ∈ V ?

+ such that 〈ν(t∗), v′〉 = 0 and by definition t∗ is the time
when the solution ν leaves V+, which by Lemma 5.1(a) gives us 〈ν(t), v′〉 ≤ 0 for
t from a right-sided neighborhood of t∗. One finds 〈ν(t)−ν(t∗)

t−t∗ , v′〉 ≤ 0 and in the
limit t ↘ t∗, we therefore obtain the contradiction

0 ≥ 〈ν∆(t∗), v′〉 = 〈f(t∗, ν(t∗)), v′〉 > 0

with a view to the above (strengthened) hypothesis.
(IV) The verification of the assumption under the general hypothesis yields as

follows: For arbitrary reals ε > 0 and some fixed e ∈ int V+ one can apply the above
step (III) to the solution νε of the dynamic equation

v∆ = f(t, v) + εe
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and consequently, for any τ ∈ T and v0 ∈ V+ one obtains νε(t) ∈ V+ for τ ≤ t,
provided that νε(τ) ∈ V+. Now let ν denote the solution of (5.1) satisfying ν(τ) =
νε(τ). One should bear in mind that νε(t) is continuous in (ε, t) (cf. [27, p. 39,
Satz 1.2.17]) and consequently uniformly continuous on the set K × [0, ε0], where
K ⊂ [τ,∞)T is a compact T-interval and ε0 > 0 arbitrary. By a standard argument,
the solutions νε converge to ν uniformly on K as ε ↘ 0. �

Corollary 5.4. Let V+ ⊂ V be a normal cone and assume that
(H3) in any left-dense t0 ∈ T there exists a left-sided T-neighborhood N0(t0) of

t0 such that f(s, 0) ∈ V+ for all s ∈ N0(t0).
Then V ∗+ is forward invariant for (5.1), if and only if every right-dense t0 ∈ T,
any v ∈ ∂V+, v′ ∈ V ?

+ such that 〈v, v′〉 = 0 satisfy 〈f(t0, v), v′〉 ≥ 0, and, for every
right-scattered t0 ∈ T any v ∈ V ∗+ satisfies v + µ(t0)f(t0, v) ∈ V ∗+.

Proof. We have to show two directions:
(⇒) If V ∗+ is a forward invariant set, then the assertion can be shown analogously

to step (II) in the proof of Lemma 5.2.
(⇐) Using the induction principle (cf. [6, p. 4, Theorem 1.7]) we deduce the

statement
A(t) : v 6= 0 =⇒ ϕ(t, τ)v 6= 0 for all τ ≤ t.

Above all, choose v ∈ V ∗+ arbitrarily.
• A(τ) obviously holds since ϕ(τ, τ)v = v.
• Let t ≥ τ be right-scattered and A(t) be true. Then by the 2-parameter

semiflow property and the assumption one immediately gets

ϕ(σ(t), τ)v = ϕ(t, τ)v + µ(t)f(t, ϕ(t, τ)v) 6= 0

i.e., A(σ(t)) holds.
• Let t ≥ τ be right-dense and assume that A(t) is valid. Then ϕ(t, τ)v 6= 0

implies that ϕ(s, τ)v 6= 0 in a right-sided T-neighborhood N of t. Hence
A(t) yields ϕ(s, τ)v 6= 0 for s ∈ N .

• Let t ≥ τ be left-dense and A(s) be true for s < t. We want to show A(t)
and proceed indirectly, i.e., assume that we have ϕ(t, τ)v0 = 0 for some
v0 ∈ V ∗+. Since (H3) holds, we get from Lemma 5.2 that

0 ≤ ϕ(s, τ)v0 = −
∫ t

s

f(ρ, ϕ(ρ, τ)v0) ∆ρ

≤
∫ t

s

[
f(ρ, 0)− f(ρ, ϕ(ρ, τ)v0)

]
∆ρ for all s ∈ N0(t)

and Hypothesis (H1) implies that C(ρ) := suph∈[0,1] ‖D2f(ρ, hϕ(ρ, τ)v0)‖
exists as an rd-continuous function in ρ ∈ N0(t). By assumption the cone
V+ is normal and therefore

‖ϕ(s, τ)v0‖ ≤
∫ t

s

‖f(ρ, 0)− f(ρ, ϕ(ρ, τ)v0)‖∆ρ

≤ −
∫ s

t

C(ρ)‖ϕ(ρ, τ)v0‖∆ρ for all s ∈ N0(t).

Due to the limit relation limρ↗t µ(t) = 0 one can choose a left-sided T-
neighborhood N ⊂ N0(t) ∩ [τ, t]T such that we have C(ρ)µ(ρ) < 1 for
ρ ∈ N \ {t}. Thus −C(ρ) is positively regressive on N \ {t} and from the
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Gronwall lemma (cf. [6, p. 256, Theorem 6.4]) we obtain ϕ(s, τ)v0 = 0 for
s ∈ N . This contradicts A(s).

Hence the proof of Corollary 5.4 is complete. �

Before stating the next result we refer to [27, p. 54, Definition 1.3.5] for the
definition of the transition operator ΦA(t, τ) ∈ L(V ) of a linear dynamic equation

v∆ = A(t)v (5.3)

in the nonregressive case. Now the forward invariance of V+ with respect to (5.3)
is a necessary and sufficient condition for the positivity of ΦA(t, τ).

Corollary 5.5. Let A : T → L(V ) be rd-continuous and t, τ ∈ T. Then the
following statements are equivalent:

(a) ΦA(t, τ) ∈ L(V+) for τ ≤ t.
(b) For every right-dense t ≥ τ , v ∈ ∂V+ and v′ ∈ V ?

+ satisfying 〈v, v′〉 = 0,
the inequality 〈A(t)v, v′〉 ≥ 0 holds, and, moreover, for every right-scattered
t ≥ τ , v ∈ V+ the inclusion v + µ(t)A(t)v ∈ V+ holds.

(c) For every t ≥ τ it holds

lim
h↘µ(t)

dist(v + hA(t)v, V+)
h

= 0,

if v ∈ ∂V+ and t is right-dense, or, v ∈ V+ and t is right-scattered.

Proof. Evidently Lemma 5.2 applies to (5.3) and therefore V+ is forward invariant
with respect to (5.3), which, in turn, yields ΦA(t, τ)V+ ⊂ V+ for τ ≤ t. �

Adopting terminology introduced in [15], we denote a nonvoid subset U ⊂ V as
V+-convex, if for any u, v ∈ U such that u ≤ v, the whole line segment between u
and v is contained in U , i.e., u + h(v − u) ∈ U for h ∈ [0, 1]. Evidently the cone
V+ itself is V+-convex. With all the above preliminaries at hand, we can proceed
to an appropriate definition of cooperativity.

Definition 5.6. Let U ⊂ V be V+-convex. A dynamic equation of the form (5.1)
is called

(i) V+-cooperative on U , if for all right-dense t ∈ T, u ∈ U , v ∈ ∂V+ and
v′ ∈ V ?

+ such that 〈v, v′〉 = 0, the inequality 〈v′, D2f(t, u)v〉 ≥ 0 holds and,
moreover, if for every right-scattered t ∈ T, u ∈ U , v ∈ V+ the inclusion
v + µ(t)D2f(t, u)v ∈ V+ holds,

(ii) strictly V+-cooperative on U , if (5.1) is V+-cooperative on U , satisfies (H3),
and if for every right-scattered t ∈ T, u ∈ U , v ∈ V+ the implication
v + µ(t)D2f(t, u)v = 0 ⇒ v = 0 holds.

Remark 5.7. Fix τ ∈ T and u ∈ U arbitrarily.
(1) Since the partial derivative D3ϕ(·, τ, u) : [τ,∞)T → L(V ) solves the varia-

tional equation
X∆ = D2f(t, ϕ(t, τ, u))X (5.4)

to the initial condition X(τ) = IV on [τ,∞)T (cf. [27, pp. 47–48, Satz 1.2.22]), by
Corollary 5.5 the dynamic equation (5.1) is V+-cooperative on the set U , if and
only if D3ϕ(t, τ, u) ∈ L(V+) holds for τ ≤ t and u ∈ U .

(2) Assume that V+ is normal and that (5.1) satisfies (H3). By using Corol-
lary 5.4 instead of Lemma 5.2 in the proof of Corollary 5.5, it is not difficult to
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see that (5.1) is strictly V+-cooperative on U , if and only if D3ϕ(t, τ, u) is strictly
positive for τ ≤ t and u ∈ U .

Example 5.8. Let V+ = Rd
+ be the nonnegative orthant in the Banach space

V = Rd. Then L(V+) is (isomorphic to) the set Rd×d
+ of nonnegative matrices. A

mapping f : T × Rd → Rd is Rd
+-cooperative, if in each right-dense point t the

off-diagonal elements of D2f(t, u) ∈ Rd×d are nonnegative and, if in each right-
scattered point t the matrix IRd + µ(t)D2f(t, u) is nonnegative for every u ∈ U .
In the case of ordinary differential equations, where T = R consists of right-dense
points, this definition coincides with the one from [15].

Remark 5.9 (Euler discretization of cooperative ODEs). Consider an Rd
+-coop-

erative ordinary differential equation v̇ = f(t, v). Then according to Example 5.8
its Euler discretization ν(tn+1) = ν(tn) + (tn+1 − tn)f(tn, ν(tn)) on a discrete time
scale T = {tn}n∈N0 with tn+1 > tn, is also Rd

+-cooperative if the matrix IRd +
(tn+1 − tn)D2f(tn, u) is nonnegative. Since the off-diagonal elements of D2f(t, u)
are nonnegative, this is true, if the diagonal entries aii(tn, u), i = 1, . . . , d, of
the matrix D2f(tn, u) satisfy the condition aii(tn, u) ≥ −1

tn+1−tn
with the stepsize

µ(tn) = tn+1 − tn of the Euler discretization.

Theorem 5.10 (Müller’s Theorem). Let U ⊂ V be V+-convex.
(a) If (5.1) is V+-cooperative on U , then ϕ is order-preserving on U .
(b) Conversely, if ϕ is order-preserving on U , then the dynamic equation (5.1)

is V+-cooperative on U .

Proof. (a) Choose u, v ∈ U with u ≤ v and because of the V+-convexity of U one
has u + h(v − u) ∈ U for h ∈ [0, 1]. Then the mean value theorem (cf. [23, p. 341,
Theorem 4.2]) yields

ϕ(t, τ, v)− ϕ(t, τ, u) =
∫ 1

0

D3ϕ(t, τ, u + h(v − u))(v − u) dh for all τ ≤ t

and since D3ϕ(t, τ, w) ∈ L(V+), w ∈ U , we obtain D3ϕ(t, τ, w)(v − u) ∈ V+. Now
convexity of the integral implies the claim ϕ(t, τ, v) ≤ ϕ(t, τ, u).

(b) Using the fact that D3ϕ(t, τ, v) solves the dynamic equation (5.4) in L(V+),
we get the assertion (b) with a view to Corollary 5.5. �

The next part of this section is dedicated to sufficient conditions for strictly and
strongly order-preserving mappings. Since we have not assumed regressivity of f
(cf. [6, pp. 321–322, Definition 8.14(ii)]) the mapping ϕ(t, τ) : V → V , τ ≤ t, needs
not to be a homeomorphism. Hence the arguments of [32, pp. 32–33, Proof of
Proposition 1.1] do not apply directly.

Corollary 5.11. Let U ⊂ V be V+-convex. If for a V+-cooperative system (5.1)
on U one of the following conditions

(i) IV + µ(t)f(t, ·) : V → V in one-to-one on U for any t ∈ T,
(ii) IV + µ(t)f(t, ·) : V → V is strictly order-preserving on U for any t ∈ T

holds, then ϕ is strictly order-preserving on U .

Proof. We proceed in two steps:
(I) To show that (i) implies (ii), fix arbitrary t ∈ T, u ∈ U and abbreviate

F (u) := u + µ(t)f(t, u). Observing the fact

ϕ(σ(t), t)u = u + µ(t)f(t, u) = F (u), (5.5)
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it is evident that F is strictly order-preserving on U .
(II) We apply the induction principle (cf. [6, p. 4, Theorem 1.7]) to the statement

A(t) : u < v =⇒ ϕ(t, τ)u < ϕ(t, τ)v for all τ ≤ t.

First of all, choose u, v ∈ U , u < v arbitrarily.
• A(τ) is clearly satisfied since ϕ(τ, τ)u = u.
• Let t ≥ τ be right-scattered and A(t) be true. Then by 2-parameter semi-

flow property and (ii) one obtains

ϕ(σ(t), τ)u
(5.5)
= ϕ(t, τ)u + µ(t)f(t, ϕ(t, τ)u) <

< ϕ(t, τ)v + µ(t)f(t, ϕ(t, τ)v)
(5.5)
= ϕ(σ(t), τ)v ,

i.e., A(σ(t)) holds.
• Let t ≥ τ be right-dense and assume that A(t) is valid. Then there exists a

T-neighborhood N of t such that ϕ(s, t) : V → V is a homeomorphism for
s ∈ N and in particular one-to-one. Hence A(t) yields ϕ(s, τ)u < ϕ(s, τ)v
for s ∈ N .

• Let t ≥ τ be left-dense and A(s) be true for s < t. Similar to the above we
get that ϕ(t, s) : V → V is a homeomorphism for s in some T-neighborhood
of t, which gives us ϕ(t, τ)u < ϕ(t, τ)v, i.e., A(t) is valid.

Thus the proof is complete. �

Corollary 5.12. Let U ⊂ V be V+-convex. If for a V+-cooperative system (5.1)
on U one of the following conditions

(i) IV + µ(t)D2f(t, u) ∈ L(V ) is onto for any u ∈ U and any t ∈ T,
(ii) IV + µ(t)f(t, ·) : V → V is strongly order-preserving on U for any t ∈ T

holds, then ϕ is strongly order-preserving on U .

Remark 5.13. In the case of ordinary differential equations, where T = R consists
of right-dense points, we have µ(t) ≡ 0 on T, and both conditions (i) and (ii) in
Corollary 5.11 and 5.12 are dispensable. Therefore, solutions of V+-cooperative
ODEs are always strictly and strongly order-preserving.

Proof. We proceed in two steps again:
(I) To show that (i) implies (ii) fix arbitrary t ∈ T, u, v ∈ U with u � v and

use the notation from the proof of Corollary 5.11. Then Theorem 5.10(a) yields
that F maps the order-interval [u, v] into the order-interval [F (u), F (v)]. Now we
prove that the latter set has nonempty interior, which guarantees F (u) � F (v).
To do so, pick some w ∈ int[u, v] arbitrarily. Using the hypothesis (i) we see
that F must be locally open in a neighborhood of w by the Surjective Mapping
Theorem (cf. [23, p. 397, Theorem 3.5]). Consequently, we obtain the inclusion
F (w) ∈ int[F (u), F (w)] and F is strongly order-preserving.

(II) We apply the induction principle (cf. [6, p. 4, Theorem 1.7]) to the statement

A(t) : u � v =⇒ ϕ(t, τ)u � ϕ(t, τ)v for all τ ≤ t.

First of all, choose u, v ∈ U , u � v arbitrarily.
• A(τ) is clearly satisfied since ϕ(τ, τ)u = u.
• The implication A(t) ⇒ A(σ(t)) for right-scattered t ≥ τ results as in

the corresponding part of the proof of Corollary 5.11 with the relation <
replaced by �.
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• Let t ≥ τ be right-dense and assume that A(t) is valid. Then there exists
a T-neighborhood N of t such that ϕ(s, t) : V → V is a homeomorphism
for s ∈ N . Since [ϕ(t, τ)u, ϕ(t, τ)v] has nonempty interior by the induction
hypothesis A(t), also int[ϕ(s, τ)u, ϕ(s, τ)v] 6= ∅ holds for s ∈ N , which is
equivalent to ϕ(s, τ)u � ϕ(s, τ)v.

• Let t ≥ τ be left-dense and A(s) be true for s < t. Similar to the above we
get that ϕ(t, s) : V → V is a homeomorphism for s in some T-neighborhood
of t, which, in turn, yields ϕ(t, τ)u � ϕ(t, τ)v, i.e., A(t) is valid.

Thus the proof is complete. �

So far, Theorem 5.10 provides a criterion that the solution operator ϕ of (5.1) is
order-preserving. In order to apply Theorem 3.1, and in reference to Lemma 4.4,
we need additional conditions for the subhomogeneity of ϕ.

Lemma 5.14. Let (5.1) be V+-cooperative on V+. Then
(a) ϕ is subhomogeneous, if and only if

D3ϕ(t, τ, v)v ≤ ϕ(t, τ, v) for all τ ≤ t, v ∈ V+; (5.6)

(b) ϕ is strictly subhomogeneous, if

D3ϕ(t, τ, v)v < ϕ(t, τ, v) for all τ < t, v ∈ V ∗+.

Proof. (a) Let τ ≤ t be fixed in T. Consider for v′ ∈ V ?
+ and v ∈ V+ the function

φv′,v : (0,∞) → R, φv′,v(α) := 1
α 〈ϕ(t, τ)αv, v′〉. We show that ϕ is subhomoge-

neous, if and only if φv′,v is decreasing for all v′ ∈ V ?
+, v ∈ V+:

(⇒) If ϕ is subhomogeneous, then for arbitrary 0 < α ≤ β there holds the inequality
α
β ϕ(t, τ)βv ≤ ϕ(t, τ)αv, i.e., we have 1

β ϕ(t, τ)βv ≤ 1
αϕ(t, τ)αv. By Lemma 5.1(a)

this implies that φv′,v is decreasing.
(⇐) Conversely, let φv′,v be decreasing in 0 < α < 1. Then φv′,v(1) ≤ φv′,v(α),
and since v′ ∈ V ?

+ was arbitrary, we readily obtain ϕ(t, τ)v ≤ 1
αϕ(t, τ)αv from

Lemma 5.1(a).
By assumption on f , the function φv′,v is differentiable and the chain rule implies

φ′v′,v(α) =
〈αD3ϕ(t, τ, αv)v − ϕ(t, τ, αv), v′〉

α2
for all α > 0.

Thus the subhomogeneity of the mapping ϕ is equivalent to the property that
〈αD3ϕ(t, τ, αv)v−ϕ(t, τ, αv), v′〉 ≤ 0, i.e., by Lemma 5.1(a) to the condition (5.6).

(b) Now let τ < t be arbitrary points in T. Along the same lines as in (a), one
shows that ϕ is strictly subhomogeneous, if and only if the mapping φv′,v is strictly
decreasing. This property, in turn, is necessary for φ′v′,v(α) < 0, 0 < α, and by
Lemma 5.1(b) we obtain the assertion. �

Theorem 5.15. Let (5.1) be V+-cooperative on V+. Then
(a) ϕ is subhomogeneous, if

D2f(t, v)v ≤ f(t, v) for all t ∈ T, v ∈ V+; (5.7)

(b) ϕ is strictly subhomogeneous, if, moreover, (5.1) is strictly V+-cooperative
on V+ and

D2f(t, v)v < f(t, v) for all t ∈ T, v ∈ V ∗+.
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Proof. Let τ ≤ t and u ∈ V+ be fixed.
(a) We are going to show that the mapping Λ : [τ,∞)T → V , Λ(t) := ϕ(t, τ, u)−

D3ϕ(t, τ, u)u has values in the cone V+. Thereto consider

Λ∆(t)
(5.1)
= f(t, ϕ(t, τ, u))−D2f(t, ϕ(t, τ, u))D3ϕ(t, τ, u)u =

= D2f(t, ϕ(t, τ, u))Λ(t) + l(t)

with l(t) := f(t, ϕ(t, τ, u))−D2f(t, ϕ(t, τ, u))ϕ(t, τ, u). Since l : [τ,∞)T → V is rd-
continuous and since D3ϕ(·, τ, u) solves (5.4) with respect to the initial condition
X(τ) = IV , the variation of constants formula (cf. [27, p. 56, Satz 1.3.11]) yields

Λ(t) =
∫ t

τ

Ψu(t, σ(s))l(s) ∆s,

where Ψu(t, τ) ∈ L(V ) is the transition operator of (5.4). By assumption, (5.1)
is V+-cooperative on V+ and similarly to Remark 5.7(1) one sees the inclusion
Ψu(t, τ) ∈ L(V+) for τ ≤ t. Furthermore, (5.7) implies l(t) ∈ V+ and by the convex-
ity of the Cauchy-integral on T it follows Λ(t) ∈ V+ for τ ≤ t. Now Lemma 5.14(a)
leads to the assertion.

(b) Proceed like in the proof of (a). Here Remark 5.7(2) yields that Ψu(t, τ) is
strictly positive and the assertion follows from Lemma 5.14(b). �

6. Application: Symbiotic Interaction

In the following last section we demonstrate the importance of the limit set
trichotomy from Theorem 3.1 in an application from biology within the calculus on
time scales. Thereto we restrict our considerations to time scales of the form

T =
⋃

n∈N0

[τn, tn],

where (τn)n∈N0 , (tn)n∈N0 are real sequences with limn→∞ τn = limn→∞ tn = ∞
and τn ≤ tn < τn+1 for all n ∈ N0. Hence we have a continuous ODE dynamical
behavior of (5.1) on the intervals [τn, tn], n ∈ N0, while the dynamic on the “gaps”
(tn, τn+1) is discrete, i.e., difference equation-like. For technical reasons we addi-
tionally assume that the differences τn+1− τn, n ∈ N0, are bounded above by some
real T ≥ 0.

Consider a symbiotic interaction between d ≥ 2, e.g., insect populations, i.e., an
interaction that results in a benefit between the populations. The life span of each
population is given by the interval [τn, tn], n ∈ N0, which can be interpreted as a
summer period. Suppose that just before the populations die out, eggs are laid at
time t = tn and hatch after the winter period (tn, τn+1) at time t = τn+1. During
the winter, a certain amount of eggs dies, but to prevent each species from dying
out, an exterior influence adds additional eggs. If vi(tn) ≥ 0, n ∈ N0, denotes the
biomass of the ith, i = 1, . . . , d, population at time t = tn, we model this behavior
over the winter periods with the equations

vi(τn+1) = qi(tn)vi(tn) + pi(tn) for all i = 1, . . . , d (6.1)

and n ∈ N0, where qi(tn) ∈ [0, 1[ describes the natural decay in the winter and
pi(tn) > 0 the external “seed”. The equation (6.1) guarantees that we have the
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inclusion v(τn+1) ∈ int Rd
+ after each winter — independent of v(tn) ∈ Rd

+. For the
continuous growth we lean on [22] and consider the ODEs

v̇i = viFi(v, t) for all i = 1, . . . , d, (6.2)

on the intervals [τn, tn], n ∈ N0, where the mappings Fi : Rd × T → R are contin-
uously differentiable in each state space variable v1, . . . , vd. Obviously the bound-
ary ∂Rd

+ is forward invariant with respect to (6.2) and therefore any solution of
(6.2) cannot leave the standard cone Rd

+ for times t ∈ [τn, tn], n ∈ N0. Combin-
ing both situations, we arrive at a dynamic equation (5.1) with right-hand side
f = (f1, . . . , fd) and

fi(t, v) :=

{
viFi(v, t) for t ∈ [τn, tn)
qi(t)−1

µ(t) vi + pi(t)
µ(t) for t = tn .

If we assume that the ODE (6.2) has no finite escape times, then the mapping f
satisfies the assumptions (H1)–(H2). In addition, the standard cone Rd

+ is forward-
invariant with respect to (5.1).

As a canonical state space for (5.1) we consider the cone V+ = Rd
+, which

evidently satisfies the assumption (H0), and is Rd
+-convex, since the nonnegative

orthant is convex. Under the assumption
(C) DjFi(u, t) ≥ 0 for all u ∈ Rd

+, i 6= j, and t ∈
⋃

n∈N0
[τn, tn),

the system (5.1) is Rd
+-cooperative on Rd

+ and we obtain from Theorem 5.10(a)
that its solution ϕ is order-preserving. On the other hand, if we suppose

(S)
∑d

j=1 vjDjFi(v, t) ≤ 0 for all v ∈ Rd
+, i = 1, . . . , d and t ∈

⋃
n∈N0

[τn, tn),
then using Theorem 5.15(a) one can show that ϕ is also subhomogeneous. So,
due to Lemma 4.4(a), ϕ(t, τ), τ ≤ t, must be nonexpansive with respect to the
part metric on Rd

+. Finally, since each T-interval of length greater or equal than
T contains a right-scattered point, we have ϕ(t, τ, v) ∈ int Rd

+ for T ≤ t − τ and
v ∈ Rd

+. Therefore the assumptions of Theorem 3.1 are satisfied and our limit set
trichotomy applies. In particular, if pi is bounded away from zero, we can exclude
case (b) of Theorem 3.1 and all solutions of the general nonautonomous dynamic
equation (5.1) are either unbounded, or bounded with nonempty ω-limit sets.

Example 6.1 (Kolmogorov systems). A particularly relevant special case of the
symbiotic interaction discussed above, are so-called Kolmogorov systems which have
the following biological interpretation (cf. [11]): Think of a hierarchy of species
v1, . . . , vd, where vi(t) is the biomass of the ith species. In this hierarchy, vi interacts
only with vi−1 and vi+1. Such a hierarchy may occur in steep mountain side or in
a lake, where each population dominates a specific altitude or depth, respectively,
but is obliged to cooperate with other populations in the (narrow) overlap of their
zones of dominance. So we only modify the law for the continuous growth and
consider the system of ODEs

v̇1 = v1F1(v1, v2, t)

v̇i = viFi(vi−1, vi, vi+1, t) for all i = 2, . . . , d− 1

v̇d = vdFd(vd−1, vd, t)
(6.3)

to describe the behavior on the intervals [τn, tn], where the mappings F1, . . . , Fd

are continuously differentiable in their state space variables. Furthermore, the
conditions (C) and (S) reduce to
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• D2F1(v1, v2, t), D1Fi(v1, v2, v3, t), D3Fi(v1, v2, v3, t), D1Fd(v1, v2, t) ≥ 0 for
all v1, v2, v3 ∈ R+, i = 2, . . . , d− 1, and t ∈

⋃
n∈N0

[τn, tn),
•

∑2
j=1 vjDjF1(v1, v2, t) ≤ 0 and

∑3
j=1 vjDjFi(v1, v2, v3, t) ≤ 0, as well as∑2

j=1 vjDjFd(v1, v2, t) ≤ 0 for all v1, v2, v3 ∈ R+, i = 2, . . . , d − 1, and
t ∈

⋃
n∈N0

[τn, tn),

respectively. They guarantee that the right-hand side of (5.1) is Rd
+-cooperative

and generates a subhomogeneous 2-parameter semiflow. Consequently our limit set
trichotomy from Theorem 3.1 applies. Explicit biological systems modelled by (6.3)
can be found in [11].
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