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EXISTENCE OF TIME-PERIODIC SOLUTIONS TO
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE

WHOLE SPACE

XIANPENG HU

Abstract. In this article, we assume that the force field acting over a fluid

is periodic on time and the velocity of the liquid is zero at spatial infinity.
We prove the existence of time-periodic solutions to the system governing the

motion of an incompressible fluid filling the whole space.

1. Introduction

It is well known that the incompressible Navier-Stokes equations moving in R3

with the action of time-periodic body force is an important research field. In 1959,
Serrin [7] studied the existence of time-periodic solutions in bounded domains. Once
we consider the case of unbounded domains, the Pioncare inequality is not valid
anymore. Therefore, we need some different methods. So far, there exist many
results in the literature in the case of unbounded domains. Maremonti [5] first
showed the existence and uniqueness of time-periodic strong solutions, under the
assumptions that the body force is the form of curlΨ and the initial data are small
enough. Later, Maremonti and Padula [6] showed the existence of time-periodic
solutions, provided the body force has the property of symmetry. Recently, Galdi
and Sohr [3] obtained the existence and uniqueness of the time-periodic solution on
the condition that the force is sufficiently small and the force is the form of divF .
Salvi [8] also discussed the existence of time-periodic solutions with periodically
moving boundaries, using the elliptic regularization.

In this paper, we will prove the existence of time-periodic solutions to incom-
pressible Navier-Stokes equations. In [8], Salvi showed the similar result, using the
different method. Moreover, in this paper, we will prove the similar result without
the conditions on body force in [5, 3, 6].

This paper will be organized as follows. In section 2, we will introduce some
notations. Employing the Galerkin method, in section 3, we show the existence
and the uniqueness of the time-periodic solution to Navier-Stokes systems with the
prescribed artificial terms. Finally, vanishing the effect of the artificial terms, we
prove the main result we want to get.
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2. Notation

Assume that Ω is an open, connected domain. Denoted by Lq(Ω), Wm,q(Ω),
m ≥ 0, 1 ≤ q ≤ ∞ the usual Lebesgue and Sobolev spaces. Let ‖ · ‖q, ‖ · ‖m,q

be the norms in Lq(Ω) and Wm,q(Ω), respectively. Denoted by D(Ω) the space of
infinitely differentiable and divergence-free functions with compact support in Ω.
For any φ, ψ, we define

(Φ,Ψ) =
∫

R3
ΦΨ dx

if the integral is finite. Denoted by Lp((0, t);X) the set of functions Φ from (0, t)
into X such that

∫ t

0
(|Φ(τ)|X)p dτ <∞, where X is a Banach space. Finally, denoted

by C((0, t);X) the continuous functions from (0,t) into X with norms sup(0,t)|Φ|X .
We consider the following Navier-Stokes system in (0, T )× R3:

ut(x, t)−∆u(x, t) + u(x, t) · ∇u(x, t) +∇p(x, t) = f(x, t),

∇ · u(x, t) = 0,

u(x, t) → 0 as |x| → ∞,

u(x, 0) = u0(x),

(2.1)

which describes the motion of an incompressible viscous fluid, with viscosity υ = 1,
filling the whole space R3 and subject to a body force f(x, t).

Our main result is as follows.

Theorem 2.1. Let u0 ∈ H2,2(R3) with ∇ · u0 = 0. Suppose that f(x, t) belongs
to L2((0, T );H2,2(R3)) and f is a time-periodic function with period T . Then the
system (2.1) has at least one time-periodic solution u in L∞(0, T ;L2(R3)), with ∇u
in L2(0, T ;L2(R3)) in the sense of distributions.

We will give the proof of Theorem 2.1 in section 4 by using a two-level approxi-
mation scheme based on the following system:

ut(x, t)−∆u(x, t) + u(x, t) · ∇u(x, t) + ε(−∆)2u(x, t) + ηu(x, t) +∇p(x, t)
= f(x, t),

∇ · u(x, t) = 0,

u(x, t) → 0 as |x| → ∞,

u(x, 0) = u0(x).

(2.2)

Where ε and η are positive numbers.

3. The Faedo-Galerkin Approximation

In this section, we will use the Faedo-Galerkin method to solve the system (2.2).

Theorem 3.1. Let u0 ∈ H2,2(R3) with ∇ · u0 = 0. Suppose that f(x, t) belongs
to L2((0, T );H2,2(R3)). Then (2.2) has unique solution u in L∞(0, T ;H2,2(R3)),
with ∇u in L2(0, T ;H2,2(R3)).

Proof. It is easy to obtain the existence of Theorem 3.1 by applying the Galerkin
method. Furthermore, from the equation, we have ut ∈ L∞(0, T ;L3(R3)). Next,
we prove the uniqueness as follows.
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Suppose that u, v are two solutions to the system (2.2). Set w = u− v. By the
direct calculation, we can get
d

dt

∫
R3
|w(x, t)|2 dx+ ε

∫
R3

(−∆)w(x, t)]2 dx+
∫

R3
[∇w(x, t)]2 dx+ η

∫
R3

[w(x, t)]2 dx

= −
∫

R3
w(x, t)∇u(x, t)w(x, t) dx.

It is easy to prove u is in L∞(0, T ;L2(R3)) ∩ L∞(0, T ;H2,2(R3)) by the energy
method. Then, by the imbedding theorem W 1,r ↪→ L∞, where r > 3, we have
that u is in L∞(0, T ;L∞(R3)). Furthermore, applying the interpolation theorem,
u ∈ L∞(0, T ;L3(R3)). Therefore, we have u ∈ C(0, T ;L3(R3)) because ut is in
L∞(0, T ;L3(R3)).

Now, we decompose u as u = u1 + u2 such that ‖u1‖L∞(0,T ;L3(R3)) ≤ α and
‖u2‖L∞(0,T ;L∞(R3)) ≤ Cα, where α > 0 is small enough. Concerning the term in
the right hand side of above equality, we have∣∣ ∫

R3
w(x, s)∇u(x, s)w(x, s) dx

∣∣
=

∣∣ ∫
R3
w(x, s)∇w(x, s)u(x, s) dx

∣∣
≤ α‖∇w(x, t)‖2‖w(x, t)‖6 + Cα‖w(x, t)‖2‖∇w(x, t)‖2
≤ α‖∇w(x, t)‖22 + C‖w(x, t)‖22.

Therefore, choosing α ≤ 1/2 and using the Granwall’s inequality, we can show
that w(x, t) = 0. �

Theorem 3.2. Under the assumptions in Theorem 3.1, the system (2.2) has unique
time-periodic solution u ∈ L∞(0, T ;H2,2(R3)).

Proof. The proof of uniqueness is similar to that of Theorem 3.1. Thus, we only
need to show the existence.

Assume that un(x, T ) is the Galerkin approximation solutions of system (2.2).
Then, we consider the map: Υ : un(x, 0) → un(x, T ). It is easy to show that
this map is continuous from the finite-dimensional space Xn to itself, where Xn

are the finite dimensional spaces in the Galerkin approximation. More important,
we also have the non-expansive property, i.e., if R is large enough which will be
determined later and ‖un(x, 0)‖2 ≤ R, then ‖un(x, T )‖2 ≤ R. For simplicity, we
set un(x, T ) = u(x, t).

This property can be showed as follows: We multiply the equation (2.2) by
2u(x, t). Since f(x, t) ∈ L2((0, T );L2(R3)), by interpolating inequality, Young in-
equality, Sobolev inequality, we obtain

d

dt

∫
R3
|u(x, t)|2 dx+ 2ε

∫
R3

[(−∆)
σ
2 u(x, t)]2 dx

+ 2
∫

R3
[∇u(x, t)]2 dx+ 2η

∫
R3

[u(x, t)]2 dx

= 2
∫

R3
f(x, t)u(x, t) dx

≤ 2‖f(x, t)‖2‖u(x, t)‖2
≤ η‖u(x, t)‖22 + Cη‖f(x, t)‖22.
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Therefore, we have
d

dt

∫
R3
|u(x, t)|2 dx+ η‖u(x, t)‖22 ≤ C‖f(x, t)‖22.

From this inequality, we obtain

d

dt
(eηt‖u(x, t)‖22) ≤ eηT

∫ T

0

‖f(x, t)‖22 dt.

Integrating in (0,T) with respect to t, we get

eηT ‖u(x, t)‖22 − ‖u0(x)‖22 ≤ TeηT

∫ T

0

‖f(x, t)‖22 dt.

Therefore,
eηT ‖u(x, t)‖22 ≤ ‖u0(x)‖22 + C.

Since ‖u0(x)‖22 ≤ R2, we have

eηT ‖u(x, t)‖22 ≤ R2 + C.

Let R2 + C ≤ eηTR2. Then, we have ‖u(x, t)‖22 ≤ R2. This completes the proof of
the property.

Then, by the Brouwer fixed point theorem, the map Υ has a fixed point, that is
to say that there exists a function u(x, t) such that u(x, 0) = u(x, T ). Therefore, for
any fixed n, we obtained a time-periodic solution un to the Galerkin approximation
equations of system (2.2). At last, applying the Galerkin method again, we finish
the proof of Theorem 3.2. �

4. The Limit as the Artificial Term Vanishes

In section 3, we have proved the existence and uniqueness of the time-periodic
solution to system (2.2) for any given positive numbers ε and η. Unfortunately,
these solutions may depend on the coefficients ε and η. The aim of this section
is to prove the similar result for the original Navier-Stokes system (2.1). For this
purpose, we need to take the limit of solution uε,η to the system (2.2) as ε→ 0 and
η → 0 in system (2.2). We begin with the following a priori estimates of L2 norms
which are independent of ε and η.

Lemma 4.1. If uε,η is the solution to system (2.2), then we have the following
inequalities:

sup
(0,T )

‖uε,η(x, t)‖22 ≤ C1 and
∫ T

0

‖∇uε,η(x, t)‖22 dt ≤ C2,

where C1 and C2 are positive constants, independent of ε and η.

The proof of the lemma above follows when multiplying (2.2) by 2u(x,t) and
then doing direct calculations.

Lemma 4.2. Assume that uε,η is the sequence of functions satisfying the inequali-
ties in Lemma 4.1. Then, extracting subsequence if necessary, we have the following
results:

uε,η → uη weakly in L2(0, T ;L2(R3)),

uε,η → uη weak* in L∞(0, T ;L2(R3)),

∇uε,η → ∇uη weakly in L2(0, T ;L2(R3)).
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Lemma 4.3. Assume that uη is the sequence of functions obtaining in Lemma 4.2.
Then, extracting subsequence if necessary, we have the following results:

uη → u weakly in L2(0, T ;L2(R3)),

uη → u weak* in L∞(0, T ;L2(R3)),

∇uη → ∇u weakly in L2(0, T ;L2(R3)).

The two lemmas above are standard theorems in functional analysis. Now, we
prove our main theorem.

Proof of Theorem 2.1. Given a test function Ψ ∈ D(R3)), multiplying (2.2) by Ψ,
we obtain

(
d

dt
uε,η(x, t),Ψ) +

∫
R3
uε,η(x, t)∇uε,η(x, t)Ψdx

+ (∇uε,η(x, t),∇Ψ) + ε((−∆)uε,η(x, t), (−∆)Ψ) + η(u(x, t),Ψ)

= (f,Ψ).

Integrating by parts, we have

− (uε,η(x, t),
d

dt
Ψ) +

∫
R3
uε,η(x, t)∇uε,η(x, t)Ψdx

− (uε,η(x, t),∆Ψ) + ε(uε,η(x, t), (−∆)2Ψ) + η(uε,η(x, t),Ψ)

= (f,Ψ).

Since (uε,η(x, t), (−∆)2Ψ) ≤
√
C1‖(−∆)2Ψ‖2, it follows that ε(uε,η(x, t), (−∆)2Ψ)

approaches 0, as ε→ 0.
We claim that

∫
R3 uε,η(x, t)∇uε,η(x, t)Ψdx →

∫
R3 uη∇uηΨdx, as ε approaches

0. Indeed, let BR = {x ∈ R3 : |x| ≤ R}. Because the sequence uε,η is bounded
in L2(0, T ;H2,2(BR)), and by a compactness argument (see [4, Chap.1, Thm 5.1])
there is a subsequence satisfying the above property in BR. Letting R →∞, then
we get our claim. Therefore, let ε→ 0 in the above equation, we have

−(uη(x, t),
d

dt
Ψ) +

∫
R3
uη(x, t)∇uη(x, t)Ψdx− (uη(x, t),∆Ψ) + η(uη,Ψ) = (f,Ψ).

On the other hand, because uε,η(x, T ) → uη(x, T ) weakly in L2(R3), uε,η(x, 0) →
uη(x, 0) weakly in L2(R3), and uε,η(x, T ) = uε,η(x, 0), we can get uη(x, T ) =
uη(x, 0) in the sense of distributions.

Finally, as in the proof of the case of ε→ 0, letting η → 0, we obtain

−(u(x, t),
d

dt
Ψ) +

∫
R3
u(x, t)∇u(x, t)Ψdx− (u(x, t),∆Ψ) = (f,Ψ).

Moreover, we also have u(x, T ) = u(x, 0) in the sense of distributions. This com-
pletes the proof of Theorem 2.1. �
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