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UNIFORMLY ISOCHRONOUS POLYNOMIAL CENTERS

VLADIMIR V. IVANOV, EVGENII P. VOLOKITIN

Abstract. We study a specific family of uniformly isochronous polynomial

systems. Our results permit us to solve a problem about centers of such
systems. We consider the composition conjecture for uniformly isochronous

polynomial systems.

1. Introduction

Consider the planar autonomous system of ordinary differential equations

ẋ = −y + xH(x, y),

ẏ = x + yH(x, y),
(1.1)

where H(x, y) is a polynomial in x and y of degree n, and H(0, 0) = 0. This system
has only one singular point at O(0, 0) which is the center of the linear part of the
system. The solutions of this system move around the origin with constant angular
speed, and the origin is so a uniformly isochronous singular point.

The problem of characterizing uniformly isochronous centers has attracted at-
tention of several authors; see [1]–[3], [8] and the references therein. In particular,
the following problem was posed:

It is true that all centers for uniformly isochronous polynomial sys-
tems are either reversible or admit a nontrivial polynomial com-
muting system?

The problem appeared in [3] and was mentioned as an open question in [2]. We
prove the following proposition which permits to give a negative answer to the
question.

Theorem 1.1. Let a uniformly isochronous polynomial system have the form

ẋ = −y + xQ(x, y)
m∑

i=0

ai(x2 + y2)i,

ẏ = x + yQ(x, y)
m∑

i=0

ai(x2 + y2)i,

(1.2)
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where Q(x, y) is a homogeneous polynomial in x, y of degree k and∫ 2π

0

Q(cos ϑ, sinϑ)dϑ = 0. (1.3)

Then the origin is a center of (1.2). The center is of type Bν with ν ≤ k, and a
“generic” center is of type B1 if k is odd or of type B2 if k is even.

Proof. System (1.2) can be written as the single separable equation
d%

dϑ
= %k+1Q(cos ϑ, sinϑ)R(%) (1.4)

with %, ϑ polar coordinates and R(%) =
∑m

i=0 ai%
2i.

Equation (1.4) has a solution % ≡ 0 defined for all ϑ. Therefore every solution
%(ϑ) with the initial value %(0) = %0 where %0 > 0 is small enough is defined for
ϑ ∈ [0, 2π] and satisfies the condition∫ ϑ

0

Q(cos ϕ, sinϕ)dϕ =
∫ %(ϑ)

%0

dr

rk+1R(r)
. (1.5)

From (1.5) we conclude that the solution is 2π-periodic, and so the origin is a center.
The first part of the theorem is proved.

The center of a planar system is said to be of type Bν if the boundary of the
center region is the union of ν open unbounded trajectories [11]. By [12], the center
of (1.2) is of type Bν with ν ≤ n = k + 2m.

The circles x2 + y2 = %2
i , with %i the roots of the equations R(%) = 0, are

trajectories of (1.2). All of them lie in the center region.

O θ
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1(θ) ρ∗

2(θ)

Figure 1. Solution curves of (1.4) in the (ϑ, %)-plane (left) and
trajectories of (1.2) in the Poincaré disc (right)

The unbounded trajectories of (1.2) correspond to unbounded solutions of (1.4).
Studying the behaviour of solution curves of (1.4) at large %, we can show that
for every null isocline ϑ = ϑ∗ where solutions have a maximum there exist two
solutions %∗1(ϑ), %∗2(ϑ), such that the isocline is a vertical asymptote

lim
ϑ→ϑ∗−0

%∗1(ϑ) = +∞, lim
ϑ→ϑ∗+0

%∗2(ϑ) = +∞,

(see Fig. 1).
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In this situation, there is a relevant equilibrium point at infinity in the intersec-
tion of the equator of the Poincaré sphere with the ray x = % cos ϑ∗, y = % sinϑ∗,
% > 0. The point has one hyperbolic sector with two separatrices corresponding to
the solutions %∗1(ϑ), %∗2(ϑ) (see Fig. 1). The boundary of the center region consists
of such separatrices. The number ν of these equilibrium points coincides with the
number of the null isoclines of direction field (1.4) where solutions has a maximum
for large %. These isoclines are vertical lines ϑ = ϑ∗i , where the values of ϑ∗i are
determined from the conditions Q(cos ϑ, sinϑ) = 0, 0 ≤ ϑ < 2π. Hence, we have
the estimate ν ≤ k at describing type Bν of the center of (1.2).

If k is even our trigonometric polynomial Q(cos ϑ, sinϑ) has a period equal to π
(but not 2π as it happens for odd k). Therefore (1.4) has an even number of the
blocks discussed above and the relevant equilibrium points lie at the diameters of
the Poincaré sphere. It may be noted that (1.2) is O-symmetric in this case. The
upper bound k can be attained by ν. As an example we can consider (1.2) with
Q(cos ϑ, sinϑ) = sin kϑ and ai arbitrary real numbers.

In a “generic” situation, (1.4) has no solution for which two different null isoclines
are its asymptotes. Therefore, in such a situation the solution curve separating
bounded and unbounded solutions has a minimum number of discontinuity points
within [0, 2π]: one point if k is odd, and two points if k is even.

Hence a “generic” center is of type B1 when k is odd or type B2 when k is even
(see Fig. 2). The theorem is proved. �

B1 B2

Figure 2. Phase portraits of Equation (1.2)

Remarks. In [12, Theorem 2.1] about the centers of homogeneous systems is a
particular case of Theorem 1.1 set m = 0, a0 = 1.

We can generalize the first part of Theorem 1.1 as follows. Let the polynomial
H(x, y) in (1.1) take the form

H(x, y) = (xpy(x, y)− ypx(x, y))h(x2 + y2, p(x, y)),

where h(u, v) is a polynomial, p(x, y) is a homogeneous polynomial of degree k.
Then the origin is a center of (1.1). Indeed, the case under study (1.1) can be
written as a single equation of the form

d%

dϑ
= %k+1h(%2, %kf(ϑ))f ′(ϑ)
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with %, ϑ polar coordinates and f(ϑ) = p(cos ϑ, sinϑ). The solutions of this equation
are clearly some functions of f(ϑ). The function f(ϑ) is 2π-periodic. Then, the
solutions with small enough initial values are 2π-periodic functions as well. So, the
origin is a center.

The functions

f1(x, y) = x2 + y2, f2(x, y) =
m∑

i=0

ai(x2 + y2)i

are invariants for (1.2) with the respective cofactors

K1(x, y) = 2Q(x, y)
m∑

i=0

ai(x2 + y2)i,

K2(x, y) = 2Q(x, y)
m∑

i=0

iai(x2 + y2)i.

We have
k + 2

2
K1(x, y) + K2(x, y) = div,

where div is the divergence of (1.2). In this case the function µ(x, y) = f
(k+2)/2
1 f2

is a reciprocal integrating factor of the Darboux form. For algebraic invariants
and Darboux’s method of integration see [15], [16], for example. The factor gives
information about our system. For instance, it may be used to find a first Darboux
integral of (1.2), [7]. A first integral of (1.2) may be found from (1.5) as well.

It is obvious that (1.2) commutes with the system

ẋ = x(x2 + y2)k/2
m∑

i=0

ai(x2 + y2)i,

ẏ = y(x2 + y2)k/2
m∑

i=0

ai(x2 + y2)i.

(1.6)

If k is even (1.6) gives a polynomial commuting system without a linear part.
If k is odd then we have a non-polynomial commuting system. Nevertheless a
polynomial commuting system may exist in the case of odd k. For example, if (1.2)
is homogeneous (m = 0, a0 = 1) then there exists a polynomial system commuting
with (1.2), [14].

Using Theorem 1.1, we may construct an example of an uniformly isochronous
system that is not reversible and commutes with no polynomial system.

A planar differential system is said to be reversible if its corresponding direction
field is symmetric with respect to a straight line passing through the origin (a
symmetric line). If a system is reversible then its trajectories are symmetric with
respect to a symmetric line (Necessary and sufficient conditions for reversibility of
planar analytic vector fields were derived in [10]). If a symmetric line of (1.2) is
x sinϑ∗ − y cos ϑ∗ = 0, then the vertical line ϑ = ϑ∗ is the symmetric axis of the
graph of the trigonometric polynomial Q(cos ϑ, sinϑ) and the symmetric axis of
solution curves of (1.4).

Conditions for the existence of a polynomial commuting systems for uniformly
isochronous polynomial systems was considered in [1], [3]. In particular, it was
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proved that (1.1) commutes with a polynomial system if and only if the function
H(x, y) satisfies one of the following two conditions:

H(x, y) = P2l(x, y)
r∑

j=0

aj(x2 + y2)j (1.7)

where P2l(x, y) is a homogeneous polynomial of degree 2l, l ≥ 0. Or there are
homogeneous polynomials αl, βl of order l (l ≤ n, l divides n), satisfying x∂yβl −
y∂xβl = lαl such that

H(x, y) = αl

n/l−1∑
k=0

akβk
l . (1.8)

So, to construct the example in question it suffices to take a system of the form
(1.2) where the homogeneous polynomial Q(x, y) is of an odd degree (In this case
(1.5) is fulfilled and the function H(x, y) is not of the form (1.7)), the graph of the
trigonometric polynomial Q(cos ϑ, sinϑ) has no symmetric axes, and the numbers
m,ai are such that the function

H(x, y) = Q(x, y)
m∑

i=0

ai(x2 + y2)i

is not of the form (1.8). Put

Q(x, y) = y3 − 3xy2 + 2x2y = y(x− y)(2x− y), m = 1, a0 = a1 = 1.

Then
ẋ = −y + x(y3 − 3xy2 + 2x2y)(1 + x2 + y2),

ẏ = x + y(y3 − 3xy2 + 2x2y)(1 + x2 + y2).
(1.9)

According to Theorem 1.1, (1.9) has a (isochronous) center at the origin. The
function

I(x, y) =
r6

(1− 3r2 − 4x3 − 3xy2 − 3y3 − 3r3 arctan r)2
, r2 = x2 + y2.

is a first integral of (1.9) obtained from (1.5). Fig. 3 depicts the phase portrait of
(1.9). The center is clearly of type B1.
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Figure 3. Phase portrait for Equation (1.9)
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Evidently, the graph of Q(cos ϑ, sinϑ) has no symmetric axes and therefore sys-
tem (1.9) is nonreversible. We may show that if the graph of the homogeneous
trigonometric polynomial

T3(ϑ) = a1 cos ϑ + a3 cos 3ϑ + b1 sinϑ + b3 sin 3ϑ

has a symmetric axis then its coefficients satisfy the condition

a1b3(a2
1 − 3b2

1) = a3b1(3a2
1 − b2

1).

It easy to verify that system (1.9) may fail to commute with any non-proportional
polynomial systems. This fact follows from the impossibility of presenting the
function

H(x, y) = (y3 − 3xy2 + 2x2y)(1 + x2 + y2) ≡ H3(x, y) + H5(x, y)

in the form (1.8) but we can also prove it in a different way.
Indeed, assume that (1.9) commutes with a polynomial system of degree n

ẋ = R(x, y) ≡ R1(x, y) + R2(x, y) + · · ·+ Rn(x, y),

ẏ = S(x, y) ≡ S1(x, y) + S2(x, y) + · · ·+ Sn(x, y),
(1.10)

where Ri(x, y), Si(x, y) are homogeneous polynomials of degree i.
Then the Lie bracket between vector fields (1.9), (1.10) is equal to zero:

[(−y + xH(x, y), x + yH(x, y))T , (R(x, y), S(x, y))T ] = (0, 0)T .

In particular, we have the terms of highest degree equal to zero:

[(xH5(x, y), yH5(x, y))T , (Rn(x, y), Sn(x, y))T ] = (0, 0)T .

After transformations using Euler’s theorem for homogeneous functions, this equal-
ity may be written as

(xH5x(x, y) + (1− n)H5(x, y))Rn(x, y) + xH5y(x, y)Sn(x, y) = 0,

yH5x(x, y)Rn(x, y) + (yH5y(x, y) + (1− n)H5(x, y))Sn(x, y) = 0.

The linear system for the polynomials Rn(x, y), Sn(x, y) has a nontrivial solution
if its determinant ∆ is equal to zero:

∆ ≡(xH5x(x, y) + (1− n)H5(x, y))
(
yH5y(x, y) + (1− n)H5(x, y)

)
− xyH5x(x, y)H5y(x, y) = 0.

Since xH5x(x, y) + yH5y(x, y) = 5H5(x, y), we infer

∆ = (1− n)(6− n)H2
5 (x, y) = 0.

Therefore, either n = 6 or n = 1. It is obvious that n 6= 1. We now compute
the Lie brackets of (1.9) and (1.10) with n = 6. We obtain a polynomial vector
field. Equating to zero the coefficients of the polynomials we derive a system of
linear equations for coefficients of (1.10). The system is simple and may be solved
by successive substitutions. We used the software package Mathematica here. Our
calculations show that in the case under study the polynomial commuting system
(1.10) is proportional to (1.9). According to (1.6), system (1.9) commutes with the
system

ẋ = x(x2 + y2)
√

x2 + y2(1 + x2 + y2),

ẏ = y(x2 + y2)
√

x2 + y2(1 + x2 + y2).
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Hence (1.9) has a center but is nonreversible and commutes with no polynomial
system nonproportional to it.

We derive that the answer to the question from [2], [3] is negative.

2. Results

Note that the following condition is fulfilled for central systems of the form (1.1)
which are reversible, or have a polynomial commuting system, or are described in
Theorem 1.1: In polar coordinates these systems may be written as

%̇ = %H(% cos ϑ, % sinϑ) = h(%, f(ϑ))f ′(ϑ),

ϑ̇ = 1.
(2.1)

Indeed, let (1.1) be reversible. Without loss of generality we can take the y-axes as
its symmetric line. Then

−y + xH(x, y) = −y − xH(−x, y), x + yH(x, y) = −(−x + yH(−x, y)),

and the polynomial H(x, y) satisfies the condition

H(x, y) = −H(−x, y).

Hence, the polynomial may be written as

H(x, y) = xH̃(x2, y).

Passing to polar coordinates, we find that (1.1) is transformed into

%̇ = %2 cos ϑH̃(%2 cos2 ϑ, % sinϑ) = h(%, sinϑ)) cos ϑ,

ϑ̇ = 1,

and the system has the form (2.1) for f(ϑ) = sin ϑ.
It was proved in [3] that if (1.1) has a polynomial commuting system then it

may be written in the form (2.1). The systems in Theorem 1.1 obviously satisfy
our condition. Therefore, we supposed naturally that the following statement is
true:

System (1.1) has a center at the origin if and only if the function
H(x, y) may be written in the form (2.1).

We called this statement the composition claim for uniformly isochronous systems,
by analogy with the composition conjecture for the center problem for the Abel
equation (see [4]–[6], [17]).

Now we recall some definitions and results (see for example [4]). Consider the
Abel equation

ż = a2(t)z2 + · · ·+ an(t)zn,

where ai(t) are homogeneous 2π-periodic functions.
Then the equation has center z = 0 if all solutions z(t), starting near the origin,

satisfy the condition z(0) = z(2π).
The composition conjecture for the center problem for the Abel equation ap-

peared in [6]. It reads that the center problem is equivalent to the fact that the
functions ai(t) may be presented in the form

ai(t) = ai,1(s(t))s′(t), (2.2)
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for some continuous functions ai,1(·) and a differentiable function s(t) with s(0) =
s(2π). Condition 2.2 is the composition condition for ai(t) or the composition
condition for the Abel equation.

It was shown in [4] that the conjecture is not true if ai(t) are polynomials in cos t
and sin t. The following Abel equation was presented as the counterexample

dz

dϑ
= A(ϑ)z3 + B(ϑ)z2, (2.3)

where

A(ϑ) = −f(ϑ)g(ϑ), B(ϑ) = f(ϑ)− g′(ϑ),

f(ϑ) = h cos3 ϑ + 3 cos2 ϑ sinϑ + (3h + 6k) cos ϑ sin2 ϑ− sin3 ϑ,

g(ϑ) = cos3 ϑ + (2h + 5k) cos2 ϑ sinϑ− 3 cos ϑ sin2 ϑ− k sin3 ϑ

(2.4)

with 1 + hk + 2k2 = 0.
The choice of functions was motivated by the following arguments. Consider the

quadratic system

ẋ = −y − bx2 − Cxy − dy2,

ẏ = x + ax2 + Axy − ay2,

for which the conditions

2A + C = A + 3b + 5d = a2 + bd + 2d2 = 0

are sufficient for the origin to be a center (see for example [13]).
Let b = −h, C = −2, d = −k, a = 1, A = 3h + 5k. Then the system

ẋ = −y + hx2 + 2xy + ky2,

ẏ = x + x2 + (3h + 5k)xy − y2
(2.5)

has a center at the origin if 1 + hk + 2k2 = 0. The first integral of (2.5) is

I(x, y) =
(k2 − 3kκy + 3kκxy + 3k2κy2 − κ(x + ky)3)2

(k2 − 2kκy + κ(x + ky)2)3
, κ = 1 + k2.

In polar coordinates x = % cos ϑ, y = % sinϑ, (2.5) is transformed into the system

%̇ = %2f(ϑ),
ϑ̇ = 1 + %g(ϑ),

where the functions f(ϑ) and g(ϑ) are from (2.4). By the Cherkas transformation
[9], r = %/(1 + g(ϑ)), we reduce this system to the equation

dz

dϑ
= A(ϑ)z3 + B(ϑ)z2,

where A(ϑ), B(ϑ) are from (2.4). The closed trajectories of (2.5) correspond to
2π-periodic solutions of (2.4). So, z = 0 is a center for (2.3).

It was shown in [4] that A(ϑ), B(ϑ) are not of the form A(ϑ) = a1(s(ϑ))s′(ϑ),
B(ϑ) = b1(s(ϑ))s′(ϑ), and hence the composition conjecture for (2.3) is not true.

Our composition claim for uniformly isochronous systems was based on the as-
sumption that such systems are transformed to the specific Abel equations such
that the composition conjecture is true. However, this assumption is false.
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Consider the uniformly isochronous system

ẋ = −y + x(h3(x, y) + h6(x, y))/3,

ẏ = x + y(h3(x, y) + h6(x, y))/3,
(2.6)

where the functions h3(x, y), h6(x, y) are defined as follows: we take the functions
Ã(%, ϑ) = %6A(ϑ), B̃(%, ϑ) = %3B(ϑ), where A(ϑ), B(ϑ) are from (2.4) and put
% cos ϑ = x and % sinϑ = y. We obtain

h3(x, y)=((h + 5k)x3 − 12x2y + (−7h− 19k)xy2 + 4y3),

h6(x, y)=(−hx3−3x2y−(3h+6k)xy2+y3)(x3+(2h+5k)x2y−3xy2−ky3).

System (2.6) is transformed into

%̇ = %(A(ϑ)%6 + B(ϑ)%3)/3,

ϑ̇ = 1,

and the substitution z = %3 makes the latter into the above discussed equation

dz

dϑ
= A(ϑ)z3 + B(ϑ)z2.

It follows that the uniformly isochronous system (2.6) has a center but contradicts
our composition claim.
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Canada, July 13-24, 1992. Dordrecht: Kluwer Academic Publishers. NATO ASI Ser., Ser. C,
Math. Phys. Sci. 408, 429-467 (1993).

[17] Y. Yomdin, The center problem for the Abel equations, compositions of functions and moment

conditions, Mosc. Math. J. 2003. Vol. 3. No. 3. P. 1167–1195.

Vladimir V. Ivanov

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

Evgenii P. Volokitin
Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

E-mail address: volok@math.nsc.ru


	1. Introduction
	Remarks

	2. Results
	References

