Electronic Journal of Differential Equations, Vol. 2005(2005), No. 18, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXAMPLE OF AN ∞ -HARMONIC FUNCTION WHICH IS NOT C^2 ON A DENSE SUBSET

HAYK MIKAYELYAN

ABSTRACT. We show that for certain boundary values, McShane-Whitney's minimal-extension-like function is ∞ -harmonic near the boundary and is not C^2 on a dense subset.

1. Results

Let us consider the strip $\{(u, v) \in \mathbb{R}^2 : 0 < v < \delta\}$, which is going to be the domain for a function constructed in this article. Take a function $f \in C^{1,1}(\mathbb{R})$ and let $L_f := \|f'\|_{\infty}$ and $L'_f := \operatorname{Lip}(f')$. Let us consider an analogue of the minimal extension of McShane and Whitney,

$$u(x,d) := \sup_{y \in \mathbb{R}} [f(y) - L|(x,d) - (y,0)|],$$
(1.1)

where $0 < d < \delta$ and $L > L_f$. Note that to obtain the classical minimal extension of McShane and Whitney we have to take $L = L_f$.

For the rest of this article we fix the function f and the constants $L > L_f$, $\delta > 0$. We will find conditions on $\delta > 0$, which make our statements true. The real number x will be associated with the point $(x, \delta) \in \Gamma_{\delta} := \{(u, v) \in \mathbb{R}^2 : v = \delta\}$, and the real number y with the point $(y, 0) \in \Gamma_0$. In the sequel the values of u on the line Γ_{δ} will be of our interest and we write u(x) for $u(x, \delta)$ (see Figure 1).

Proposition 1.1. The function u defined above satisfies

$$u(x) = \sup_{y \in \mathbb{R}} [f(y) - L\sqrt{\delta^2 + (x-y)^2}] = \max_{|y-x| \le D\delta} [f(y) - L\sqrt{\delta^2 + (x-y)^2}], \quad (1.2)$$

where $D := \frac{2LL_f}{L^2 - L^2}.$

Proof. From the definition of u we have $f(x) - L\delta \le u(x)$ so it is sufficient to show that if $|x - y| > D\delta$ then

$$f(y) - L\sqrt{\delta^2 + (x-y)^2} < f(x) - L\delta.$$

On the other hand, from the bound of f' we have

$$f(y) - L\sqrt{\delta^2 + (x-y)^2} \le f(x) + L_f |x-y| - L\sqrt{\delta^2 + (x-y)^2}.$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 35B65,\ 35J70,\ 26B05.$

Key words and phrases. Infinity-Laplacian.

^{©2005} Texas State University - San Marcos.

Submitted November 24, 2004. Published February 5, 2005.

Thus we note that all values of y for which

$$f(x) + L_f |x - y| - L\sqrt{\delta^2 + (x - y)^2} < f(x) - L\delta$$

can be ignored in taking supremum in the definition of u. We write

$$L_f|x-y| + L\delta < L\sqrt{\delta^2 + (x-y)^2}$$

and arrive at

$$L_f^2 |x - y|^2 + 2LL_f \delta |x - y| + L^2 \delta^2 < L^2 \delta^2 + L^2 |x - y|^2.$$

Therefore,

$$2LL_f\delta < (L^2 - L_f^2)|x - y| \quad \Longleftrightarrow \quad |x - y| > D\delta.$$

Let y(x) be one of the points in $\{|y - x| \le D\delta\}$, where the maximum in (1.2) is achieved,

$$u(x) = f(y(x)) - L\sqrt{\delta^2 + (x - y(x))^2}.$$
(1.3)

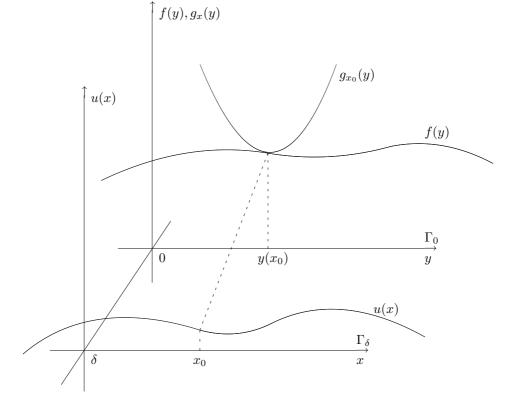


FIGURE 1. Touched by hyperbola

Lemma 1.2. If $\delta > 0$ is small enough then for every $x \in \Gamma_{\delta}$ the point y(x) is unique and $y(x) : \mathbb{R} \to \mathbb{R}$ is a bijective Lipschitz map.

EJDE-2005/18

Proof. For each $x \in \Gamma_{\delta}$ consider the function $g_x(y) := u(x) + L\sqrt{\delta^2 + (x-y)^2}$ defined on Γ_0 (see Figure 1). The graph of g_x is a hyperbola and the graph of any other function $g_{x'}$ can be obtained by a translation. Obviously $f(y) \leq g_x(y)$ on Γ_0 and $g_x(y(x)) = f(y(x))$. If at every point $y \in \Gamma_0$ the graph of f can be touched from above by some hyperbola $g_x(y)$ then we will get the surjectivity of y(x). To obtain this result, the following will be sufficient

$$g_x''(y) > L_f', \quad \text{for all } |y - x| \le D\delta.$$
 (1.4)

For a fixed $y_0 \in \Gamma_0$, we can find a hyperbola $h_{x_0}(y) = C + L\sqrt{\delta^2 + (x_0 - y)^2}$ such that $h_{x_0}(y_0) = f(y_0)$ and $h'_{x_0}(y_0) = f'(y_0)$; then obviously $f(y) \leq h_{x_0}(y)$ for $|y - x_0| \leq D\delta$ (see (1.4)) and for $|y - x_0| > D\delta$ (see Proposition 1.1). In other words, $h_{x_0}(y) = g_{x_0}(y)$. So (1.4) gives us

$$\delta < \frac{L}{L'_f (1+D^2)^{3/2}},\tag{1.5}$$

where D is defined in Proposition 1.1.

Note that also uniqueness of y(x) follows from (1.4); assume we have y(x) and $\tilde{y}(x)$, then

$$L'_f|y(x) - \tilde{y}(x)| < \Big|\int_{y(x)}^{\tilde{y}(x)} g''_x(t)dt\Big| = |f'(y(x)) - f'(\tilde{y}(x))| \le L'_f|y(x) - \tilde{y}(x)|.$$

We have used here that

wher

$$f'(y(x)) = g'_x(y(x)) = \frac{L(y(x) - x)}{\sqrt{\delta^2 + (y(x) - x)^2}}$$
(1.6)

(derivatives in y at the point y(x)).

The injectivity of the map y(x) follows from differentiability of f. Assume $y_0 = y(x) = y(\tilde{x})$, so we have $f(y_0) = g_x(y_0) = g_{\tilde{x}}(y_0)$. On the other hand, $f(y) \leq \min(g_x(y), g_{\tilde{x}}(y))$; this contradicts differentiability of f at y_0 .

The monotonicity of y(x) can be obtained using the same arguments; if $x < \tilde{x}$ then the 'left' hyperbola $g_x(y)$ touches the graph of f 'lefter' than the 'right' hyperbola $g_{\tilde{x}}(y)$, since both hyperbolas are above the graph of f.

Now we will prove that y(x) is Lipschitz. From (1.6) it follows that

$$y(x) - x = \frac{\delta f'(y(x))}{\sqrt{L^2 - (f'(y(x)))^2}}.$$
(1.7)

Taking Y(x) := y(x) - x we can rewrite this as

$$Y(x) = \frac{\delta f'(Y(x) + x)}{\sqrt{L^2 - (f'(Y(x) + x))^2}} = \delta \Phi(f'(Y(x) + x)), \tag{1.8}$$

where $\Phi(t) = t/\sqrt{L^2 - t^2}$. For $\delta < \frac{(L^2 - L_f^2)^{\frac{3}{2}}}{L^2 L_f'}$, we can use Banach's fix point theorem and get that this functional equation has unique continuous solution. On the other hand, it is not difficult to check that

$$\left|\frac{Y(x_2) - Y(x_1)}{x_2 - x_1}\right| \le \frac{\delta C}{1 - \delta C},$$

e $C = \frac{L^2 L'_f}{(L^2 - L_f^2)^{3/2}}.$

Corollary 1.3. If δ is as small as in the previous Lemma, then the function u is ∞ -harmonic in the strip between Γ_0 and Γ_{δ} .

Proof. This follows from the fact that if we take the strip with boundary values f on Γ_0 and u on Γ_δ then McShane-Whitney's minimal and maximal solutions will coincide, obviously with u.

Remark 1.4. We can rewrite (1.7) in the form

$$x(y) = y - \frac{\delta f'(y)}{\sqrt{L^2 - (f'(y))^2}},$$
(1.9)

where x(y) is the inverse of y(x). This together with (1.3) gives us

$$u(x(y)) = f(y) - \frac{\delta L^2}{\sqrt{L^2 - (f'(y))^2}}.$$

Using the recent result of O.Savin that u is C^1 , we conclude that function x(y) is as regular as f', so we cannot expect to have better regularity than Lipschitz.

Lemma 1.5. If $\delta > 0$ is as small as above and function f is not twice differentiable at y_0 , then the function u is not twice differentiable at $x_0 := x(y_0)$.

Proof. First note that for all x and y, such that x = x(y) we have

$$u'(x) = f'(y)$$

This can be checked analytically but actually is a trivial geometrical fact; the hyperbola 'slides' in the direction of the growth of f at point y, thus the cone which generates this hyperbola and 'draws' with its peak the graph of u moves in same direction which is the direction of the growth of u at point x = x(y).

Now assume we have two sequences $y_k \to y_0$ and $\tilde{y}_k \to y_0$ such that

$$\frac{f'(y_k) - f'(y_0)}{y_k - y_0} \to \underline{f''}(y_0) \quad \text{and} \quad \frac{f'(\tilde{y}_k) - f'(y_0)}{\tilde{y}_k - y_0} \to \overline{f''}(y_0)$$

and $\underline{f''(y_0)} < \overline{f''(y_0)}$. Let us define appropriate sequences on Γ_{δ} denoting by $x_k := x(y_k)$ and by $\tilde{x}_k := x(\tilde{y}_k)$ and compute the limits of

$$\frac{u'(x_k) - u'(x_0)}{x_k - x_0} \quad \text{and} \quad \frac{u'(\tilde{x}_k) - u'(x_0)}{\tilde{x}_k - x_0}.$$

We have

$$\frac{u'(x_k) - u'(x_0)}{x_k - x_0} = \frac{f'(y_k) - f'(y_0)}{y_k - y_0} \frac{y_k - y_0}{x_k - x_0}$$

the first multiplier converges to $\underline{f''}(y_0)$, let us compute the limit of the second one. From (1.9) we get that

$$\frac{x_k - x_0}{y_k - y_0} \to 1 - \delta \Phi'(f'(y_0))\underline{f''}(y_0),$$

where $\Phi(t) = t/\sqrt{L^2 - t^2}$. Thus

$$\frac{u'(x_k) - u'(x_0)}{x_k - x_0} \to \frac{\underline{f''}(y_0)}{1 - \delta \Phi'(f'(y_0))\underline{f''}(y_0)}$$

and analogously

$$\frac{u'(\tilde{x}_k) - u'(x_0)}{\tilde{x}_k - x_0} \to \frac{\overline{f''}(y_0)}{1 - \delta \Phi'(f'(y_0))\overline{f''}(y_0)}.$$

EJDE-2005/18

To complete the proof we need to use the monotonicity of the function

$$\frac{t}{1 - \delta Ct}, \quad -L'_f < t < L'_f,$$

where $\frac{1}{L} < C < L^2 / (L^2 - L_f^2)^{3/2}$.

Note that if the function f is not C^2 at a point y then u constructed here is not C^2 on the whole line connecting y and x(y). So choosing f to be not twice differentiable on a dense set we can get a function u which is not C^2 on the collection of corresponding line-segments. A similar example is the distance function from a convex set, whose boundary is C^1 and not C^2 on a dense subset. Then the distance function is ∞ -harmonic and is not C^2 on appropriate lines.

2. MOTIVATION

Our example u has the property of having constant $|\nabla u|$ on gradient flow curves (lines in our case). It would be interesting to find a general answer to the question:

What geometry do the gradient flow curves of an ∞ -harmonic func-

tion u have, on which $|\nabla u|$ is not constant?

From Aronsson's results we know that u is not C^2 on such a curve. This is our motivation for the investigation of C^2 -differentiability of ∞ -harmonic functions.

The author has only one item in the list of references. The history and the recent developments of the theory of ∞ -harmonic functions, as well as a complete reference list could be found in that paper.

Acknowledgement. The author is grateful to Gunnar Aronsson, Michael Crandall and Arshak Petrosyan for valuable discussions.

References

 G. Aronsson, M. Crandall, P. Juutinen A tour of the theory of absolutely minimizing functions Bull. Amer. Math. Soc. 41 (2004), no. 4, 439–505.

HAYK MIKAYELYAN

MAX-PLANCK-INSTITUT FÜR MATHEMATIK IN DEN NATURWISSENSCHAFTEN, INSELSTRASSE 22, 04103 LEIPZIG, GERMANY

E-mail address: hayk@mis.mpg.de