Electronic Journal of Differential Equations, Vol. 2005(2005), No. 64, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR SEMILINEAR NONLOCAL CAUCHY PROBLEMS IN BANACH SPACES

XINGMEI XUE

ABSTRACT. In this paper, we study a semilinear differential equations with nonlocal initial conditions in Banach spaces. We derive conditions for f, T(t), and g for the existence of mild solutions.

1. INTRODUCTION

In this paper we discuss the nonlocal initial value problem (IVP for short)

$$u'(t) = Au(t) + f(t, u(t)), \quad t \in (0, b),$$
(1.1)

$$u(0) = g(u) + u_0, \tag{1.2}$$

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators (i.e. C_0 -semigroup) T(t) in Banach space X and $f : [0, b] \times X \to X$, $g : C([0, b]; X) \to X$ are given X-valued functions.

The above nonlocal IVP has been studied extensively. Byszewski and Lasmikanthem [4, 5, 6] give the existence and uniqueness of mild solution when f and gsatisfying Lipschitz-type conditions. Ntougas and Tsamatos [12, 13] study the case of compactness conditions of g and T(t). In [10] Lin and Liu discuss the semilinear integro-differential equations under Lipschitz-type conditions. Byszewski and Akca [7] give the existence of functional-differential equation when T(t) is compact, and g is convex and compact on a given ball of C([0, b]; X). In [8] Fu and Ezzinbi study the neutral functional differential equations with nonlocal initial conditions. Benchohra and Ntouyas [3] discuss the second order differential equations with nonlocal conditions under compact conditions. Aizicovici and McKibben [1] give the existence of integral solutions of nonlinear differential inclusions with nonlocal conditions.

In references authors give the conditions of Lipschitz continuous of g as f be Lipschitz continuous, and give the compactness conditions of g as T(t) be compact and g be uniformly bounded. In this paper we give the existence of mild solution of IVP (1.1) and (1.2) under following conditions of g, T(t) and f:

- (1) g and f are compact, T(t) is a C_0 -semigroup
- (2) g is Lipschitz continuous, f is compact and T(t) is a C_0 -semigroup

 $^{2000\} Mathematics\ Subject\ Classification.\ 34G10,47D06.$

Key words and phrases. Semilinear differential equation; nonlocal initial condition; completely continuous operator.

 $[\]textcircled{O}2005$ Texas State University - San Marcos.

Submitted April 26, 2005. Published June 23, 2005.

(3) q is Lipschitz continuous and T(t) is compact.

Also give existence results in above cases without the assumption of uniformly boundedness of g.

Let $(X, \|\cdot\|)$ be a real Banach space. Denoted by C([0, b]; X) the space of Xvalued continuous functions on [0, b] with the norm $|u| = \sup\{||u(t)||, t \in [0, b]\}$ and denoted by L(0,b;X) the space of X-valued Bochner integrable functions on [0,b]with the norm $||u||_1 = \int_0^b ||u(t)|| dt$. By a *mild solution* of the nonlocal IVP (1.1) and (1.2) we mean the function

 $u \in C([0, b]; X)$ which satisfies

$$u(t) = T(t)u_0 + T(t)g(u) + \int_0^t T(t-s)f(s,u(s))ds$$
(1.3)

for all $t \in [0, b]$.

A C_0 -semigroup T(t) is said to be *compact* if T(t) is compact for any t > 0. If the semigroup T(t) is compact then $t \mapsto T(t)x$ are equicontinuous at all t > 0 with respect to x in all bounded subsets of X; i.e., the semigroup T(t) is equicontinuous.

To prove the existence results in this paper we need the following fixed point theorem by Schaefer.

Lemma 1.1 ([15]). Let S be a convex subset of a normed linear space E and assume $0 \in S$. Let $F: S \to S$ be a continuous and compact map, and let the set $\{x \in S : x = \lambda Fx \text{ for some } \lambda \in (0,1)\}$ be bounded. Then F has at least one fixed point in S.

In this paper we suppose that A generates a C_0 semigroup T(t) on X. And, without loss of generality, we always suppose that $u_0 = 0$.

2. Main Results

In this section we give some existence results of the nonlocal IVP (1.1) and (1.2). Here we list the following results.

- (Hg) (1) $q: C([0, b]; X) \to X$ is continuous and compact.
 - (2) There exist M > 0 such that $||g(u)|| \le M$ for $u \in C([0, b]; X)$.
- (Hf) (1) $f(\cdot, x)$ is measurable for $x \in X, f(t, \cdot)$ is continuous for a.e. $t \in [0, b]$. (2) There exist a function $a(\cdot) \in L^1(0, b, R^+)$ and an increasing continuous function $\Omega: \mathbb{R}^+ \to \mathbb{R}^+$ such that $||f(t,x)|| \leq a(t)\Omega(||x||)$ for all $x \in X$ and a.e. $t \in [0, b]$. (3) $f: [0, b] \times X \to X$ is compact.

Theorem 2.1. If (Hq) and (Hf) are satisfied, then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$\int_{0}^{b} a(s)ds < \int_{NM}^{+\infty} \frac{ds}{N\Omega(s)},\tag{2.1}$$

where $N = \sup\{||T(t)||, t \in [0, b]\}.$

Next, we give an existence result when q is Lipschitz:

(Hg') There exist a constant k < 1/N such that $||g(u) - g(v)|| \le k|u - v|$ for $u, v \in C([0, b]; X).$

Theorem 2.2. If (Hq'), (Hq)(2), and (Hf) are satisfied, then there is at least one mild solution for the IVP (1.1) and (1.2) when (2.1) holds.

EJDE-2005/64

Above we suppose that g is uniformly bounded. Next, we give existence results without the hypothesis (Hg)(2).

Theorem 2.3. If (Hg)(1) and (Hf) are satisfied, then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$\int_{0}^{b} a(s)ds < \liminf_{T \to \infty} \frac{T - N\alpha(T)}{N\Omega(T)},$$
(2.2)

where $\alpha(T) = \sup\{\|g(u)\|; |u| \le T\}.$

Theorem 2.4. If (Hg') and (Hf) are satisfied, then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$\int_{0}^{b} a(s)ds < \liminf_{T \to \infty} \frac{T - NkT}{N\Omega(T)}.$$
(2.3)

Next, we give an existence result when g is Lipschitz and the semigroup T(t) is compact.

Theorem 2.5. Assume that (Hg'), (Hf)(1), (Hf)(2) are satisfied, and assume that T(t) is compact. Then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$\int_0^b a(s)ds < \liminf_{T \to \infty} \frac{T - NkT}{N\Omega(T)}.$$
(2.4)

At last we would like to discuss the IVP (1.1) and (1.2) under the following growth conditions of f and g.

(Hf)(2') There exist $m(\cdot), h(\cdot) \in L^1(0, b; \mathbb{R}^+)$ such that

 $||f(t,x)|| \le m(t)||x|| + h(t),$

for a.e. $t \in [0, b]$ and $x \in X$.

(Hg)(2') There exist constant c, d such that for $u \in C([0, b]; X)$, $||g(u)|| \le c|u| + d$. Clearly (Hf)(2') is the special case of H(f)(2) with $a(t) = max\{m(t), h(t)\}$ and $\Omega(s) = s + 1$.

Theorem 2.6. Assume (Hg)(1), (Hg)(2'), (Hf)(1), (Hf)(2'), and assume (Hf)(3) is true, or T(t) is compact. Then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$Nce^{N\|m\|_1} < 1,$$
 (2.5)

where $\|\cdot\|_1$ means the $L^1(0,b)$ norm.

Theorem 2.7. Assume (Hg'), (Hf)(1), (Hf)(2'), and assume (Hf)(3) is true or T(t) is compact. Then there is at least one mild solution for the IVP (1.1) and (1.2) provided that

$$Nke^{N\|m\|_{1}} < 1. \tag{2.6}$$

3. Proofs of Main Results

We define $K: C([0, b]; X) \to C([0, b]; X)$ by

$$(Ku)(t) = \int_0^t T(t-s)f(s,u(s))ds$$
 (3.1)

for $t \in [0, b]$. To prove the existence results we need following lemmas.

Lemma 3.1. If (Hf) holds, then K is continuous and compact; i.e. K is completely continuous.

Proof. The continuity of K is proved as follows. Let $u_n \to u$ in C([0, b]; X). Then

$$|Ku_n - Ku| \le N \int_0^b ||f(s, u_n(s)) - f(s, u(s))|| ds.$$

So $Ku_n \to Ku$ in C([0, b]; X) by the Lebesgue's convergence theorem.

Let $B_r = \{u \in C([0,b]; X); |u| \leq r\}$. Form the Ascoli-Arzela theorem, to prove the compactness of K, we should prove that $KB_r \subset C([0,b]; X)$ is equi-continuous and $KB_r(t) \subset X$ is pre-compact for $t \in [0,b]$ for any r > 0. For any $u \in B_r$ we know

$$\begin{split} \|Ku(t+h) - Ku(t)\| \\ &\leq N \int_{t}^{t+h} \|f(s,u(s))\| ds + \int_{0}^{t} \|[T(t+h-s) - T(t-s)]f(s,u(s))\| ds \\ &\leq N \int_{t}^{t+h} a(s)\Omega(r) ds + N \int_{0}^{t} \|[T(h) - I]f(s,u(s))\| ds. \end{split}$$

Since f is compact, $||[T(h) - I]f(s, u(s))|| \to 0$ (as $h \to 0$) uniformly for $s \in [0, b]$ and $u \in B_r$. This implies that for any $\epsilon > 0$ there existing $\delta > 0$ such that $||[T(h) - I]f(s, u(s))|| \le \epsilon$ for $0 \le h < \delta$ and all $u \in B_r$. We know that:

$$\|Ku(t+h) - Ku(t)\| \le N\Omega(r) \int_t^{t+h} a(s)ds + N\epsilon$$

for $0 \leq h < \delta$ and all $u \in B_r$. So $KB_r \subset C([0, b]; X)$ is equicontinuous. The set $\{T(t-s)f(s, u(s)); t, s \in [0, b], u \in B_r\}$ is pre-compact as f is compact and $T(\cdot)$ is a C_0 semigroup. So $KB_r(t) \subset X$ is pre-compact as

$$KB_r(t) \subset t \ \overline{\text{conv}}\{T(t-s)f(s,u(s)); s \in [0,t], u \in B_r\}$$

for all $t \in [0, b]$.

Define $J : C([0,b];X) \to C([0,b];X)$ by (Ju)(t) = T(t)g(u). So u is the mild solution of IVP (1.1) and (1.2) if and only if u is the fixed point of J + K. We can prove the following lemma easily.

Lemma 3.2. If (Hg)(1) is true then J is continuous and compact.

Proof of theorem 2.1. From above we know that J + K is continuous and compact. To prove the existence, we should only prove that the set of fixed points of $\lambda(J+K)$ is uniformly bounded for $\lambda \in (0,1)$ by the Schaefer's fixed point theorem (Lemma 1.1). Let $u = \lambda(J + K)u$, i.e., for $t \in [0, b]$

$$u(t) = \lambda T(t)g(u) + \lambda \int_0^t T(t-s)f(s,u(s))ds$$

We have

$$||u(t)|| \le NM + N \int_0^t a(s) \Omega(||u(s)|| ds.$$

Denoting by x(t) the right-hand side of the above inequality, we know that x(0) = NM and $||u(t)|| \le x(t)$ for $t \in [0, b]$, and

$$x'(t) = Na(t)\Omega(||u(t)||) \le Na(t)\Omega(x(t))$$

EJDE-2005/64

for a.e. $t \in [0, b]$. This implies

$$\int_{NM}^{x(t)} \frac{ds}{N\Omega(s)} \leq \int_0^t a(s) ds < \int_{NM}^\infty \frac{ds}{N\Omega(s)},$$

for $t \in [0, b]$. This implies that there is a constant r > 0 such that $x(t) \le r$, where r is independent of λ . We complete the proof as $||u(t)|| \le r$ for $u \in \{u; u = \lambda(J+K)u$ for some $\lambda \in (0, 1)\}$.

For the next lemma, let $L : C([0, b]; X) \to C([0, b]; X)$ be defined as (Lu)(t) = u(t) - T(t)g(u).

Lemma 3.3. If (Hg') holds then L is bijective and L^{-1} is Lipschitz continuous with constant 1/(1 - Nk).

Proof. For any $v \in C([0,b]; X)$, by using the Banach's fixed point theorem, we know that there is unique $u \in C([0,b]; X)$ satisfying Lu = v. It implies that L is bijective. For any $v_1, v_2 \in C([0,b]; X)$,

$$\begin{aligned} \|L^{-1}v_1(t) - L^{-1}v_2(t)\| &\leq \|T(t)g(L^{-1}v_1) - T(t)g(L^{-1}v_1)\| + \|v_1(t) - v_2(t)\| \\ &\leq Nk|L^{-1}v_1 - L^{-1}v_2| + \|v_1(t) - v_2(t)\| \end{aligned}$$

for $t \in [0, b]$. This implies

$$|L^{-1}v_1 - L^{-1}v_2| \le \frac{1}{1 - Nk}|v_1 - v_2|.$$

which completes the proof.

Proof of Theorem 2.2. Clearly u is the mild solution of IVP and (1.2) if and only if u is the fixed point of $L^{-1}K$. Similarly with Theorem 2.1 we should only prove that the set $\{u; \lambda u = (L^{-1}K)u$ for some $\lambda > 1\}$ is bounded as $L^{-1}K$ be continuous and compact due to the fixed point theorem of Schaefer. If $\lambda u = L^{-1}Ku$. Then for any $t \in [0, b]$

$$\lambda u(t) = T(t)g(\lambda u) + \int_0^t T(t-s)f(s,u(s))ds.$$

We have

$$\begin{aligned} \|u(t)\| &\leq \frac{1}{\lambda} NM + \frac{1}{\lambda} N \int_0^t a(s) \Omega(\|u(s)\|) ds \\ &\leq NM + N \int_0^t a(s) \Omega(\|u(s)\|) ds. \end{aligned}$$

Just as proved in Theorem 2.1 we know there is a constant r which is independent of λ , such that $|u| \leq r$ for all $u \in \{u; \lambda u = (L^{-1}K)u$ for some $\lambda > 1\}$. So we proved this theorem.

Proof of Theorem 2.3. By lemma 3.1 and Lemma 3.2 we know that J + K is continuous and compact. From (2.2) there exists a constant r > 0 such that

$$\int_0^b a(s)ds \le \frac{r - N\alpha(r)}{N\Omega(r)}.$$
(3.2)

For any $u \in B_r$ and v = Ju + Ku, we get

$$\|v(t)\| \le N\alpha(r) + N \int_0^t a(s)\Omega(r)ds \le r,$$

for $t \in [0, b]$. It implies that $(J + K)B_r \subset B_r$. By Schauder's fixed point theorem, we know that there is at least one fixed point $u \in B_r$ of the completely continuous map J + K, and u is a mild solution.

Proof of Theorem 2.4. By Lemma 3.1 and Lemma 3.3 we know that $L^{-1}K$ is continuous and compact. From (2.3) there exists a constant number r > 0 such that

$$\int_{0}^{b} a(s)ds \le \frac{r - Nkr - N\|g(0)\|}{N\Omega(r)}.$$
(3.3)

For any $u \in B_r$ and $v = L^{-1}Ku$, we get

$$||v(t)|| \le Nk|v| + N||g(0)|| + N \int_0^t a(s)\Omega(r)ds,$$

for $t \in [0, b]$. It implies that $|v| \leq r$, i.e., $L^{-1}KB_r \subset B_r$. By Schauder's fixed point theorem, there is at least one fixed point $u \in B_r$ of the completely continuous map $L^{-1}K$, and u is a mild solution.

Proof of Theorem 2.5. By the proof of [12, Theorem 2.1] we know that K is completely continuous under (Hf)(1), (Hf)(2) and condition of compactness of semigroup T(t). So $L^{-1}K$ is completely continuous. Similarly with the proof of Theorem 2.4, we complete the the proof of this theorem.

Proof of Theorem 2.6. From [12, Theorem 2.1], Lemma 3.1 and Lemma 3.2 we know that the map J + K is completely continuous. By Lemma 1.1, we should only prove that the set $\{u; u = \lambda(J + K)u \text{ for some } \lambda \in (0, 1)\}$ is bounded. For any $u \in \{u; u = \lambda(J + K)u \text{ for some } \lambda \in (0, 1)\}$, we have

$$\begin{aligned} \|u(t)\| &\leq \lambda (Nc|u| + Nd) + \lambda N \int_0^t m(s) \|u(s)\| ds + \lambda N \int_0^t h(s) ds \\ &\leq Nc|u| + N \int_0^t m(s) \|u(s)\| ds + N(d + \|h\|_1). \end{aligned}$$

This implies that for $t \in [0, b]$

$$|u| \le \frac{N(d+\|h\|_1)\exp(N\|m\|_1)}{1-Nc\exp(N\|m\|_1)},$$

by Gronwall's inequality.

Proof of Theorem 2.7. From [12, Theorem 2.1], Lemma 3.2 and Lemma 3.3 we know that the map $L^{-1}K$ is completely continuous. By Schaefer's fixed point theorem (Lemma 1.1), we should only prove that the set $\{u; u = \lambda(L^{-1}K)u$ for some $\lambda \in (0, 1)\}$ is bounded. For any $u \in \{u; u = \lambda(L^{-1}K)u$ for some $\lambda \in (0, 1)\}$, similarly with the estimation above, we know that

$$|u| \le \frac{N(\|g(0)\| + \|h\|_1) \exp(N\|m\|_1)}{1 - Nk \exp(N\|m\|_1)}.$$

The proof is complete.

Acknowledgements:

The author would like to thank the referee very much for valuable comments and suggestions.

References

- Aizicovici, S. and Mckibben, M.; Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Analysis, 39(2000), 649-668.
- [2] Balachandran, K.; Park, J.; and Chanderasekran; Nonlocal Cauchy problems for delay integrodifferential equations of Sobolev type in Banach spaces, Appl. Math. Letters, 15(2002), 845-854.
- [3] Benchohra, M. and Ntouyas, S.; Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces, J. Math. Anal. Appl., 258(2001), 573-590.
- [4] Byszewski, L.; Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.
- [5] Byszewski, L.; Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem, Zesz. Nauk. Pol. Rzes. Mat. Fiz., 18(1993), 109-112.
- [6] Byszewski, L. and Lakshmikantham, V.; Theorem about the existence and uniqueness of a solutions of a nonlocal Cauchuy problem in a Banach space, Appl. Anal., 40(1990), 11-19.
- [7] Byszewski, L. and Akca, H.; Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Analysis, 34(1998), 65-72.
- [8] Fu, X. and Ezzinbi, K.; Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Analysis, 54(2003), 215-227.
- [9] Jackson, D.; Existence and uniqueness of solutions of semilinear evolution nonlocal parabolic equations, J. Math. Anal. Appl., 172(1993), 256-265.
- [10] Lin Y. and Liu J.; Semilinear integrodifferential equations with nonlocal Cauchy Problems, Nonlinear Analysis, 26(1996), 1023-1033.
- [11] Liu J.; A remark on the mild solutions of nonlocal evolution equations, Semigroup Forum, 66(2003), 63-67.
- [12] Ntouyas, S. and Tsamotas, P.; Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210(1997), 679-687.
- [13] Ntouyas,S. and Tsamotas, P.; Global existence for semilinear integrodifferential equations with delay and nonlocal conditions, Anal. Appl., 64(1997), 99-105.
- [14] Pazy, A.; Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [15] Schaefer, H.; Über die methode der priori Schranhen, Math. Ann, 129(1955), 415-416.

Xingmei Xue

DEPARTMENT OF MATHEMATICS, SOUTHEAST UNIVERSITY, NANJING 210018, CHINA *E-mail address:* xmxue@seu.edu.cn