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EXAMPLE OF AN ∞-HARMONIC FUNCTION WHICH IS NOT
C2 ON A DENSE SUBSET

HAYK MIKAYELYAN

Abstract. We show that for certain boundary values, McShane-Whitney’s
minimal-extension-like function is ∞-harmonic near the boundary and is not
C2 on a dense subset.

1. Results

Let us consider the strip {(u, v) ∈ R2 : 0 < v < δ}, which is going to be the
domain for a function constructed in this article. Take a function f ∈ C1,1(R) and
let Lf := ‖f ′‖∞ and L′f := Lip(f ′). Let us consider an analogue of the minimal
extension of McShane and Whitney,

u(x, d) := sup
y∈R

[f(y)− L|(x, d)− (y, 0)|], (1.1)

where 0 < d < δ and L > Lf . Note that to obtain the classical minimal extension
of McShane and Whitney we have to take L = Lf .

For the rest of this article we fix the function f and the constants L > Lf , δ > 0.
We will find conditions on δ > 0, which make our statements true. The real number
x will be associated with the point (x, δ) ∈ Γδ := {(u, v) ∈ R2 : v = δ}, and the
real number y with the point (y, 0) ∈ Γ0. In the sequel the values of u on the line
Γδ will be of our interest and we write u(x) for u(x, δ) (see Figure 1).

Proposition 1.1. The function u defined above satisfies

u(x) = sup
y∈R

[f(y)− L
√

δ2 + (x− y)2] = max
|y−x|≤Dδ

[f(y)− L
√

δ2 + (x− y)2], (1.2)

where D := 2LLf

L2−L2
f
.

Proof. From the definition of u we have f(x)−Lδ ≤ u(x) so it is sufficient to show
that if |x− y| > Dδ then

f(y)− L
√

δ2 + (x− y)2 < f(x)− Lδ.

On the other hand, from the bound of f ′ we have

f(y)− L
√

δ2 + (x− y)2 ≤ f(x) + Lf |x− y| − L
√

δ2 + (x− y)2.
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Thus we note that all values of y for which

f(x) + Lf |x− y| − L
√

δ2 + (x− y)2 < f(x)− Lδ

can be ignored in taking supremum in the definition of u. We write

Lf |x− y|+ Lδ < L
√

δ2 + (x− y)2

and arrive at

L2
f |x− y|2 + 2LLfδ|x− y|+ L2δ2 < L2δ2 + L2|x− y|2 .

Therefore,
2LLfδ < (L2 − L2

f )|x− y| ⇐⇒ |x− y| > Dδ.

¤

Let y(x) be one of the points in {|y − x| ≤ Dδ}, where the maximum in (1.2) is
achieved,

u(x) = f(y(x))− L
√

δ2 + (x− y(x))2. (1.3)

↑

↑
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→
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Figure 1. Touched by hyperbola

Lemma 1.2. If δ > 0 is small enough then for every x ∈ Γδ the point y(x) is
unique and y(x) : R→ R is a bijective Lipschitz map.
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Proof. For each x ∈ Γδ consider the function gx(y) := u(x) + L
√

δ2 + (x− y)2
defined on Γ0 (see Figure 1). The graph of gx is a hyperbola and the graph of any
other function gx′ can be obtained by a translation. Obviously f(y) ≤ gx(y) on Γ0

and gx(y(x)) = f(y(x)). If at every point y ∈ Γ0 the graph of f can be touched
from above by some hyperbola gx(y) then we will get the surjectivity of y(x). To
obtain this result, the following will be sufficient

g′′x(y) > L′f , for all |y − x| ≤ Dδ. (1.4)

For a fixed y0 ∈ Γ0, we can find a hyperbola hx0(y) = C + L
√

δ2 + (x0 − y)2
such that hx0(y0) = f(y0) and h′x0

(y0) = f ′(y0); then obviously f(y) ≤ hx0(y) for
|y − x0| ≤ Dδ (see (1.4)) and for |y − x0| > Dδ (see Proposition 1.1). In other
words, hx0(y) = gx0(y). So (1.4) gives us

δ <
L

L′f (1 + D2)3/2
, (1.5)

where D is defined in Proposition 1.1.
Note that also uniqueness of y(x) follows from (1.4); assume we have y(x) and

ỹ(x), then

L′f |y(x)− ỹ(x)| <
∣∣∣
∫ ỹ(x)

y(x)

g′′x(t)dt
∣∣∣ = |f ′(y(x))− f ′(ỹ(x))| ≤ L′f |y(x)− ỹ(x)|.

We have used here that

f ′(y(x)) = g′x(y(x)) =
L(y(x)− x)√

δ2 + (y(x)− x)2
(1.6)

(derivatives in y at the point y(x)).
The injectivity of the map y(x) follows from differentiability of f . Assume y0 =

y(x) = y(x̃), so we have f(y0) = gx(y0) = gx̃(y0). On the other hand, f(y) ≤
min(gx(y), gx̃(y)); this contradicts differentiability of f at y0.

The monotonicity of y(x) can be obtained using the same arguments; if x <
x̃ then the ‘left’ hyperbola gx(y) touches the graph of f ‘lefter’ than the ‘right’
hyperbola gx̃(y), since both hyperbolas are above the graph of f .

Now we will prove that y(x) is Lipschitz. From (1.6) it follows that

y(x)− x =
δf ′(y(x))√

L2 − (f ′(y(x)))2
. (1.7)

Taking Y (x) := y(x)− x we can rewrite this as

Y (x) =
δf ′(Y (x) + x)√

L2 − (f ′(Y (x) + x))2
= δΦ(f ′(Y (x) + x)), (1.8)

where Φ(t) = t/
√

L2 − t2. For δ <
(L2−L2

f )
3
2

L2L′f
, we can use Banach’s fix point theorem

and get that this functional equation has unique continuous solution. On the other
hand, it is not difficult to check that

∣∣Y (x2)− Y (x1)
x2 − x1

∣∣ ≤ δC

1− δC
,

where C = L2L′f
(L2−L2

f )3/2 . ¤
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Corollary 1.3. If δ is as small as in the previous Lemma, then the function u is
∞-harmonic in the strip between Γ0 and Γδ.

Proof. This follows from the fact that if we take the strip with boundary values f
on Γ0 and u on Γδ then McShane-Whitney’s minimal and maximal solutions will
coincide, obviously with u. ¤
Remark 1.4. We can rewrite (1.7) in the form

x(y) = y − δf ′(y)√
L2 − (f ′(y))2

, (1.9)

where x(y) is the inverse of y(x). This together with (1.3) gives us

u(x(y)) = f(y)− δL2

√
L2 − (f ′(y))2

.

Using the recent result of O.Savin that u is C1, we conclude that function x(y) is
as regular as f ′, so we cannot expect to have better regularity than Lipschitz.

Lemma 1.5. If δ > 0 is as small as above and function f is not twice differentiable
at y0, then the function u is not twice differentiable at x0 := x(y0).

Proof. First note that for all x and y, such that x = x(y) we have

u′(x) = f ′(y).

This can be checked analytically but actually is a trivial geometrical fact; the
hyperbola ’slides’ in the direction of the growth of f at point y, thus the cone
which generates this hyperbola and ’draws’ with its peak the graph of u moves in
same direction which is the direction of the growth of u at point x = x(y).

Now assume we have two sequences yk → y0 and ỹk → y0 such that
f ′(yk)− f ′(y0)

yk − y0
→ f ′′(y0) and

f ′(ỹk)− f ′(y0)
ỹk − y0

→ f ′′(y0)

and f ′′(y0) < f ′′(y0). Let us define appropriate sequences on Γδ denoting by
xk := x(yk) and by x̃k := x(ỹk) and compute the limits of

u′(xk)− u′(x0)
xk − x0

and
u′(x̃k)− u′(x0)

x̃k − x0
.

We have
u′(xk)− u′(x0)

xk − x0
=

f ′(yk)− f ′(y0)
yk − y0

yk − y0

xk − x0

the first multiplier converges to f ′′(y0), let us compute the limit of the second one.
From (1.9) we get that

xk − x0

yk − y0
→ 1− δΦ′(f ′(y0))f ′′(y0),

where Φ(t) = t/
√

L2 − t2. Thus

u′(xk)− u′(x0)
xk − x0

→ f ′′(y0)
1− δΦ′(f ′(y0))f ′′(y0)

,

and analogously

u′(x̃k)− u′(x0)
x̃k − x0

→ f ′′(y0)
1− δΦ′(f ′(y0))f ′′(y0)

.
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To complete the proof we need to use the monotonicity of the function
t

1− δCt
, −L′f < t < L′f ,

where 1
L < C < L2/(L2 − L2

f )3/2. ¤

Note that if the function f is not C2 at a point y then u constructed here is
not C2 on the whole line connecting y and x(y). So choosing f to be not twice
differentiable on a dense set we can get a function u which is not C2 on the collection
of corresponding line-segments. A similar example is the distance function from a
convex set, whose boundary is C1 and not C2 on a dense subset. Then the distance
function is ∞-harmonic and is not C2 on appropriate lines.

2. Motivation

Our example u has the property of having constant |∇u| on gradient flow curves
(lines in our case). It would be interesting to find a general answer to the question:

What geometry do the gradient flow curves of an ∞-harmonic func-
tion u have, on which |∇u| is not constant?

From Aronsson’s results we know that u is not C2 on such a curve. This is our
motivation for the investigation of C2-differentiability of ∞-harmonic functions.

The author has only one item in the list of references. The history and the
recent developments of the theory of ∞-harmonic functions, as well as a complete
reference list could be found in that paper.
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