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RATE OF CONVERGENCE OF FINITE-DIFFERENCE
APPROXIMATIONS FOR DEGENERATE LINEAR PARABOLIC

EQUATIONS WITH C1 AND C2 COEFFICIENTS

HONGJIE DONG, NICOLAI V. KRYLOV

Abstract. We consider degenerate parabolic and elliptic equations of second
order with C1 and C2 coefficients. Error bounds for certain types of finite-

difference schemes are obtained.

1. Introduction

Numerical and, in particular, finite-difference approximations of solutions to all
kinds of linear partial differential equations is a well established and respected area.
Concerning a general approach to these issues we refer to [3], [22], [23], and [24].
By the way, in [22] it is shown, in particular, how to prove the solvability in W 1

2 by
using finite-difference schemes.

One studies the convergence of numerical approximations in spaces of summable
or Hölder continuous functions. Discrete Lp theory of elliptic and parabolic equa-
tions (even of order higher than 2) can be found in [4], [25], [26] with analysis of
convergence in discrete Besov spaces in [27] and in the references in these papers.
Discrete C2+α spaces approach also encompassing fully nonlinear equations can be
found in [10], [20], and [21].

However, in all these references the equations are assumed to be uniformly non-
degenerate. In this connection note that in [5], [12] and many other related papers
degenerate and even nonlinear equations are considered. But the setting in these
papers is such that linear elliptic and parabolic equations are included only if the
leading coefficients are constant.

The authors got involved into finite-difference approximations while trying to es-
tablish the rate of convergence for fully-nonlinear elliptic Bellman equations. Non-
degeneracy of such equations does not help much and, therefore, we considered
degenerate equations. Also many such equations like the Monge-Ampère equation
or equations in obstacle problems, say arising in mathematical finance, are degen-
erate. Therefore, the interest in degenerate equations is quite natural. Another
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point is that for fully nonlinear degenerate Bellman equations the higher smooth-
ness of the “coefficients” generally does not help get better smoothness of the true
solutions. This is the reason why we concentrate mainly on equations with C1 and
C2 coefficients.

The activity related to numerical approximations for fully nonlinear second order
degenerate equations started few years ago with [17], [16], [15], and then was con-
tinued in [1], [2], [7], [11], and [13]. In many of these papers the idea is used that the
approximating finite-difference equation and the original one should play symmet-
ric roles. This led to somewhat restricted results since no estimates of smoothness
of solutions of finite-difference equations were available. Nevertheless, restricted or
not, even now we cannot believe that, for the moment, these are the only published
results on the rate of convergence in the sup norm of finite-difference approxi-
mations even if the Bellman equation becomes a linear second order degenerate
equation (variety of results for nondegenerate case can be found in [3], [23], [24]
and references therein). One also has to notice that there is vast literature about
other types of numerical approximations for linear degenerate equations such as
Galerkin or finite-element approximations (see, for instance, [22], [23], and [24]).
It is also worth noting that under variety of conditions the first sharp estimates
for finite-difference approximations in linear one-dimensional degenerate case are
proved in [28].

To explain our main idea note that linear even degenerate equations often possess
smooth solutions, which one can substitute into the finite-difference scheme and
then use, say the maximum principle to estimate the difference between the true
solution and the approximation. We use precisely this quite standard and well-
known method (see, for instance, [3], [23], [24]) giving up on the symmetry between
the original and approximating equations.

To be able to apply this method one needs the true solution to have four spatial
derivatives, which hardly often happens in fully nonlinear even uniformly nonde-
generate case. But in the linear case, if the coefficients are not smooth enough,
one can mollify them and get smooth solutions. However, then the idea described
above would only lead to estimates for discretized equation with mollified coeffi-
cients. Therefore, the main problem becomes estimating the difference between the
solutions of the initial finite-difference equation and the finite-difference equation
constructed from mollified coefficients. We reduce this problem to estimating the
Lipschitz constant of solutions to finite-difference equations and state the central
result of this paper as Theorem 4.1.

In connection with the smoothness of solutions of finite-difference equations, we
note that only recently in [13] the first result appeared for fully nonlinear elliptic and
parabolic degenerate equations. Of course, the results of [13] are also valid for linear
equations. However, the exposition in [13] is aimed at fully nonlinear equations and
has many twists and turns which are not needed in the linear case. Understandably,
it is desirable to use only “linear” methods while developing the theory of linear
equations rather than appeal to a quite technical and much harder theory of fully
nonlinear equations. Therefore, we decided to write the proofs for the linear case
in the present article. We certainly hope that the methods developed here will be
useful in other issues of the theory of linear equations. Restricting ourselves to the
linear case also allows us to get sharper results and better rates of convergence for
smoother (C2 and C4) coefficients. In connection with this restriction it is worth
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noting a peculiar issue. In a subsequent article we plan to to treat fully nonlinear
equations in domains, and we are not able to make this treatment any easier if the
equation is actually linear.

One of our results (Theorem 2.13) bears on the case of Lipschitz continuous
coefficients and data and yields the sup-norm rate of convergence h1/2, where h is
the mesh size. Remark 2.20 shows that this result is sharp even for equations with
constant coefficients. Although the proof of Theorem 2.13 based on Theorem 4.1 is
new, its statement can be found in [11], and, actually, follows from Corollary 2.3 of
[15]. However, this way of proving Theorem 2.13 uses the theory of fully nonlinear
equations and does not allow to get better rates of convergence if the coefficients
of the equation are smoother. In particular, in contrast with using Theorem 4.1,
it will not lead to our results about the rates h and h2 for linear equations with
variable coefficients.

The article is organized as follows. Our main results, Theorems 2.12-2.19, are
stated in Section 2 and proved in Section 5. Between these two sections we prove few
auxiliary results the most important of which is Theorem 4.1. One of the auxiliary
results, Lemma 3.3, is proved in Section 6. Section 7 contains a discussion of
semidiscretization when only spatial derivatives are replaced with finite-differences
and the final Section 8 contains some comments on possible extensions of our results.

To conclude the introduction, we set up some notation: Rd is a d-dimensional
Euclidean space with x = (x1, x2, . . . , xd) to be a typical point in Rd. As usual the
summation convention over repeated indices is enforced unless specifically stated
otherwise. For any l = (l1, l2, . . . , ld) ∈ Rd and any differentiable function u on Rd,
we denote Dlu = uxi li and D2

l u = uxixj lilj , etc. By Dtu, D2
t u,. . . we denote the

derivatives of u = u(t, x) in t, Dj
xu is its generic derivative of order j in x.

We use the Hölder spaces C1/2,1, C1,2, C2,4,. . . of functions of (t, x) ∈ R × Rd

defined in some subdomains of R × Rd. More specifically C1/2,1 is the space of
bounded functions having finite Hölder constant of order 1/2 in t and continuously
differentiable in x with the derivatives being bounded; Ck,2k is the space of functions
having k derivatives in t and 2k derivatives in x, the functions themselves and their
said derivatives are assumed to be bounded and continuous. These spaces are
provided with natural norms: we use the notation | · |k,2k in the case of functions
given in R× Rd and | · |H,k,2k in the case of functions given in H ⊂ R× Rd.

Various constants are denoted by N in general and the expression N = N(. . . )
means (and means only) that the given constant N depends only on the contents
of the parentheses.

2. The Setting and Main Results

Let d1, d ≥ 1 be integers, `k, k = ±1, . . . ,±d1 nonzero vectors in Rd and `k =
−`−k. Suppose that we are given continuous real-valued functions c(t, x), f(t, x),
g(x), σk(t, x), bk(t, x) ≥ 0, k = ±1 . . . ,±d1 satisfying

σk = σ−k.

Introduce functions σ(t, x), a(t, x), and b(t, x) taking values in the set of d × 2d1

and d× d matrices and Rd, respectively, by

σik(t, x) = `ikσk(t, x), σ(t, x) = (σik(t, x)),

a = (1/2)σσ∗, b(t, x) = `rbr(t, x)
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with no summation with respect to k.

Assumption 2.1. For an integer n ∈ {1, 2, 4, 6, . . . } and some numbers Kn ≥
K0 ≥ 1, λ ≥ 0 we have

d1∑
|k|=1

(|`k|+ |σk|20 + |bk|0) + |c|0 + |f |0 + |g|0 ≤ K0,

d1∑
|k|=1

(|σk|2n/2,n + |bk|n/2,n) + |c|n/2,n + |f |n/2,n + |g|n ≤ Kn,

c(t, x) ≥ λ.

Denote

L0u(t, x) = aij(t, x)uxixj (t, x) + bi(t, x)uxi(t, x),

Lu(t, x) = L0u(t, x)− c(t, x)u(t, x).

Note that, for ak(t, x) := (1/2)|σk(t, x)|2, we have

aij(t, x)uxixj = ak(t, x)D2
`k
u.

Let T ≥ 0 be a constant. We are interested in the following parabolic equation:
∂

∂t
u(t, x) + Lu(t, x) + f(t, x) = 0, (2.1)

in HT := [0, T )× Rd with terminal condition

u(T, x) = g(x), x ∈ Rd. (2.2)

We know (see, for instance, [8]) that under the above conditions there is a unique
bounded viscosity solution v of (2.1)-(2.2), which coincides with the probabilistic
one given by

v(t, x) = Eg(xT ) exp(−
∫ T

t

c(s, xs) ds)

+ E

∫ T

t

f(s, xs) exp(−
∫ s

t

c(r, xr) dr) ds,

(2.3)

where xs = xs(t, x) is defined as a solution of

xs = x+
∫ s

t

σk(r, xr)`k dwk
r +

∫ s

t

bk(r, xr)`k dr, s ≥ t, (2.4)

and wr is a 2d1-dimensional Wiener process defined for r ≥ t. Due to Assumption
2.1, we have

|v| ≤ K0(1− e−λT )/λ+K0e
−λT ≤ K0(1 + T ∧ λ−1),

with natural interpretation if λ = 0.
We use the following finite-difference approximations. For every h > 0, τ > 0,

l ∈ Rd and (t, x) ∈ [0, T )× Rd, introduce:

δh,lu(t, x) = h−1(u(t, x+ hl)− u(t, x)), ∆h,l = −δh,lδh,−l,

δτu(t, x) = τ−1(u(t+ τ, x)− u(t, x)),

δT
τ u(t, x) = τ−1(u(t+ τT (t), x)− u(t, x)), τT (t) = τ ∧ (T − t).
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Note that the first factor of δT
τ u is τ−1 and not (τT (t))−1. Also note that

t+ τT (t) = (t+ τ) ∧ T,
so that to evaluate δT

τ u(t, x) in HT we only need to know the values of u in H̄T .
Let B = B(H̄T ) be the set of all bounded functions on H̄T . For every h > 0, we

introduce two bounded linear operators L0
h and Lh : B → B:

L0
hu = ak(t, x)∆h,`k

u+ bk(t, x)δh,`k
u, Lhu = L0

hu− c(t, x)u. (2.5)

The finite-difference approximations of v which we have in mind will be introduced
by means of the equation

δT
τ u(t, x) + Lhu(t, x) + f(t, x) = 0, (t, x) ∈ HT , (2.6)

with terminal condition (2.2).

Remark 2.2. One may think that considering the operators L written in the form
akD

2
`k

+ bkD`k
+c is a severe restriction. In this connection recall that according to

the Motzkin-Wasov theorem any uniformly nondegenerate operator with bounded
coefficients admits such representation. It is also easy to see (cf. [7]) that if we fix
a finite subset B ⊂ Zd, such that SpanB = Rd, and if an operator

Lu = aijuxixj + biuxi (2.7)

admits a finite-difference approximation

Lhu(0) =
∑
y∈B

ph(y)u(hy) → Lu(0) ∀u ∈ C2

and Lh are monotone, then automatically

L =
∑

l∈B, l 6=0

alD
2
l +

∑
l∈B, l 6=0

blDl (2.8)

for some al ≥ 0 and bl ∈ R.

Problem (2.6)-(2.2) is actually a collection of disjoint problems given on each
mesh associated with points (t0, x0) ∈ [0, T )× Rd:

{
(
(t0 + jτ) ∧ T, x0 + h(i1`1 + · · ·+ id1`d1)

)
:

j = 0, 1, 2, . . . , ik = 0,±1,±2, . . . , k = 1, 2, . . . , d1}.
For fixed τ, h > 0 introduce

M̄T = {(t, x) : t = (jτ) ∧ T, x = h(i1`1 + · · ·+ id1`d1),

j = 0, 1, 2, . . . , ik = 0,±1,±2, . . . , k = 1, 2, . . . , d1}.

Results obtained for equations on a subset of M̄T can be certainly translated into
the corresponding results for all other meshes by shifts of the origin. Another
important observation is that M̄T may lie in a subspace of Rd+1.

Note a straightforward property of the above objects.

Lemma 2.3. For any h, τ > 0 we have (δT
τ + L0

h)1 = 0. Furthermore, denote
pτ,h = K0(h−2 + h−1 + τ−1). Then for any h, τ > 0 the operator

u→ δT
τ u+ L0

hu+ pτ,hu

is monotone, by which we mean that if u1, u2 ∈ B and u1 ≤ u2, then

δT
τ u1 + L0

hu1 + pτ,hu1 ≤ δT
τ u2 + L0

hu2 + pτ,hu2.
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Let T ′ be the least point in the progression τ, 2τ, . . . , which is greater than or
equal to T . Based on Lemma 2.3 and the contraction mapping theorem, we have the
following several lemmas and corollaries (see [13]). The first one gives the existence
and uniqueness of solutions to (2.6). The second one plays the role of comparison
principle for finite-difference schemes.

Lemma 2.4. Take a nonempty set

Q ⊂MT := M̄T ∩HT .

Let φ(t, x) be a bounded function on M̄T . Then there is a unique bounded function
u defined on M̄T such that equation (2.6) holds in Q and u = φ on M̄T \Q.

Lemma 2.5. Let u1, u2 be functions on M̄T and f1(t, x),f2(t, x) functions on
MT . Assume that in Q

δT
τ u1(t, x) + Lhu1(t, x) + f1(t, x) ≥ δT

τ u2(t, x) + Lhu2(t, x) + f2(t, x).

Let h ≤ 1 and u1 ≤ u2 on M̄T \Q and assume that uie
−µ|x| are bounded on MT ,

where µ ≥ 0 is a constant. Then there exists a constant τ∗ > 0, depending only on
K, d1, and µ, such that if τ ∈ (0, τ∗) then on M̄T

u1 ≤ u2 + T ′ sup
Q

(f1 − f2)+, (2.9)

and, if in addition λ ≥ 1, we have

u1 ≤ u2 + sup
Q

(f1 − f2)+. (2.10)

Furthermore, τ∗(K, d1, µ) →∞ as µ ↓ 0 and if u1, u2 are bounded on M̄T , so that
µ = 0, then (2.9), (2.10) hold without any constraints on h and τ .

Remark 2.6. In the sense of viscosity solutions, Lemma 2.5 is also well known to
be true with the differential operator L in place of Lh.

Corollary 2.7. Let c0 ≥ 0 be a constant such that

τ−1(ec0τ − 1) ≤ λ.

Then
|vτ,h(t, x)| ≤ K0λ

−1(1− e−λ(T+τ)) + e−c0(T−t)|g|0
on H̄T with natural interpretation of this estimate if c0 = λ = 0, that is

|vτ,h| ≤ K0(T + τ) + |g|0.

Corollary 2.8. Let u1 and u2 be bounded solutions of (2.6) in HT with terminal
condition g1(x) and g2(x), where g1 and g2 are given bounded functions. Then
under the condition of Corollary 2.7, in H̄T we have

u1(t, x) ≤ u2(t, x) + e−c0(T−t) sup(g1 − g2)+.

Corollary 2.9. Assume that there is a constant R such that f(t, x) = g(x) = 0 for
|x| ≥ R. Then

lim
|x|→∞

sup
[0,T ]

|vτ,h(t, x)| = 0.
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Lemma 2.10. Let function fn and gn, n = 1, 2, . . . , satisfy the same conditions as
f, g with the same constants and let vn

τ,h be the unique bounded solutions of problem
(2.6)-(2.2) with fn and gn in place of f and g, respectively. Assume that on H̄T

lim
n→∞

(|f − fn|+ |g − gn|) = 0.

Then pointwisely vn
τ,h → vτ,h on H̄T .

Remark 2.11. In many cases Lemma 2.10 allows us to concentrate only on com-
pactly supported f and g.

Here come the main results of this article.

Theorem 2.12. Under Assumption 2.1 with n = 1, there is a constant N1, de-
pending only on d, d1, T and K1 (but not on h and τ) such that

|v − vτ,h| ≤ N1(τ1/4 + h1/2)

in HT . In addition, there exists a constant N2 depending only on d, d1, and K1,
such that if λ ≥ N2, then N1 is independent of T .

Theorem 2.13. Under the assumption of Theorem 2.12 suppose that σ, b, c, f are
independent of t and λ ≥ N2, where N2 is taken form Theorem 2.12. Let ṽ(x) be a
probabilistic or the unique bounded viscosity solution of

Lu(x) + f(x) = 0

in Rd. Let ṽh be the unique bounded solution of

Lhu(x) + f(x) = 0 (2.11)

in Rd. Then
|ṽ − ṽh| ≤ Nh1/2

in Rd, where N depends only on d, d1, and K1.

Theorem 2.14. Under Assumption 2.1 with n = 2, there is a constant N3, de-
pending only on d, d1, T and K2 (but not on h and τ) such that

|v − vτ,h| ≤ N3(τ1/2 + h)

in HT . In addition, there exists a constant N4 depending only on d, d1, and K1,
such that if λ ≥ N4, then N3 is independent of T .

Theorem 2.15. Under the assumption of Theorem 2.14 suppose that σ, b, c, f are
independent of t and λ ≥ N4, where N4 is taken form Theorem 2.14. Then

|ṽ − ṽh| ≤ Nh

in Rd, where N depends only on d, d1, and K2.

Theorem 2.16. Under Assumption 2.1 with n = 4, there is a constant N5, de-
pending only on d, d1, T and K4 (but not on h and τ) such that

|v − vτ,h| ≤ N5(τ + h) (2.12)

in HT . In addition, there exists a constant N6 depending only on d, d1, and K1,
such that if λ ≥ N6, then N5 is independent of T .

In the case of n = 4 we can get an even better estimate with a different scheme.
To state the result we need to introduce one more assumption and somewhat change
our notation.
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Assumption 2.17. We have |bk(t, x)| ≤ Kak(t, x) for all k = ±1, . . . ,±d1.

This time we again introduce Lh as in (2.5) but use a different formula for L0
h:

L0
hu(t, x) = ak(t, x)∆h,`k

u(t, x) + bk(t, x)δ2h,`k
u(t, x− h`k). (2.13)

As above Lemmas 2.3, 2.4 and 2.5 hold true but this time only if

Kh ≤ 2. (2.14)

Of course, in Lemma 2.4 and in Theorems 2.14 and 2.19 below by vτ,h and ṽh

we mean the unique bounded solutions of the corresponding equations with new
operators Lh and we assume (2.14).

Theorem 2.18. Under Assumption 2.1 with n = 4 and Assumption 2.17, there is
a constant N7, depending only on d, d1, T and K4 (but not on h and τ) such that

|v − vτ,h| ≤ N7(τ + h2)

in HT . In addition, there exists a constant N8 depending only on d, d1, and K1,
such that if λ ≥ N8, then N7 is independent of T .

Theorem 2.19. Under the assumptions of Theorem 2.18 suppose that σ, b, c, f are
independent of t and λ ≥ N8, where N8 is taken form Theorem 2.18. Then

|ṽ − ṽh| ≤ Nh2

in Rd, where N depends only on d, d1, and K4.

Remark 2.20. The rate in Theorems 2.12 and 2.13 is sharp at least in what
concerns h. The reader will see that Theorem 2.13 is derived from Theorem 2.12
in such a way that if one could improve the rate in Theorem 2.12, then the same
would happen with Theorem 2.13 if λ is large enough. So to prove the sharpness
we may only concentrate on the time independent case.

Take d = 2 and consider the equation

vx + vy − λv = −g(|x− y|)
in R2 = {(x, y)}, where g(t) = |t| ∧ 1 and λ > 0.

Then v(x, y) = λ−1g(|x − y|) and v(0, 0) = 0. It is not hard to show that for
`1 = (1, 0) and `2 = (0, 1), we have

vh(x, y) = uh(x− y), uh(x) =
h

2 + λh

∞∑
n=0

( 2
2 + λh

)n
Eg(x+ hξn),

where

ξn =
n∑

i=1

ηi

and η1, η2, . . . are independent random variables such that

P (ηi = ±1) =
1
2
.

The sequence wn := ξn/
√
n is asymptotically normal with zero mean and variance

1. Therefore, for all big n and small h such that h−2 ≥ n we have (h
√
n)−1 ≥ 1

and
Eg(hξn) = E((h|ξn|) ∧ 1) = h

√
nE[|wn| ∧ (h

√
n)−1] ≥ γh

√
n

with constant γ > 0 independent of n, h.
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It follows that for all small h

uh(0) ≥ γ
h2

2 + λh

∑
h−1≤n≤h−2

( 2
2 + λh

)n√
n

≥ γ
h3/2

2 + λh

∑
h−1≤n≤h−2

( 2
2 + λh

)n

≥ γλ−1h1/2I(h)J(h),

where
I(h) =

( 2
2 + λh

)2/h
, J(h) = 1−

( 2
2 + λh

)1/(2h2)
.

This shows that the rate under discussion is sharp indeed since I(h) → e−λ and
J(h) → 1 as h ↓ 0.

Remark 2.21. The estimates in Theorem 2.16 and 2.18 are sharp even for d = 1.
An example is the following parabolic equation

vt + vxx + vx = 0, x ∈ R× [0, 1),

with periodic terminal condition g(x) = sin(2πx). By a standard Fourier method,
we know that for the scheme in Theorem 2.16 (L2([0, 1]) is L2 in x),

‖v(1, ·)− vτ,h(1, ·)‖L2([0,1]) = O(τ + h).

And for the scheme in Theorem 2.18 with symmetric first-order differences, we have

‖v(1, ·)− vτ,h(1, ·)‖L2([0,1]) = O(τ + h2).

Thus, with the sup norm the errors are at least O(τ+h) and O(τ+h2) respectively.

3. Smoothness of solutions to (2.1)

In this section, we state some known results about the smoothness of solutions
to degenerate parabolic equations. The following two lemmas can be found in [18]
and [16] or else in Chapter V of [19].

Lemma 3.1. Under Assumption 2.1 with n = 1, the solution v of (2.1) given
by (2.3) is bounded and continuous on H̄T and differentiable with respect to x
continuously in (t, x). Moreover, there exist constants M,N depending only on K1,
d, and d1, such that,

|v(t, y)− v(s, x)| ≤ Ne(M−λ)+T (|t− s|1/2 + |y − x|),
for all (t, y), (s, x) ∈ H̄T with |t− s| ≤ 1.

Lemma 3.2. Under Assumption 2.1 with n = 2, the solution v is twice continuously
in (t, x) differentiable with respect to x and continuously in (t, x) differentiable with
respect to t. Moreover, there exist constants N depending only on K2, d and d1,
and M depending only on K1, d, and d1 such that

|v|H̄T ,1,2 ≤ Ne(M−λ)+T

The proofs in [19] of the above lemmas are given by using probabilistic methods
and moment estimates. By the same methods, we can get the following general
result (cf. [19], [6]). For the sake of completeness, we give a proof of it in Section
6.
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Lemma 3.3. (i) Let m ≥ 1 be an integer. Under Assumption 2.1 with n = 2m,
the solution (2.3) is 2m times continuously differentiable with respect to x on H̄T

and m times continuously differentiable with respect to t on H̄T . Moreover, there
exist constants N depending only on m, K2m, d, and d1, and M depending only on
m, K1, d, and d1, such that

|v|H̄T ,m,2m ≤ Ne(M−λ)+T .

(ii) If there is a constant N0 and integer l ≥ 1 such that

Kj ≤ N0/ε
(j−l)+ , j ≤ 2m,

for some positive number ε ≤ 1, then we have

|v|H̄T ,m,2m ≤ N(N0, d1, d,m)e(M−λ)+T /ε(2m−l)+ .

In what follows we will only use Lemma 3.3 for m = 1, 2 and l = 1, 2. The next
theorem is about continuous dependence of solutions with respect to the coefficients
and the terminal conditions.

Theorem 3.4. Let σk, bk, c, λ, f , g, σ̂k, b̂k, ĉ, λ̂, f̂ , ĝ satisfy Assumption 2.1
with n = 1 and λ̂ = λ. Let v and v̂ be the corresponding solutions of (2.1)-(2.2).
Assume

γ := sup
HT ,k

(
|σk − σ̂k|+ |bk − b̂k|+ |c− ĉ|+ |f − f̂ |

)
+ sup

x
|g − ĝ| <∞.

Then there are constants N and M depending only on K1, d, and d1 such that on
H̄T

|v − v̂| ≤ Nγe(M−λ)+T

Proof. Consider Rd as a subspace of

Rd+1 = {x = (x′, xd+1) : x′ ∈ Rd, xd+1 ∈ R}.

Introduce

H̄T (d+ 1) = {(t, x′, xd+1) : (t, x′) ∈ H̄T , x
d+1 ∈ R},

HT (d+ 1) = {(t, x) ∈ H̄T (d+ 1) : t < T}.

Let η ∈ C1
b (R) be a function such that

η(−1) = 1, η(0) = 0, η′(p) = η′(q) = 0 for p ≤ −1, q ≥ 0.

Set
σ̃k(t, x) = σ̂k(t, x′)η(xd+1/γ) + σk(t, x′)(1− η(xd+1/γ))

and similarly introduce b̃k, c̃, f̃ , and g̃.
It is easy to check that Lemma 3.1 is applicable to our new objects, and we

denote ṽ to be the solution of (2.1)-(2.2) with σ̃k, b̃k, c̃, f̃ , g̃, f̃ in place of σk, bk,
c, f and g. Note this is actually a collection of disjoint problems parameterized by
xd+1. By the uniqueness of solutions, obviously for any (t, x′) ∈ H̄T

ṽ(t, x′,−γ) = v̄(t, x′), ṽ(t, x′, 0) = v(t, x′).

Therefore, the assertion of the theorem follows from Lemma 3.1. �
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4. Some estimates for solutions to linear finite difference equations

In this section, we give several results about Lipschitz continuity of solution
u = vτ,h to linear finite difference equation. Firstly, observe that

∆h,l(v2) = 2v∆h,lv + (δh,lv)2 + (δh,−lv)2,

δh,l(uv) = uδh,lv + vδh,lu+ hδh,luδh,lv.
(4.1)

We fix an ε ∈ (0, h] and a unit vector l ∈ Rd and introduce

M̄T (ε) := {(t, x+ iεl) : (t, x) ∈ M̄T , i = 0,±1, . . . }.

Let Q ⊂ M̄T (ε) be a nonempty finite set and u a function on M̄T (ε) satisfying
(2.6) in Q′ = Q ∩HT .

We add two more directions `d1+1 := l and `−d1−1 := −l and let r be an index
running through {±1, . . . ,±(d1 + 1)} and k through {±1, . . . ,±d1}. Denote

hk = h, k = ±1, . . . ,±d1, h±(d1+1) = ε.

Define the interior and boundary of Q:

Qo
ε = {(t, x) ∈ Q′ : (t+ τT (t), x), (t, x± hk`k) ∈ Q,∀k = 1, 2, . . . , d1 + 1}.

∂εQ = Q \Qo
ε.

Theorem 4.1. Under Assumption 2.1 with n = 1, suppose that there are constants
N0, c0 ≥ 0, γ > 0 such that

K2
1 [(2d1 + 15)K1 + 6] ≤ −γ + λ+ τ−1(1− e−c0τ ) +N0 inf

Q0
ε,k
ak, (4.2)

which always holds with N0 = c0 = 0 if

K2
1 [(2d1 + 15)K1 + 6] ≤ λ− γ.

Then there is a constant N ∈ (0,+∞) depending only on N0, K1, d1, d, and γ,
such that on Q

|δε,±lu| ≤ Nec0(T+τ)
(
1 + max

Q
|u|+ max

∂εQ
(max

r
|δhr,`r

u|)
)
.

Proof. Set ξ(t) = ec0t for t < T and ξ(T ) = ec0T ′
, w = ξu, wr = δhr,`rw, wτ = δT

τ w.
Denote

W =
∑

r

w2
r , M = N0 + 1

and let (t0, x0) be a point at which

V := W +Mw2

takes its maximum value on Q. It is easy to see that

max
Q,r

|wr| ≤ V 1/2(t0, x0), |δε,±lu| ≤ V 1/2(t0, x0) (4.3)

on Q and we need only estimate V (t0, x0). Furthermore, obviously

V 1/2(t, x) ≤ 2(d1 + 1)max
r
|wr(t, x)|+

√
M |w(t, x)|

≤ ec0(T+τ)[2(d1 + 1) max
r
|δhr,`r

u(t, x)|+
√
M |u(t, x)|],
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so while estimating V (t0, x0) we may assume that (t0, x0) ∈ Q0
ε. Then for each

k = ±1,±2, . . . ,±d1 at (t0, x0) we have

0 ≥ δh,`k
V = 2

∑
r

wrδh,`k
wr + 2Mwwk + h

∑
r

(δh,`k
wr)2 +Mhw2

k, (4.4)

0 ≥ ∆h,`k
V = 2

∑
r

wr∆h,`k
wr + 2Mw∆h,`k

w

+
∑

r

(δh,`k
wr)2 +

∑
r

(δh,`−k
wr)2 +Mw2

k +Mw2
−k,

(4.5)

0 ≥ δT
τ V = 2

∑
r

wrδ
T
τ wr + 2Mwwτ

+ τT
∑

r

(δT
τ wr)2 +MτTw

2
τ ≥ 2

∑
r

wrδ
T
τ wr + 2Mwwτ .

(4.6)

It follows from (4.4) and (4.5) and our assumption: ak = a−k ≥ 0, bk ≥ 0, that

0 ≥ 2wrL
0
hwr + 2MwL0

hw + (2ak + bkh)
[∑

r

(δh,`k
wr)2 +Mw2

k

]
. (4.7)

On the other hand, due to (4.1),

−δhr,`r
f = δT

τ (ξ−1wr) + ξ−1
[
ak∆h,`k

wr + (δhr,`r
ak)∆h,`k

w

+ hr(δhr,`rak)∆h,`k
wr + bkδh,`k

wr + (δhr,`rbk)δh,`k
w

+ hr(δhr,`rbk)δh,`k
wr − cwr − (δhr,`rc)w − hr(δhr,`rc)wr

]
,

where and in a few lines below there is no summation in r. Here (recall that
h∆h,`k

u = δh,`k
u+ δh`−k

u)

hr(δhr,`r
ak)∆h,`k

wr = 2hrh
−1(δhr,`r

ak)δh,`k
wr,

δT
τ (ξ−1wr) = ξ−1

(
e−c0τδT

τ wr − τ−1(1− e−c0τ )wr

)
.

Hence,

−ξδhr,`rf = e−c0τδT
τ wr + L0wr + (δhr,`rak)∆h,`k

w

+ 2hrh
−1(δhr,`r

ak)δh,`k
wr + (δhr,`r

bk)δh,`k
w + h(δhr,`r

bk)δh,`k
wr

− (c+ τ−1(1− e−c0τ ))wr − (δhr,`rc)w − hr(δhr,`rc)wr.

(4.8)
We multiply (4.8) by 2wr, sum up in r and use (4.6) and (4.7). Then at (t0, x0) we
obtain

−2ξwrδhr,`r
f ≤ −e−c0τ2Mwwτ − 2MwL0

hw

− (2ak + bkh)
∑

r

(δh,`k
wr)2 −M(2ak + bkh)w2

k

− 2(c+ τ−1(1− e−c0τ ))
∑

r

w2
r + I,

(4.9)

where

I :=2wr

[
ψrkδhr,`r

ak + (δhr,`r
bk)δh,`k

w

+ hr(δhr,`r
bk)δh,`k

wr − (δhr,`r
c)w − hr(δhr,`r

c)wr

]
,

ψrk = ∆h,`k
w + 2hrh

−1δh,`k
wr.
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Now note that

L0
hw + e−c0τwτ = −ξf + (c+ τ−1(1− e−c0τ ))w,

so that (4.9) becomes

−2Mwξf − 2ξwrδhr,`rf ≤ −2(c+ τ−1(1− e−c0τ ))(W +Mw2)

− (2ak + bkh)
∑

r

(δh,`k
wr)2 −M(2ak + bkh)w2

k + I.

(4.10)
To estimate I observe that, since ak = (1/2)σ2

k, we have

δhr,`rak = σkδhr,`rσk + (1/2)hr(δhr,`rσk)2,

J := 2wrψrkδhr,`r
ak = 2wr(δhr,`r

σk)ψrkσk + wrψrkhr(δhr,`r
σk)2.

Furthermore, by using inequalities like (a+ b)2 ≤ 2a2 + 2b2, we get
1
4

∑
r,k

ψ2
rkσ

2
k =

1
2

∑
r,k

akψ
2
rk ≤ 2(d1 + 3)

∑
r,k

ak(δh,`k
wr)2,

and for each k and r

|ψrkhr|2 ≤ 36 sup
Q,p

|wp|2 ≤ 36 sup
Q

(
∑

p

|wp|2 +Mw2) = 36V.

It follows that

|
∑
r,k

wrψrkhr(δhr,`r
σk)2| ≤ 6V

∑
k,r

(δhr,`r
σk)2,

J ≤ 2
∑
r,k

ak(δh,`k
wr)2 + 4(d1 + 3)

∑
r,k

w2
r(δhr,`rσk)2 + 6V

∑
k,r

(δhr,`rσk)2

≤ 2
∑
r,k

ak(δh,`k
wr)2 + 2(2d1 + 15)V K3

1 .

This takes care of the first term in the definition of I.
Next, for the operator Tl : u→ u(t, x+ l) we have∣∣2wr[(δhr,`r

bk)δh,`k
w + hr(δhr,`r

bk)δh,`k
wr]

∣∣
=

∣∣2wr(δhr,`r
bk)Thr`r

wk

∣∣
≤ 2V

∑
r,k

|δhr,lrbk| ≤ 6K2
1V,

∣∣2wr[−(δhr,`r
c)w − hr(δhr,`r

c)wr]
∣∣

=
∣∣2wr(δhr,`r

c)Thr`r
w

∣∣
≤ 2M−1/2V |

∑
r

δhr,lrc| ≤ 6K2
1M

−1/2V.

Thus we estimated all terms in I and from (4.10) conclude that

−2Mξf − 2ξwrδhr,`r
f ≤ −2(c+ τ−1(1− e−c0τ ))V

+ 2K2
1 [(2d1 + 15)K1 + 3 + 3M−1/2]

− 2MV inf
Q0

ε,k
ak + 2M2w2 inf

Q0
ε,k
ak.
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Now since M−1/2 ≤ 1, condition (4.2) implies that

2γV ≤ 2ξwrδhr,`rf + 2Mwξf + 2M2w2 inf
Q0

ε,k
ak ≤ γV +Nξ2 +Nξ2 max

Q
|u|2.

It follows that
γV ≤ Nξ2 +Nξ2 max

Q
|u|2,

which along with (4.3) brings the proof of Theorem 4.1 to an end. �

Remark 4.2. Condition (4.2) is obviously satisfied for any λ, c0, and γ if our
operator is uniformly nondegenerate so that ak ≥ µ for some constant µ > 0.

On the basis of Theorem 4.1, Corollary 2.9 and Lemma 2.10, the following theo-
rem can be proved in the same way as Theorem 5.6 is deduced from Theorem 5.2 in
[13]. The method of proof is similar to that of Theorem 3.4 and consists of adding
a new variable and considering the coefficients with hats (see below) as values of
the corresponding coefficients for one value of the additional coordinate and the
original coefficients as the values at a close value of the additional coordinate.

Theorem 4.3. Let σ̂k, b̂k, ĉ, λ̂, f̂ satisfy the assumptions in Section 2 with n = 1
and let λ̂ = λ. Let u be a function on M̄T satisfying (2.6) in MT and let û be a
function on M̄T satisfying (2.6) in MT with âk, b̂k, ĉ, f̂ in place of ak, bk, c, f
respectively. Assume that u and û are bounded on M̄T and

|u(T, ·)|, |û(T, ·)| ≤ K1.

Introduce
µ = sup

MT ,k

(
|σk − σ̂k|+ |bk − b̂k|+ |c− ĉ|+ |f − f̂ |

)
.

Suppose that there exist constants N0, c0 ≥ 0, γ > 0 such that (4.2) holds. Then
there is a constant N depending only on N0, K1, d, γ, and d1, such that

|u− û| ≤ Nµec0(T+τ)I

on M̄T , where

I = sup
x∈Rd

(
1 + (max

k
|δh,`k

u|+ max
k
|δh,`k

û|+ µ−1|u− û|)(T, x)
)
.

5. Proof of Theorems 2.12-2.19

Before starting we make a general comment on our proofs. While estimating
|v(t, x)− vτ,h(t, x)| we may fix (t, x) ∈ HT and since we can always shift the origin,
we may confine ourselves to t = 0 and x = 0. In particular, it suffices to obtain
estimates of |v(t, x) − vτ,h(t, x)| for t = 0 and (0, x) ∈ MT . Next, if h > 1 our
estimates become trivial since we are dealing with bounded functions. The same
goes for τ . Therefore, we assume that

τ + h ≤ 1,

and τ−1 ≥ N(d1,K1) such that (4.2) is satisfied with γ = 1, N0 = 0 and c0
sufficiently large. We also remind the reader that T ′ is the least of τ, 2τ, 3τ, . . .
which is ≥ T .
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Proof of Theorem 2.16. Due to Lemma 3.3, we have

|v|H̄T ,2,4 ≤ N(K4, d, d1)e(M−λ)+T . (5.1)

Set v∗ to be the unique bounded viscosity solution of (2.1) in H̄T ′ with terminal
condition v∗(T ′, x) = g(x). Then v∗ satisfies the same inequality (5.1) with T ′ in
place of T , and also since T ′ is a multiple of τ we have δT ′

τ = δτ on MT ′ . Thus by
shifting the coordinates and using (5.1), for any x ∈ Rd we have

|v∗(T, x)− g(x)| ≤ (T ′ − T )|v∗(T + ·, ·)|H̄T ′−T ,1,2

≤ N(K4, d, d1)e(M−λ)+(T ′−T )(T ′ − T ).

Due to Corollary 2.8, on H̄T we obtain

|v∗(t, x)− v(t, x)| ≤ N(K4, d, d1)e(M−λ)+(T ′−T )τ.

Also observe that if on MT ′ (= MT ) we define v̄τ,h = vτ,h and let v̄τ,h(T ′, x) =
vτ,h(T, x) (= g(x)), then on MT ′

δT ′

τ = δτ , δT ′

τ v̄τ,h = δT
τ vτ,h, δT ′

τ v̄τ,h + Lhv̄τ,h + f = 0.

It follows by Taylor’s formula that on MT ′

|
(
δT ′

τ + Lh

)(
v̄τ,h − v∗(t, x)

)
|

=
∣∣(Dt + L

)
v∗(t, x)−

(
δτ + Lh

)
v∗(t, x)

∣∣
≤ N(d1,K4)(τ sup

H̄T ′

|D2
t v∗|+ h sup

H̄T ′

|D2
xv∗|+ h2 sup

H̄T ′

|D4
xv∗|)

≤ N(d1, d,K4)e(M−λ)+T ′
(τ + h).

By using Lemma 2.5, we obtain on MT ′

|v∗ − vτ,h| = |v∗ − v̄τ,h| ≤ N(d1,K4)e(M−λ)+T ′
T ′(τ + h),

|v − vτ,h| ≤ |v − v∗|+ |v∗ − vτ,h| ≤ N(d1, d,K4)e(M−λ)+T ′
(T ′ + 1)(τ + h).

For λ ≥ 1 +M , we use the assertion in Lemma 2.5 related to (2.10) and get

|v − vτ,h| ≤ N(d1, d,K4)(τ + h).

Theorem 2.16 is proved. �

Proof of Theorem 2.12. We adopt the idea of mollification. Take a nonnegative
function ζ ∈ C∞0 (Rd+1) with support in (−1, 0) × B1 and unit integral. For any
bounded function u and 0 < ε ≤ 1, we define the mollification of u by

u(ε) = ε−d−2

∫
Rd+1

u(s, y)ζ((t− s)/ε2, (x− y)/ε) ds dy.

It is well known (cf. Lemma 5.1) that u(ε) is a smooth function on Rd+1. And if
|u|1/2,1 ≤ K0, then for any integer m ≥ 1 we have

|u(ε)|m,2m ≤ N(K0, d,m)ε1−2m, (5.2)

|u(ε) − u|0 ≤ N(K0, d)ε. (5.3)

Next, let vε be the solution of (2.1)-(2.2) with σ
(ε)
k , b(ε)k , c(ε), f (ε), g(ε) in place of

σk, bk, c, f and g. By Lε
h we denote the finite-difference operator corresponding

to σ(ε)
k , b(ε)k , c(ε), f (ε). Similarly, we introduce vε

∗ as in the proof of Theorem 2.16.
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Also let vε
τ,h be the corresponding solution of the finite difference equation. Upon

using (5.2) with u = σk, bk, c, f, g and Lemma 3.3 with m = 1, 2, we get

|vε|H̄T ,1,2 ≤ ε−1N(K1, d, d1)e(M−λ)+T , (5.4)

|vε|H̄T ,2,4 ≤ ε−3N(K1, d, d1)e(M−λ)+T , (5.5)

for some M depending only on K1, d, and d1. Two similar estimates hold for vε
∗ in

place of vε. Therefore, by shifting the coordinates, we get

|vε
∗(T, x)− g(x)| ≤ (T ′ − T )|vε

∗(T + ·, ·)|H̄T ′−T ,1,2

≤ ε−1N(K1, d, d1)e(M−λ)+(T ′−T )τ.

Due to Corollary 2.8, on H̄T we obtain

|vε
∗(t, x)− vε(t, x)| ≤ ε−1N(K1, d, d1)e(M−λ)+(T ′−T )τ. (5.6)

As before, we introduce v̄ε
τ,h. By Taylor’s formula, on MT ′

|
(
δT ′

τ + Lε
h

)(
v̄ε

τ,h(t, x)− vε
∗(t, x)

)
|

=
∣∣(Dt + Lε

)
vε
∗(t, x)−

(
δτ + Lε

h

)
vε
∗(t, x)

∣∣
≤ N(d1, d,K1)(τ sup

H̄T ′

|D2
t v

ε
∗|+ h sup

H̄T ′

|D2
xv

ε
∗|+ h2 sup

H̄T ′

|D4
xv

ε
∗|)

≤ N(d1, d,K1)e(M−λ)+T ′
(ε−3τ + ε−1h+ ε−3h2).

By using Lemma 2.5, we obtain

|vε
∗(t, x)− vε

τ,h(t, x)| = |vε
∗(t, x)− v̄ε

τ,h(t, x)|

≤ N(d1, d,K1)e(M−λ)+T ′
T ′(ε−3τ + ε−1h+ ε−3h2)

(5.7)

for any (t, x) ∈MT ′ .
Owing to (5.3) and (5.2) and recalling the definition of µ and I in Theorem 4.3

(with σ(ε)
k in place of σ̂k, etc.) we write

µ ≤ N(K1, d)ε, I ≤ N(K1, d).

Therefore, by the result of Theorem 4.3,

|vτ,h(t, x)− vε
τ,h(t, x)| ≤ N(d, d1,K1)εec0(T+τ) (5.8)

for any (t, x) ∈ M̄T . Similarly, by Theorem 3.4 we have

|v(t, x)− vε(t, x)| ≤ N(d, d1,K1)εe(M−λ)+T (5.9)

for any (t, x) ∈ M̄T . After combining (5.6)-(5.9), we reach

|v(t, x)− vτ,h(t, x)| ≤ N(d1, d,K1, T
′)(ε+ ε−3τ + ε−1τ + ε−1h+ ε−3h2)

for any (t, x) ∈ MT . It only remains to put ε = (τ + h2)1/4, and then the first
part of Theorem 2.12 is proved. To prove the second part, it suffices to inspect the
above argument and see that for λ ≥M(K1, d, d1) we can get rid of the exponential
factors in (5.7)-(5.9) and also the factor T ′ in (5.7). This proves the second part
and the theorem. �

Proof of Theorem 2.14. We take the function ζ from the previous proof and addi-
tionally assume that ζ is symmetric with respect to x, i.e.

ζ(t, x) = ζ(t,−x), ∀ (t, x) ∈ Rd+1.
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�

Lemma 5.1. With the function ζ as above, for any bounded function u on Rd+1

such that |u|1,2 ≤ K0, any integer m ≥ 0 and any ε ∈ (0, 1],

|u(ε)|m,2m ≤ N(K0, d)ε2−2m. (5.10)

Moreover, on Rd+1

|u(ε) − u| ≤ N(K0, d)ε2. (5.11)

Proof. Since ζ is symmetric with respect to x, for any nonnegative integers i, j
satisfying 2i+ j = 2m, we have

Di
tD

j
xu

(ε) = ε−(2i+j)

∫
Rd+1

u(t− ε2s, x− εy)Di
sD

j
yζ(s, y) ds dy

=
1
2
ε−(2i+j)

∫
Rd+1

I1D
i
sD

j
yζ(s, y) ds dy,

(5.12)

where I1 = u(t− ε2s, x− εy) + u(t− ε2s, x+ εy)− 2u(t, x). Note that by Taylor’s
formula

|I1| ≤ |u(t− ε2s, x− εy) + u(t− ε2s, x+ εy)− 2u(t− ε2s, x)|
+ 2|u(t− ε2s, x)− u(t, x)| ≤ K0ε

2(|y|2 + 2|s|).

Coming back to (5.12) yields (5.10). To prove (5.11), we only need to notice that

u(ε)(t, x)− u(t, x) =
1
2

∫
Rd

I1ζ(s, y) ds dy.

�

Due to the previous lemma and Lemma 3.3, instead of (5.4)-(5.5), we have

|vε|H̄T ,1,2 ≤ Ne(M−λ)+T , |vε|H̄T ,2,4 ≤ ε−2Ne(M−λ)+T , (5.13)

where N = N(K2, d, d1), ε ∈ (0, 1]. Then as above

|vε
∗(t, x)− vε(t, x)| ≤ N(K2, d, d1)e(M−λ)+(T ′−T )τ. (5.14)

for some M depending only on K1, d and d1. Also,

|
(
δT ′

τ + Lε
h

)(
vε
∗(t, x)− v̄ε

τ,h(t, x)
)
| ≤ N(d1,K2)e(M−λ)+T ′

(ε−2τ + h+ ε−2h2),

for any (t, x) ∈MT and ε ∈ (0, 1]. Hence,

|vε
∗(t, x)− vε

τ,h(t, x)| = |vε
∗(t, x)− v̄ε

τ,h(t, x)|

≤ N(d1, d,K2)e(M−λ)+TT ′(ε−2τ + h+ ε−2h2),
(5.15)

|vτ,h(t, x)− vε
τ,h(t, x)| ≤ N(d, d1,K2)ε2ec0(T+τ), (5.16)

|v(t, x)− vε(t, x)| ≤ N(d, d1,K2)ε2e(M−λ)+T . (5.17)

After combining (5.14)-(5.17), we obtain

|v(t, x)− vτ,h(t, x)| ≤ N(d1, d,K2, T
′)(τ + ε2 + ε−2τ + h+ ε−2h2). (5.18)

for any (t, x) ∈ MT . Again we put ε = (τ + h2)1/4, and the first part of Theorem
2.14 is proved. As before, for λ ≥ M(K1, d, d1), we can make N in (5.18) to be
independent of T .
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Proof of Theorem 2.18. As we have already pointed out, under Assumption 2.17,
Lemmas 2.3, 2.4, and 2.5 still hold true with the operator (2.13) for h ≤ 2/K. By
Taylor’s formula, for any three times continuously differentiable (in x) function u,

|δ2h,`k
u(x− h`k)−D`k

u(x)| ≤ h2 sup
s∈[−h,h]

|D3
`k
u(x+ s`k)|/6.

Therefore, this time

|
(
δT ′

τ + Lh

)
(v̄τ,h(t, x)− v∗(t, x)|

=
∣∣(Dt + L

)
v∗(t, x)−

(
δτ + Lh

)
v∗(t, x)

∣∣
≤ N(d1, d,K4)(τ sup

H̄T ′

|D2
t v∗|+ h2 sup

H̄T ′

|D3
xv∗||+ h2 sup

H̄T ′

|D4
xv∗||)

≤ N(d1, d,K4)e(M−λ)+T ′
(τ + h2),

for any (t, x) ∈ MT . By using Lemma 2.5, we obtain that on MT (we always
assume that h ≤ 2/K)

|v∗ − vτ,h| = |v∗ − v̄τ,h| ≤ N(d1, d,K4)e(M−λ)+T ′
T ′(τ + h2),

and as few times above

|v − vτ,h| ≤ |v − v∗|+ |v∗ − vτ,h| ≤ N(d1, d,K4)e(M−λ)+T ′
(T ′ + 1)(τ + h2).

For λ ≥ 1 +M , we use (2.10) again and get on MT

|v − vτ,h| ≤ N(d1, d,K4)(τ + h2).

Theorem 2.18 is proved. �

Proof of Theorem 2.13, 2.15 and 2.19. We take g ≡ 0 and denote the functions v
and vτ,h from Theorem 2.12, (2.14, and 2.18, respectively) by vT and vT

τ,h. Obvi-
ously, it suffices to prove that for all (t, x)

ṽ(x) = lim
T→∞

vT (t, x), ṽh(x) = lim
T→∞

vT
τ,h(t, x), (5.19)

whenever λ > 0 and τ is small enough.
The first relation in (5.19) is well known (see, for instance, [9] or [18]). To prove

the second, it suffices to prove that for any sequence Tn → ∞ such that vTn

τ,h(t, x)
converges at all points of M∞, the limit is independent of t and satisfies (2.11) on
the grid

G = {i1h`1 + · · ·+ id1h`d1 : ik = 0,±1, . . . , k = 1, . . . , d1}.

Given the former, the latter is obvious. Also notice that if σk, bk, c and f are
independent of t, the translation t → t + τ brings any solution of (2.6) on M∞
again to a solution. Therefore, it only remains to prove uniqueness of bounded
solutions of (2.6) on M∞.

Observe that if u1 and u2 are two solutions of (2.6) on M∞, then they also solve
(2.6) on MT for any T with terminal condition u1 and u2, respectively. By the
comparison result

|u1(t, x)− u2(t, x)| ≤ e−λ(T−t)/2 sup
x
|u1(T, x)− u2(T, x)|,

if τ is small enough. By sending T →∞ we prove the uniqueness and the theorem.
�
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6. Proof of Lemma 3.3

Obviously, the first part of Lemma 3.3 follows immediately from the second part.
Recall that v is given in (2.3) with xs = xs(t, x) defined by (2.4). We fix (t, x) ∈ HT ,
take a ξ ∈ Rd and set ξ(i)s = ξ

(i)
s (x, ξ), i = 1, 2, . . . , 2m to be the ith order derivative

of xs at point (t, x) in the direction of ξ, i.e.,

ξ(1)s = (xs(t, x))(ξ), ξ(2)s = (xs(t, x))(ξ)(ξ), etc.

We know that for example ξ(1)s and ξ(2)s satisfy the equations

dξ(1)s = σ
(ξ

(1)
s )

(s, xs) dws + b
(ξ

(1)
t )

(s, xs) ds,

dξ(2)s =
[
σ

(ξ
(2)
s )

(s, xs) + σ
(ξ

(1)
s )(ξ

(1)
s )

(s, xs)
]
dws

+
[
b
(ξ

(2)
s )

(s, xs) + b
(ξ

(1)
s )(ξ

(1)
s )

(s, xs)
]
ds.

In general ξ(i)s satisfies

dξ(i)s = σ
(ξ

(i)
s )

(s, xs) dws + b
(ξ

(i)
s )

(s, xs) ds+ S1 dws + S2 ds, (6.1)

where S1 is the sum of the terms

σ
(ξ

(k1)
s )(ξ

(k2)
s )...(ξ

(kl)
s )

(s, xs), for 1 ≤ kj < i,
l∑

j=1

kj = i.

Similarly, S2 is the sum of the terms

b
(ξ

(k1)
s )(ξ

(k2)
s )...(ξ

(kl)
s )

(s, xs), for 1 ≤ kj < i,
l∑

j=1

kj = i.

Definition 6.1. Given real numbers Ai1,i2,...,i2m
defined for i1, . . . , i2m = 1, . . . , d,

we say that
A = {Ai1,i2,...,i2m

}d
i1,...,i2m=1

is strictly positive definite if the following two conditions are satisfied
1) The value of Ai1,i2,...,i2m

does not change if we interchange any two indices.
2) For any x = (x1, x2, . . . , xd) ∈ Rd \ {0},

A(x) :=
∑

i1,i2,...,i2m

Ai1,i2,...,i2m
xi1xi2 . . . xi2m > 0.

Assumption 6.2. We are given constants M ≥ 0 and δ > 0 and a strictly positive
definite A such that for any (t, x) ∈ HT and ξ ∈ Rd,

m(2m− 1)
∑

i1,...,i2m

d1∑
|j|=1

σi1,j
(ξ) (t, x)σi2,j

(ξ) (t, x)ξi3 . . . ξi2mAi1,...,i2m

+2m
∑

i1,...,i2m

bi1(ξ)(t, x)ξ
i2ξi3 . . . ξi2mAi1,...,i2m

≤ (M − δ)A(ξ).
(6.2)

Denote σ(t, x, y) = σ(y)(t, x) and b(t, x, y) = b(y)(t, x). The following lemma is
proved in [6] and is a generalized version of Lemma 7.2 in [14].
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Lemma 6.3. Let αs be a d × d1 matrix-valued and βs an Rd-valued predictable
processes satisfying natural integrability conditions so that the equation

dys = [σ(s, xs(t, x), ys) + αs] dws + [b(s, xs(t, x), ys) + βs] ds, s > t (6.3)

makes sense and let ys be its solution with a nonrandom initial condition y ∈ Rd.
Then under Assumption 6.2, there exists a number p0 = p0(m, δ, σ) > 1 such that
for any stopping time τ ≤ T and constant δ1, δ2, p,satisfying 0 ≤ δ1 < δ2 ≤ δ/2 and
p ∈ (0, p0], we have

E sup
t≤s≤τ

[
(ep(−M+δ1)(s−t)|ys|2mp

]
≤N |y|2mp +NE sup

t≤s≤τ

[
ep(−M+δ2)(s−t)(‖αs‖2mp + |βs|2mp)

]
,

(6.4)

where N = N(m, d, p,K1, A, δ, δ1, δ2).

In what follows, we only use Lemma 6.3 for τ = T . Due to the assumption, we
have K1 ≤ N0. Next we estimate the moments inductively. Since ξ(1)t satisfies (6.3)
with α = β = 0, by using Lemma 6.3 with p = 1, we have

E sup
t≤s≤T

[e(−M+δ/4)(s−t)|ξ(1)s (x, ξ)|2m] ≤ N |ξ|2m.

We have the natural initial conditions ξ(i)0 = 0, ∀i ≥ 2. Since M,A ≥ 0, condition
(6.2) is satisfied if we replace M with 2M . For i = 2, because of (6.1) and (6.4)
with p = 1/2, we have

E sup
t≤s≤T

[e(−M+δ/8)(s−t)|ξ(2)s (x, ξ)|m]

= E sup
t≤s≤T

[e−(1/2)(2M+δ/4)(s−t)|ξ(2)s (x, ξ)|m]

≤ N(d, d1,m,N0, A, δ)Km
2 E sup

t≤s≤T
[e−(1/2)(2M+δ/2)(s−t)|ξ(1)s (x, ξ)|2m]

≤ N(d, d1,m,N0, A, δ)ε−m(2−l)+ |ξ|2m.

For i = 3, we note that in this case αs is a linear combination of

σ
(ξ

(1)
s )(ξ

(2)
s )

, σ
(ξ

(1)
s )(ξ

(1)
s )(ξ

(1)
s )

,

and βs is a linear combination of

b
(ξ

(1)
s )(ξ

(2)
s )

, b
(ξ

(1)
s )(ξ

(1)
s )(ξ

(1)
s )

.

Therefore, upon using (6.4) with p = 1/3 we obtain

E sup
t≤s≤T

[e(−M+δ/16)(s−t)|ξ(3)s (x, ξ)|2m/3]

≤ N(d, d1,m,N0, A, δ)E sup
t≤s≤T

[
e(−M+δ/8)(s−t)(|ξ(1)s |2mε−2m(3−l)+/3

+ |ξ(1)s |2m/3|ξ(2)s |2m/3ε−2m(2−l)+/3)
]

≤ N(d, d1,m,N0, A, δ)E sup
t≤s≤T

[
e(−M+δ/8)(s−t)(|ξ(1)s |2mε−2m(3−l)+/3

+ |ξ(2)s |mεm(2−l)+−2m(3−l)+/3)
]
≤ N |ξ|2mε−2m(1−l/3)+ .

Using similar arguments, one gets the following estimate for ξ(i)s .
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Lemma 6.4. Under the assumption of Lemma 3.3 (ii), for any ξ in Rd, (t, x) ∈
HT , we have

E sup
t≤s≤τ

e(−M+δ/21+i)(s−t)|ξ(i)s (t, x, ξ)|2m/i ≤ N |ξ|2mε−2m(1−l/i)+ ,

for i = 1, 2, . . . , 2m, where N = N(d, d1,m,N0, A, δ). Moreover, due to Hölder’s
inequality,

E sup
t≤s≤τ

e(−M+δ/21+i)(s−t)|ξ(i)s (t, x, ξ)|q/i ≤ N |ξ|qε−q(1−l/i)+ , (6.5)

for i = 1, 2, . . . , 2m, 0 ≤ q ≤ 2m, where N = N(d, d1,m,N0, A, δ).

Now we are ready to prove Lemma 3.3 (ii). Firstly, since v satisfies (2.1), we
only need to consider the spatial derivatives. It is easy to see (cf. [19]) that for
1 ≤ q ≤ 2m and any unit ξ ∈ Rd,∣∣v(ξ) . . . (ξ)︸ ︷︷ ︸

q

(t, x)
∣∣ ≤ N(d, d1,m)

(
E

∫ T

t

(1 + sq)e−ϕsI ds+ (1 + T q)Ee−ϕT J
)
, (6.6)

where

ϕs =
∫ s

t

c(s, xs) ds,

I is a linear combination of

sup
HT

|Di
xf | sup

HT

|Dj
xc|

i+j∏
r=1

|ξ(kr)
s (t, x, ξ)|, for 1 ≤ i+ j ≤ q,

∑
r

kr = q,

and J is a linear combination of

sup
x
|Di

xg| sup
HT

|Dj
xc|

i+j∏
r=1

|ξ(kr)
s (t, x, ξ)|, for 1 ≤ i+ j ≤ q,

∑
r

kr = q,

By Hölder’s inequality and (6.5),

Ee(−M+δ/21+q)(s−t)
∏
r

|ξ(kr)
s (t, x, ξ)|

≤
∏
r

[
Ee(−M+δ/21+q)(s−t)|ξ(kr)

s (t, x, ξ)|q/kr
]kr/q

≤ Nε−
P

r(kr−l)+ .

Also note that by assumption

(sup
x
|Di

xg|+ sup
HT

|Di
xf |) sup

HT

|Dj
xc| ≤ Nε−(i−l)+−(j−l)+ ,

and ∑
r

(kr − l)+ + (i− l)+ + (j − l)+ ≤ (q − l)+.

Thus, the left-hand side of (6.6) is less than or equal to

N(d, d1,m,A,N0)ε−(q−l)+
( ∫ T

t

(1 + sq)e(M−λ−δ/21+q)(s−t) dt

+ (1 + T q)e(M−λ−δ/21+q)(T−t)
)

≤ N(d, d1,m, δ,A,N0)ε−(q−l)+e(M−λ)+T .
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This yields Lemma 3.3 (ii) if we make M sufficiently large so that condition (6.2)
satisfies for δ = 1 and A being the identity.

7. Discussion of semi-discrete schemes

The following result about semi-discretization allows one to use approximations
of the time derivative different from the one in (2.6), in particular, explicit schemes
could be used. The semi-discrete approximations for (2.1) are introduced by means
of the equation

∂

∂t
u(t, x) + Lhu(t, x) + f(t, x) = 0, (t, x) ∈ HT , (7.1)

with terminal condition (2.2).
We claim that all the estimates in Theorem 2.12, 2.14, 2.16, and 2.18 still hold if

we drop the terms with τ in the right-hand sides. We follow closely the arguments
in [13]. The unique solvability of (7.1)-(2.2) in the space of bounded continuous
functions is shown by rewriting the problem as

u(t, x) = g(x) +
∫ T

t

(
Lhu(s, x) + f(s, x)

)
ds

and using the method of successive approximations.
Next, as in [13] on the basis of the comparison results and Theorem 4.1 one

shows that for (t, x), (s, y) ∈ H̄T we have

|vτ,h(t, x)− vτ,h(t, y)| ≤ N |x− y|,

|vτ,h(t, x)− vτ,h(s, x)| ≤ N(|t− s|1/2 + τ1/2)

with N independent of τ, h, t, x, s, y. It follows easily that one can find a sequence
τn ↓ 0 such that vτn,h(t, x) converges at each point of Rd uniformly in t ∈ [0, T ].
Call u the limit of one of subsequences and introduce

κn(t) = iτn for iτn ≤ t < (i+ 1)τn, i = 0, 1, . . .

Then for any smooth ψ(t) vanishing at t = T and t = 0,∫ T

0

[ψ(Lhvτn,h + f)](κn(t), x) dt

=
∫ T

0

vτn,h(κn(t), x)τ−1
n

(
ψ(κn(t), x)− ψ(κn(t)− τn, x)

)
dt.

Since the integrands converge uniformly on [0, T ] to their natural limits, we conclude
that u satisfies (7.1) in the weak sense. On the other hand, u is also a continuous
function and u(T, x) = g(x). It follows that u satisfies (7.1). Now our assertion
follows directly from Theorem 2.12, 2.14, 2.16, and 2.18.

8. Discussion of equations in cylinders

Some methods of this article can also be applied to equations in cylinders like
Q = [0, T )×D, where D is a domain in Rd. It is natural to consider (2.1) and (2.6)
in Q with terminal condition u(T, x) = g(x) in D and require v and vh be zero in
[0, T ] × (Rd \ D). We assume that g = 0 on ∂D and that there is a sufficiently
smooth function ψ on Rd such that ψ > 0 in D, ψ = 0 on ∂D, 1 ≤ |ψx| ≤ K0 on



EJDE-2005/102 CONVERGENCE OF FINITE-DIFFERENCE APPROXIMATIONS 23

∂D, and Lψ < −1 in Q. Then, for sufficiently small h, by the smoothness of ψ, we
also have Lhψ ≤ −1/2 in Q. Due to Lemma 2.5 and Remark 2.6,

|v(t, x)| ≤ K0ψ(t, x), |vτ,h(t, x)| ≤ 2K0(ψ(t, x) + h),

for any (t, x) ∈ Q. These estimates give us necessary control of solutions near the
boundary of Q. Now instead of Theorem 4.3 and 3.4, we have the following results,
which is deduced from Theorem 4.1 and 3.1 respectively.

Theorem 8.1. Let Q1 be a finite set in M̄T , and suppose ak, bk, c, f satisfy the
same assumption as in Theorem 4.3. Let u be a function on M̄T satisfying (2.6)
in Q1 ∩HT and let û be a function on M̄T satisfying (2.6) in Q1 ∩HT with âk, b̂k,
ĉ, f̂ in place of ak, bk, c, f respectively. Assume that u and ū are bounded on M̄T

and
|u(T, ·)|, |û(T, ·)| ≤ K1.

Assume that there is an ε > 0 such that

sup
MT ,k

(
|σk − σ̂k|+ |bk − b̂k|+ |c− ĉ|+ |f − f̂ |

)
≤ K1ε.

Suppose that there exist constants N0, c0 ≥ 0, γ > 0 such that (4.2) holds. Then
there exists a constant N depending only on N0,K1, γ, d, and d1 such that in Q1

|u− û| ≤ Nεec0(T+τ)I,

where

I = 1 + sup
Q1

(|u|+ |û|) + sup
∂0Q1

(
max

k
|δh,lku|+ max

k
|δh,lk û|+ ε−1|u− û|

)
.

Theorem 8.2. Let Q2 be a bounded set in H̄T , and suppose ak, bk, c, f satisfy the
same assumption as in Theorem 3.4. Let v be a function on H̄T satisfying (2.1) in
Q2 ∩HT and let v̂ be a function on H̄T satisfying (2.1) in Q2 ∩HT with âk, b̂k, ĉ,
f̂ in place of ak, bk, c, f respectively. Assume that v and v̄ are bounded on H̄T and

|v(T, ·)|, |v̂(T, ·)| ≤ K1.

Assume that there is an ε > 0 such that

sup
HT ,k

(
|σk − σ̂k|+ |bk − b̂k|+ |c− ĉ|+ |f − f̂ |

)
< K1ε.

Then there are constants N and M depending only on K1, d, and d1, such that on
H̄T

|v − v̂| ≤ Nεe(M−λ)+T I

where

I = 1 + sup
Q2

(|v|+ |v̂|) + sup
∂Q2

(
max

k
|Dlkv|+ max

k
|Dlk v̂|+ ε−1|v − v̂|

)
.

However, in what concerns the rate of convergence, these results do not allow us
to carry over the methods of the present article to equations in cylinders. The point
is that, no matter how smooth the coefficients and the domain are, the true solutions
may be just discontinuous. Interestingly enough, it seems that for bounded domains
one has to apply the theory of controlled diffusion processes (= the theory of fully
nonlinear PDEs) in order to deal with the rate of convergence for linear equations.
We plan to show this in a subsequent article.
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