Electron. J. Diff. Eqns., Vol. 2005(2005), No. 143, pp. 1-14.

Existence of positive solutions for nonlinear boundary-value problems in unbounded domains of $\mathbb{R}^{n}$

Faten Toumi, Noureddine Zeddini

Abstract:
Let $D$ be an unbounded domain in $\mathbb{R}^{n}$ ($n\geq 2$) with a nonempty compact boundary $\partial D$. We consider the following nonlinear elliptic problem, in the sense of distributions,
$$\displaylines{
 \Delta u=f(.,u),\quad u greater than 0\quad \hbox{in }D,\cr
 u\big|_{\partial D}=\alpha \varphi ,\cr
 \lim_{|x|\to +\infty }\frac{u(x)}{h(x)}=\beta \lambda ,
 }$$
where $\alpha ,\beta,\lambda $ are nonnegative constants with $\alpha +\beta >0$ and $\varphi $ is a nontrivial nonnegative continuous function on $\partial D$. The function $f$ is nonnegative and satisfies some appropriate conditions related to a Kato class of functions, and $h$ is a fixed harmonic function in $D$, continuous on $\overline{D}$. Our aim is to prove the existence of positive continuous solutions bounded below by a harmonic function. For this aim we use the Schauder fixed-point argument and a potential theory approach.

Submitted September 30, 2005. Published December 8, 2005.
Math Subject Classifications: 34B15, 34B27.
Key Words: Green function; nonlinear elliptic equation; positive solution; Schauder fixed point theorem.

Show me the PDF file (286K), TEX file, and other files for this article.

Faten Toumi
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: Faten.Toumi@fsb.rnu.tn
Noureddine Zeddini
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: Noureddine.Zeddini@ipein.rnu.tn

Return to the EJDE web page