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ON SYLVESTER OPERATOR EQUATIONS, COMPLETE
TRAJECTORIES, REGULAR ADMISSIBILITY,

AND STABILITY OF C0-SEMIGROUPS

EERO IMMONEN

Abstract. We show that the existence of a nontrivial bounded uniformly
continuous (BUC) complete trajectory for a C0-semigroup TA(t) generated by

an operator A in a Banach space X is equivalent to the existence of a solution

Π = δ0 to the homogenous operator equation ΠS|M = AΠ. Here S|M gener-
ates the shift C0-group TS(t)|M in a closed translation-invariant subspace M
of BUC(R, X), and δ0 is the point evaluation at the origin. If, in addition, M
is operator-invariant and 0 6= Π ∈ L(M, X) is any solution of ΠS|M = AΠ,
then all functions t → ΠTS(t)|Mf , f ∈ M, are complete trajectories for TA(t)

inM. We connect these results to the study of regular admissibility of Banach
function spaces for TA(t); among the new results are perturbation theorems for

regular admissibility and complete trajectories. Finally, we show how strong

stability of a C0-semigroup can be characterized by the nonexistence of non-
trivial bounded complete trajectories for the sun-dual semigroup, and by the

surjective solvability of an operator equation ΠS|M = AΠ.

1. Introduction

Consider the abstract Cauchy problem

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0 ∈ X (1.1)

where A generates a C0-semigroup TA(t) in some Banach space X. It is well
known that a unique mild solution x(t) = TA(t)x0, t ≥ 0, of (1.1) always exists.
However, sometimes there also exist so-called complete trajectories for TA(t). A
complete trajectory for TA(t) is a continuous function x : R → X such that x(t) =
TA(t − s)x(s) for each t, s ∈ R for which t ≥ s, and x(0) = x0. Such a trajectory
is nontrivial if it is not identically zero. Bounded nontrivial complete trajectories
for TA(t) are important e.g. in the study of equations (1.1) on the whole real
line [18, 19]; Vu has studied their existence and construction in [19]. His main
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result asserts that if TA(t) is uniformly bounded and sun-reflexive, and its sun-
dual semigroup T�A (t) (see Subsection 1.1) is not strongly stable1, then there exist
nontrivial bounded complete trajectories provided one of the following conditions
holds: iR * σ(A) or ran(T�A (t0)) is dense in X� for some t0 > 0. Vu also shows
in [19] that if the intersection of the approximate point spectrum of A and the
imaginary axis is countable, then every bounded uniformly continuous complete
trajectory for TA(t) is almost periodic provided X does not contain an isomorphic
copy of c0, the Banach space of sequences convergent to 0, or the trajectory itself
is weakly compact.

A related problem for the inhomogenous abstract Cauchy problem

ẋ(t) = Ax(t) + f(t), t ∈ R (1.2)

in X is the following [15, 21]. Let M be a closed translation-invariant operator-
invariant (i.e. CTO, see Definition 1.1) subspace of BUC(R, X), the space of
bounded uniformly continuous X-valued functions. We say that M is regularly
admissible for TA(t) if for each f ∈ M there exists a unique mild solution x ∈ M
of (1.2), i.e. for which

x(t) = TA(t− s)x(s) +
∫ t

s

TA(t− τ)f(τ)dτ ∀t ≥ s, t, s ∈ R (1.3)

Vu and Schüler [21] showed, among other things, that M is regularly admissible for
TA(t) if and only if the operator equation ΠS|M = AΠ + δ0, where S|M = d

dx |M
and δ0 is the point evaluation operator in M centered at the origin, has a unique
solution Π ∈ L(M, X) (see Section 2).

The main purpose of the present article is to interconnect the results in [19] and
[21]. To avoid repetition we shall assume the reader to have access to these papers.
Our main results are the following. We show that the existence of a nontrivial
complete trajectory x ∈ BUC(R, X) for TA(t) is equivalent to the existence of a
solution Π = δ0 to the homogenous operator equation ΠS|M = AΠ for some closed
translation-invariant subspace M of BUC(R, X). If, in addition, M is operator-
invariant and 0 6= Π ∈ L(M, X) is any solution of ΠS|M = AΠ, then all functions
t → ΠTS(t)|Mf , f ∈M are complete trajectories for TA(t) in M. There are three
remarkable features in these results. First of all, we do not need to assume e.g. the
uniform boundedness of TA(t) or restrict σ(A) ∩ iR in any explicit way to obtain
nontrivial bounded complete trajectories. Secondly, the complete trajectories are
known to be in M – hence we can conclude more than just boundedness of the tra-
jectory. For example M could be the space AP (R, X) of X-valued almost periodic
functions. Finally, these results also provide a way to construct bounded complete
trajectories for TA(t) via the solution operators Π.

By combining our main results with those in [19, 21] we obtain several useful
corollaries. For example, we immediately see that if M is regularly admissible for
TA(t), then there cannot be complete nontrivial trajectories for TA(t) in M. Since
all CTO subspaces M⊂ BUC(R, X) are regularly admissible for an exponentially
dichotomous semigroup TA(t) [21], exponentially dichotomous C0-semigroups can-
not have bounded uniformly continuous complete trajectories. Consequently the
same is true for exponentially stable C0-semigroups.

1A C0-semigroup T (t) in a Banach space Z is strongly stable if limt→∞ T (t)z = 0 for every
z ∈ Z
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In Section 4 we shall show that the existence of nontrivial bounded complete
trajectories for TA(t) is a fragile property; arbitrarily small bounded additive per-
turbations to the generator A may destroy it. On the other hand, we shall show that
the nonexistence of such trajectories may be a stable property even under certain
unbounded additive perturbations to A. We also show that regular admissibility of
M for TA(t) may sustain some unbounded additive perturbations to A. Hence we
have another situation in which the nonexistence of bounded complete trajectories
in M is not affected by perturbations to A.

We conclude this article with some new characterizations for strong stability
of a C0-semigroup TA(t). We shall show that if TA(t) is uniformly bounded and
σA(A) ∩ iR is countable, then TA(t) is not strongly stable if and only if the sun-
dual semigroup T�A (t) has a nontrivial bounded complete trajectory. We also show
that strong stability of TA(t) is equivalent to the existence of a surjective solution
to the operator equation ΠS|M = AΠ for a closed translation-invariant subspace
M⊂ C0(R+, X).

1.1. Preliminaries. As in the above, let X be a Banach space and consider a C0-
semigroup TA(t) in X generated by A. The spectrum, point spectrum, approximate
point spectrum and resolvent set of A are denoted by σ(A), σP (A), σA(A) and ρ(A)
respectively. A∗ denotes the adjoint operator of A and for every λ ∈ ρ(A) we denote
by R(λ, A) the resolvent operator of A. A linear operator ∆A : D(∆A) ⊂ X → X
is called A-bounded if D(A) ⊂ D(∆A) and for some nonnegative constants a, b we
have

‖∆Ax‖ ≤ a‖x‖+ b‖Ax‖ ∀x ∈ D(A) (1.4)
If the Banach space X is not reflexive, then the adjoint semigroup T ∗A(t) is not
necessarily strongly continuous. However, the subspace

X� = {φ ∈ X∗ | T ∗A(t)φ is strongly continuous} (1.5)

is closed in X∗ and invariant for T ∗A(t). Additionally, X� = D(A∗) and the re-
striction T ∗A(t)|X� defines a strongly continuous semigroup in X�, the so-called
sun-dual semigroup T�A (t) [9, 19].

We denote the Banach space (with sup-norm) of bounded uniformly continuous
functions t → X by BUC(R, X). The shift operators TS(t), t ∈ R, are defined
for each f ∈ BUC(R, X) as TS(t)f = f(· + t). It is clear that TS(t) constitutes a
strongly continuous group in BUC(R, X). Its infinitesimal generator is the differ-
ential operator S = d

dx with a suitable domain of definition. Clearly the restrictions
TS(t)|M of the shift group to closed (in the sup-norm) translation-invariant sub-
spaces M⊂ BUC(R, X) are also strongly continuous. The infinitesimal generator
of such a restriction TS(t)|M is denoted by S|M. Of special interest are the so-called
CTO (closed translation-invariant operator-invariant) subspacesM of BUC(R, X):

Definition 1.1. A sup-norm closed translation-invariant function space M ⊂
BUC(R, X) is operator-invariant if for each C ∈ L(M, X) and every f ∈ M
the function t → CTS(t)f is in M.

Several interesting function spaces are CTO. For example: Continuous p-periodic
X-valued functions, almost periodic functions R → X and functions in BUC(R, X)
whose Carleman spectrum is contained in a given closed subset Λ of iR, the imag-
inary axis. Recall that almost periodic functions are those which can be uniformly
approximated by trigonometric polynomials [2], and that the Carleman spectrum
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sp(f) of a function f ∈ BUC(R, X) is defined as the set of singularities of its
Carleman transform

f̃(λ) =

{∫∞
0

e−λtf(t)dt, <(λ) > 0
−

∫ 0

−∞ e−λtf(t)dt, <(λ) < 0
(1.6)

on iR. The reader is referred to [2, 11, 21] for more details.
In this article we shall use the well known fact that for every closed translation-

invariant subspace M ⊂ BUC(R, X) there exists a sequence (Mn)n∈N ⊂ M of
closed translation-invariant subspaces with the following properties [16, 21]:

(1) Mn ⊂Mn+1 for every n ∈ N.
(2) Sn = S|Mn

is a bounded operator for every n ∈ N.
(3) σ(Sn) ⊂ σ(S|M) for every n ∈ N.
(4) ∪n∈NMn is dense in M.

2. Mild and Strong Solutions of ΠS|M = AΠ + ∆

Let M ⊂ BUC(R, X) be a closed translation-invariant function space and let
∆ ∈ L(M, X). As before, we assume that A generates the C0-semigroup TA(t) in
X. In this section we shall study the operator equation

ΠS|M = AΠ + ∆ (2.1)

which will play a prominent role throughout this article. Equation (2.1) is a special
instance of general linear Sylvester type operator equations. Such equations have
a long history: For classical finite-dimensional results the reader is referred to [10]
and to the excellent survey article [8]. The treatment of Bhatia and Rosenthal
[8] actually also covers the case of bounded linear operators in infinite-dimensional
spaces. Many of these results can be generalized for unbounded operators which
may or may not generate C0-semigroups. Such results can be found e.g. in [3, 14,
20, 21].

Vu and Schüler [21] concentrated on the unique solvability of (2.1) for each ∆.
They showed that it is equivalent to the regular admissibility of M for TA(t). It
turns out, however, that also nonunique solutions of (2.1) have importance. We
shall see in the next section that the existence of a nontrivial solution Π = δ0 to the
homogenous equation ΠS|M = AΠ — which implies nonuniqueness of solutions of
(2.1) — is equivalent to the existence of nontrivial bounded uniformly continuous
complete trajectories for TA(t). In order to establish this result we consider two
types of solutions for (2.1):

Definition 2.1. An operator Π ∈ L(M, X) is called a strong solution of (2.1) if
Π(D(S|M)) ⊂ D(A) and ΠS|Mf = AΠf + ∆f for every f ∈ D(S|M).

Definition 2.2. An operator Π ∈ L(M, X) is called a mild solution of (2.1) if

ΠTS(t)|Mf = TA(t)Πf +
∫ t

0

TA(t− s)∆TS(s)|Mfds (2.2)

for every f ∈M and every t ≥ 0.

The main result of this section shows that mild and strong solutions of (2.1)
coincide. Hence we may refer to them as just solutions of (2.1).

Theorem 2.3. An operator Π ∈ L(M, X) is a mild solution of (2.1) if and only
if it is a strong solution of (2.1).
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Proof. Assume first that Π ∈ L(M, X) is a strong solution of the (2.1). Let f ∈
D(S|M) be arbitrary. Then since Π(D(S|M)) ⊂ D(A), we have for every t ≥ 0 that

ΠTS(t)|Mf − TA(t)Πf =
∣∣t
τ=0

TA(t− τ)ΠTS(τ)|Mfdτ (2.3)

=
∫ t

0

d

dτ
TA(t− τ)ΠTS(τ)|Mfdτ (2.4)

=
∫ t

0

TA(t− τ)[ΠS|M −AΠ]TS(τ)|Mfdτ (2.5)

=
∫ t

0

TA(t− τ)∆TS(τ)|Mfdτ (2.6)

because TS(τ)|Mf ∈ D(S|M) for every τ ≥ 0. Since D(S|M) is dense in M, we
must have that

ΠTS(t)|Mf = TA(t)Πf +
∫ t

0

TA(t− τ)∆TS(τ)|Mfdτ ∀f ∈M ∀t ≥ 0 (2.7)

In other words Π is a mild solution of (2.1).
Assume then that Π ∈ L(M, X) is a mild solution of (2.1). We first show that

Π(D(S|M)) ⊂ D(A). Let f ∈ D(S|M). Then for every h > 0

TA(h)Πf −Πf

h
=

TA(h)Πf −ΠTS(h)|Mf

h
+

ΠTS(h)|Mf −Πf

h
(2.8)

= −
∫ h

0
TA(h− τ)∆TS(τ)|Mfdτ

h
+

ΠTS(h)|Mf −Πf

h
(2.9)

which by the boundedness of Π shows that Πf ∈ D(A); also observe that the
function t → ∆TS(t)|Mf is continuously differentiable so that the convolution in
(2.9) is differentiable. Moreover, we see that AΠf = −∆f + ΠS|Mf for each
f ∈ D(S|M). Consequently Π is a strong solution of (2.1). �

Remark 2.4. As mentioned in the introductory section, the special case ∆ = δ0 ∈
L(M, X) has turned out to be particularly important in the qualitative theory of
differential equations. Theorem 2.3 immediately reveals why this is so. Clearly
f(t) = δ0TS(t)|Mf for every f ∈ M and t ∈ R and hence if Π ∈ L(M, X) is a
solution of the operator equation ΠS|M = AΠ + δ0, then (2.2) reads

ΠTS(t)|Mf = TA(t)Πf +
∫ t

0

TA(t− s)f(s)ds, t ≥ 0 (2.10)

so that for x(0) = Πf the right hand side of (2.10) is the mild solution of the
inhomogenous differential equation ẋ(t) = Ax(t) + f(t), t ≥ 0. If in addition, M is
a CTO subspace of BUC(R, X), then this mild solution t → ΠTS(t)|Mf is in M
for every f ∈ M. Consequently we may deduce e.g. the existence of periodic mild
solutions from solvability of the operator equation ΠS|M = AΠ + δ0 in a suitable
space M. We shall not pursue this discussion any further; the interested reader is
referred to [12, 21] for a related discussion.

The operator equation (2.1) has also been studied as an operator equation
τA,S|MΠ = ∆ in the literature [3]. Here τA,S|M is an (unbounded) operator on



6 E. IMMONEN EJDE-2005/71

L(M, X) defined as follows.

D(τA,S|M) =
{
X ∈ L(M, X) : X(D(S|M)) ⊂ D(A), ∃Y ∈ L(M, X) :

Y u = XS|Mu−AXu ∀u ∈ D(S|M)
} (2.11a)

τA,S|MX = Y (2.11b)

It can be shown that τA,S|M is a closed operator on L(M, X) [3]. The following
result is then evident.

Proposition 2.5. Equation (2.1) has a unique solution for every ∆ ∈ L(M, X) if
and only if 0 ∈ ρ(τA,S|M). The homogenous equation ΠS|M = AΠ has a nontrivial
solution if and only if 0 ∈ σP (τA,S|M).

Proposition 2.5 is particularly useful if TA(t) is a holomorphic semigroup or
if S|M is bounded. By the results of Arendt, Räbiger and Sourour [3], in both
cases σ(τA,S|M) = σ(A) + σ(S|M). We shall, however, use Proposition 2.5 in a
different context in Section 4: We make use of the well known fact that bounded
invertibility of a closed operator is preserved under small (but possibly unbounded)
additive perturbations.

3. Complete Trajectories, Regular Admissibility and ΠS|M = AΠ

The main results of this article are Theorem 3.1 and Theorem 3.3 below. They
connect the existence of nontrivial bounded uniformly continuous complete trajec-
tories for TA(t) to the nonunique solvability of the homogenous operator equation
ΠS|M = AΠ. Consequently they provide the link between the articles [19] and [21]
mentioned in the introductory section.

Theorem 3.1. Let A generate a C0-semigroup TA(t) in X. Then the following are
equivalent.

(1) There exists a nontrivial bounded uniformly continuous complete trajectory
x(t) for TA(t).

(2) There exists a nontrivial closed translation-invariant subspace M of
BUC(R, X) in which δ0 solves the operator equation ΠS|M = AΠ.

(3) There exists a nontrivial closed translation-invariant subspace M of
BUC(R, X) for which every x ∈ M is a bounded uniformly continuous
complete trajectory for TA(t).

Proof. Since by Theorem 2.3 mild and strong solutions of the operator equation
(2.1) coincide, we may restrict our attention to mild solutions. We show 1 =⇒
2 =⇒ 3 =⇒ 1.

1 =⇒ 2 : Assume that x ∈ BUC(R, X) is a nontrivial bounded complete trajectory
for TA(t). Let M = span{x(· + t) | t ∈ R} where closure is taken in
the sup-norm. Then M 6= 0 is a closed translation invariant subspace of
BUC(R, X) and clearly δ0 ∈ L(M, X). Moreover x(t) = δ0TS(t)|Mx for
each t ∈ R. Furthermore, for any τ ≥ 0 and s ∈ R we have

x(τ + s) = δ0TS(τ)|MTS(s)|Mx = TA(τ)x(s) = TA(τ)δ0TS(s)|Mx (3.1)

since x is a complete trajectory for TA(t). This shows that δ0TS(τ)|Mx(·+
s) = TA(τ)δ0x(·+s) for each τ ≥ 0 and s ∈ R because TS(s)|Mx = x(·+s).
In other words δ0 is a mild solution of the operator equation ΠS|M = AΠ
in the set {x(· + s) | s ∈ R}. Upon extensions by linearity and continuity
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we immediately have that for M as in the above, the equation ΠS|M = AΠ
has a nontrivial mild solution Π = δ0.

2 =⇒ 3 : Assume that the homogenous equation ΠS|M = AΠ has a mild solution
δ0 ∈ L(M, X). Let f ∈ M. Then f(t) = δ0TS(t)|Mf for every t ∈ R.
Furthermore for every t, s ∈ R such that t ≥ s we have

TA(t− s)f(s) = TA(t− s)δ0TS(s)|Mf

= δ0TS(t− s)|MTS(s)|Mf

= δ0TS(t)|Mf = f(t)

This shows that every f ∈M is a complete nontrivial trajectory for TA(t).
3 =⇒ 1 : This is trivial.

�

We state the following corollary to emphasize that in parts 2 and 3 of Theorem
3.1 the closed translation invariant spaces are equal.

Corollary 3.2. Let TA(t) be a C0-semigroup in X generated by A, and let M ⊂
BUC(R, X) be a closed and translation-invariant subspace. Then every x ∈M is a
complete trajectory for TA(t) if and only if δ0 is a solution of the operator equation
ΠS|M = AΠ.

Proof. Assume that every x ∈M is a bounded complete trajectory for TA(t). Then
for any τ ≥ 0 and s ∈ R we have x(τ + s) = δ0TS(τ)|MTS(s)|Mx = TA(τ)x(s) =
TA(τ)δ0TS(s)|Mx for each x ∈ M, because every x ∈ M is a complete trajectory
for TA(t). Consequently δ0 is a mild solution of the operator equation ΠS|M = AΠ
in the set {x(·+ s) | s ∈ R} for each x ∈ M. Since M is translation-invariant, we
have M = ∪x∈M{x(· + s) | s ∈ R}. This shows that δ0 is a mild solution of the
operator equation ΠS|M = AΠ. The converse claim is contained in the proof of
Theorem 3.1. �

In the above results we assumed that M is a closed and translation-invariant
subspace of BUC(R, X). If M is in addition CTO, then also other nontrivial solu-
tions of the homogenous operator equation ΠS|M = AΠ yield nontrivial bounded
complete trajectories for TA(t):

Theorem 3.3. Let TA(t) be a C0-semigroup in X generated by A. Then the fol-
lowing assertions are equivalent for a given CTO space 0 6= M⊂ BUC(R, X).

(1) There exists a nonzero operator Π ∈ L(M, X) such that for every f ∈ M,
the function t → ΠTS(t)|Mf is a complete trajectory for TA(t) in M.

(2) The homogenous operator equation ΠS|M = AΠ has a nontrivial solution
Π ∈ L(M, X).

(3) There exists an operator ∆ ∈ L(M, X) such that the operator equation
ΠS|M = AΠ + ∆ has at least two distinct solutions.

(4) The operator τA,S|M defined in (2.11) has 0 as its eigenvalue.

Proof. We show 1 ⇐⇒ 2 ⇐⇒ 3 and 2 ⇐⇒ 4:

1 ⇐⇒ 2 : First assume that for every f ∈ M the functions t → xf (t) = ΠTS(t)|Mf
are complete trajectories for TA(t) in M. Hence for each f ∈M and τ ≥ 0
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and s ∈ R we have

xf (τ + s) = ΠTS(τ + s)|Mf

= ΠTS(τ)|MTS(s)|Mf

= TA(τ)xf (s)

= TA(τ)ΠTS(s)|Mf

This shows that ΠTS(τ)|Mf(·+s) = TA(τ)Πf(·+s) for each f ∈M, τ ≥ 0
and s ∈ R. As we let s = 0 we see that Π satisfies the operator equation
ΠS|M = AΠ.

Conversely assume that the operator equation ΠS|M = AΠ has a nonzero
mild solution Π ∈ L(M, X). Let f ∈ M and define the function xf : R →
X such that x(t) = ΠTS(t)|Mf for each t ∈ R. Since M is CTO, xf ∈M.
Furthermore for every t, s ∈ R such that t ≥ s we have

TA(t− s)xf (s) = TA(t− s)ΠTS(s)|Mf

= ΠTS(t− s)|MTS(s)|Mf

= ΠTS(t)|Mf = xf (t)

because TS(t)|Mf = f(·+ t) ∈M for each t ∈ R. This shows that for every
f ∈M the function xf is a complete nontrivial trajectory for TA(t) in M.

2 ⇐⇒ 3 : This is trivial.
2 ⇐⇒ 4 : This is contained in Proposition 2.5.

�

Remark 3.4. Vu [19] studied bounded uniformly continuous and almost periodic
complete nontrivial trajectories for TA(t). Theorem 3.1 and Theorem 3.3 provide
more flexibility. For example, in Theorem 3.3 one may look for p-periodic contin-
uous complete trajectories or complete trajectories x ∈ BUC(R, X) such that the
Carleman spectrum sp(x) of x is contained in some closed set Λ ⊂ iR.

Remark 3.5. Theorem 3.3 also provides a way to construct nontrivial complete
trajectories in M ⊂ BUC(R, X) for TA(t) via nontrivial solutions of the homoge-
nous operator equation ΠS|M = AΠ.

The following result is of fundamental importance, since it provides a simple
necessary condition for the existence of a nontrivial bounded complete trajectory
for TA(t), and since this condition allows us to combine our results with the regular
admissibility theory of Vu and Schüler [21]. Because of its importance we choose
to give two separate proofs for this result.

Theorem 3.6. Let M be a nontrivial closed translation-invariant subspace of
BUC(R, X) and assume that A generates a C0-semigroup TA(t) in X. If σ(S|M)∩
σ(A) = ∅, then there are no nontrivial complete trajectories for TA(t) in M.

Proof 1. Assume, conversely, that there exists a nontrivial complete trajectory x
for TA(t) in M. Then by Proposition 3.5 in [19] sp(x) = σ(Sx) where Sx is the
restriction of S|M to the space span{x(· + t) | t ∈ R}. Consequently sp(x) ⊂
σ(S|M), and sp(x)∩σ(A) = ∅. But by Proposition 3.7 in [19] sp(x) ⊂ σA(A) which
implies sp(x) = ∅. According to Wiener’s Tauberian Theorem [19] this is possible
only if x is identically zero — a contradiction. �



EJDE-2005/71 ON SYLVESTER OPERATOR EQUATIONS 9

Proof 2. Assume again, conversely, that there exists a nontrivial complete trajec-
tory x for TA(t) in M. By Theorem 3.1 there exists a nontrivial closed translation-
invariant subspace N ⊂ M in which the operator equation ΠS|N = AΠ has a
nontrivial solution. Then by a result stated in Subsection 1.1 there exists another
nontrivial closed translation-invariant subspace N0 ⊂ N in which the restriction
S|N0 is a nonzero bounded operator. Moreover the operator equation ΠS|N0 = AΠ
also has a nontrivial solution. But this is impossible since σ(S|N0) ∩ σ(A) ⊂
σ(S|M) ∩ σ(A) = ∅ and the boundedness of S|N0 imply that the only solution
of ΠS|N0 = AΠ is the zero operator (see Section 2 in [21]). �

Throughout the following corollaries A generates a C0-semigroup TA(t) in X.

Corollary 3.7. If a given CTO space M⊂ BUC(R, X) is regularly admissible for
TA(t), then there cannot be complete nontrivial trajectories for TA(t) in M.

Proof. By Corollary 3.2 in [21] we have σ(S|M)∩ σ(A) = ∅. By Theorem 3.6 there
cannot be complete nontrivial trajectories in M. �

Corollary 3.8. Let M be a CTO subspace of BUC(R, X) and suppose that
σ(TA(1)) ∩ σ(TS(1)|M) = ∅. Then there cannot be complete nontrivial trajecto-
ries for TA(t) in M.

Proof. By Corollary 2.4 and Theorem 3.1 in [21] M is regularly admissible for
TA(t). By Corollary 3.7 there cannot be complete nontrivial trajectories for TA(t)
in M. �

Corollary 3.9. Assume that there are no complete trajectories for TA(t) in a CTO
subspace M of BUC(R, X) and that the operator equation ΠS|M = AΠ + δ0 has a
solution Π ∈ L(M, X). Then M is regularly admissible.

Proof. By Theorem 3.3, Π must be the unique solution of the operator equation
ΠS|M = AΠ + δ0. The result follows by Theorem 3.1 in [21]. �

Recall that TA(t) is exponentially dichotomous if there exists a bounded projec-
tion operator P on X and positive constants M,ω such that

(1) PTA(t) = TA(t)P for all t ≥ 0.
(2) ‖TA(t)x0‖ ≤ Me−ωt‖x0‖ for all x0 ∈ ran(P ) and all t ≥ 0.
(3) The restriction TA(t)|ker(P ) extends to a C0-group and ‖TA(−t)|ker(P )x0‖ ≤

Me−ωt‖x0‖ for all x0 ∈ ker(P ) and all t ≥ 0.
Clearly if TA(t) is exponentially stable, then it is also exponentially dichotomous.

Vu ([19], Example 2.7) showed that there are no complete bounded trajectories for
the diffusion semigroup on C0(R). The following result implies that the same is in
fact true for all exponentially stable semigroups.

Corollary 3.10. Let TA(t) be exponentially dichotomous. Then there cannot exist
nontrivial bounded uniformly continuous complete trajectories for TA(t).

Proof. By Theorem 4.1 in [21] the space BUC(R, X) is regularly admissible for
TA(t). The result follows by Corollary 3.7. �

The last corollary of Theorem 3.3 provides a sufficient condition for the almost
periodicity of a nontrivial complete trajectory for TA(t).
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Corollary 3.11. Let σA(A) ∩ iR be countable and assume that the space X does
not contain a subspace which is isomorphic to c0 (the Banach space of numerical
sequences which converge to zero). Let M be a CTO subspace of BUC(R, X).
If the operator equation ΠS|M = AΠ has a nontrivial solution Π ∈ L(M, X),
then xf (t) = ΠTS(t)f is an almost periodic complete trajectory for TA(t) for each
f ∈M.

Proof. By Theorem 3.10 in [19] all bounded uniformly continuous bounded trajec-
tories are almost periodic. By Theorem 3.3, the function t → ΠTS(t)f is a complete
trajectory in M⊂ BUC(R, X) for every f ∈M. �

4. Some Perturbation Results

Consider again a closed translation-invariant subspace M of BUC(R, X). Clear-
ly for every f ∈ M the trajectory TS(t)|Mf of the left shift group is bounded
and complete, and it is in M. However, for every ε > 0 the semigroup TS−εI(t)
generated by S − εI in M is exponentially stable. By Corollary 3.10 there are no
nontrivial bounded complete trajectories for TS−εI(t) inM, and hence the existence
of nontrivial bounded complete trajectories for a semigroup is a fragile property;
arbitrarily small bounded additive perturbations to the generator may destroy it.
On the other hand, in this section we shall provide conditions under which the
nonexistence of nontrivial bounded complete trajectories is not destroyed by small
unbounded (but possibly structured) additive perturbations to the generator A.

Proposition 4.1. Let A generate a C0-semigroup TA(t) in X. Let M be a closed
translation-invariant subspace of BUC(R, X) and let σ(A) ∩ σ(S|M) = ∅. Let
∆A : D(∆A) ⊂ X → X be a linear A-bounded operator such that

(1) A + ∆A with domain D(A) generates a C0-semigroup TA+∆A
(t) in X.

(2) The A-boundedness constants a, b in (1.4) satisfy

sup
iω∈σ(S|M)

a‖R(iω,A)‖+ b‖AR(iω,A)‖ < 1 (4.1)

Then there are no nontrivial complete trajectories in M for TA(t) and the same
holds for the perturbed C0-semigroup TA+∆A

(t).

Proof. By Theorem IV.3.17 in [13], σ(S|M) ⊂ ρ(A + ∆A). The result then follows
by Theorem 3.6. �

It is well known that if A generates an analytic or contractive C0-semigroup,
then so does A + ∆A under rather mild additional conditions for the A-bounded
perturbation ∆A [9].

We next prove that regular admissibility of M for TA(t) is also preserved under
certain additive perturbations to A. According to Corollary 3.7 we then have
another situation in which the nonexistence of bounded complete trajectories in M
is not affected by such perturbations. In order to establish this result, we need some
notation. Let M be a CTO subspace of BUC(R, X). Let ∆A : D(∆A) ⊂ X → X
be a closed linear operator such that D(A) ⊂ D(∆A) and such that A−∆A (with
domain D(A)) generates a C0-semigroup in X. Define another linear operator
∆A : D(∆A) ⊂ L(M, X) → L(M, X) such that

D(∆A) = {X ∈ L(M, X) | A∆X ∈ L(M, X)} (4.2a)

∆AX = A∆X ∀X ∈ D(∆A) (4.2b)
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Proposition 4.2. In the above notation assume that M is regularly admissible for
TA(t). Let

M = sup{‖Π‖ | ΠS|M = AΠ + ∆, ‖∆‖ = 1} (4.3)
If ∆A is τA,S|M-bounded with the boundedness constants a, b in (1.4) satisfying
aM + b < 1, then M is regularly admissible for TA−∆A

(t).

Proof. First observe that by Theorem 3.1 in [21] regular admissibility ofM for TA(t)
is equivalent to the unique solvability of the operator equation ΠS|M = AΠ + ∆
for every ∆ ∈ L(M, X). Consequently by Proposition 2.5 we have 0 ∈ ρ(τA,S|M)
and ΠS|M = AΠ + ∆ if and only if Π = τ−1

A,S|M∆. Hence

‖τ−1
A,S|M‖ = sup

‖∆‖=1

‖τ−1
A,S|M∆‖ = sup

‖∆‖=1

{‖Π‖ | ΠS|M = AΠ + ∆} = M (4.4)

By our assumptions ∆A is τA,S|M -bounded, with the boundedness constants a, b in
(1.4) satisfying a‖τ−1

A,S|M‖ + b < 1. Theorem IV.1.16 in [13] then implies that the
operator τA,S|M +∆A with domain D(τA,S|M) is also boundedly invertible. But for
each X ∈ D(τA,S|M) and u ∈ D(S|M) we have

[τA,S|M + ∆A]Xu = XS|Mu−AXu + ∆AXu

= XS|Mu−AXu + ∆AXu

= XS|Mu− (A−∆A)Xu

which shows that for every ∆ ∈ L(M, X) the operator equation XS|M − (A −
∆A)X = ∆ has a unique solution X = Π∆ ∈ L(M, X). By Theorem 3.1 in [21]
this implies regular admissibility of M for TA−∆A

(t). �

Remark 4.3. For bounded additive perturbations ∆A ∈ L(X) to A the content
of Proposition 4.2 may be formulated in a much simpler way: There exists ε > 0
such that whenever ‖∆A‖ < ε, the space M is regularly admissible for TA+∆A

(t).

Remark 4.4. It follows from Theorem 5.1 in [21] that regular admissibility of a
space M is not destroyed by certain sufficiently continuous and small nonlinear
perturbations to A. Theorem 4.2 is, however, not entirely contained in this result
of Vu and Schüler, because we allow for a degree of unboundedness in the addi-
tive perturbation operator ∆A. Furthermore, their proof relies on a fixed point
argument, and consequently it is rather different from ours.

5. On Strong Stability of C0-semigroups

Exponential stability of a C0-semigroup can be completely characterized in many
equivalent ways: There are the well-known conditions of the Datko Theorem [2],
and a condition of Vu and Schüler [21] according to which exponential stability of
a C0-semigroup TA(t) is equivalent to the uniform boundedness of TA(t) and the
unique solvability of the operator equation ΠS = AΠ + δ0. On the other hand, it
has turned out that strong stability of a C0-semigroup is considerably more difficult
to characterize. Since the pioneering work of Arendt, Batty, Lyubich and Vu [1, 17]
this question has received much attention in the literature; the reader is referred
to [2, 4, 7, 5, 6] and the references therein. It is obvious that a strongly stable
C0-semigroup TA(t) is uniformly bounded and that σP (A∗)∩ iR = ∅. On the other
hand, the ABLV Theorem states that if TA(t) is uniformly bounded, σP (A∗)∩iR = ∅
and σ(A) ∩ iR is countable, then TA(t) is strongly stable.
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We next present new characterizations for strong stability of a C0-semigroup
TA(t) in terms of nontrivial bounded complete trajectories for the sun-dual semi-
group T�A (t) and nontrivial solvability of an operator equation ΠS|M = AΠ.

Theorem 5.1. Assume that σA(A)∩ iR is countable and that TA(t) is a uniformly
bounded C0-semigroup in X generated by A. Then there exists a nontrivial bounded
complete trajectory for the sun-dual semigroup T�A (t) if and only if TA(t) is not
strongly stable.

Proof. Assume first that TA(t) is not strongly stable. Then σ(A) ∩ iR = σA(A) ∩
iR 6= iR, which by Theorem 2.3 in [19] immediately shows that there exists a
nontrivial bounded complete trajectory for the sun-dual semigroup T�A (t).

For the converse, suppose that there exists a nontrivial bounded complete tra-
jectory f for the sun-dual semigroup T�A (t). Since TA(t) is uniformly bounded,
the sun-dual semigroup T�A (t) is uniformly bounded, and hence f ∈ BUC(R, X�).
Then sp(f) ⊂ σ(A�) ∩ iR ⊂ σ(A) ∩ iR by Proposition 3.7 in [19] and Proposition
IV.2.18 in [9]. This shows that sp(f) is a closed countable subset of the imaginary
axis, and so it must contain an isolated point. Consider the closed translation-
invariant subspace Mf = span{f(·+t) | t ∈ R} of BUC(R, X�) and the restriction
TS(t)|Mf

of the translation group TS(t) to Mf . By Theorem 3.1 and Corollary 3.2
every g ∈ Mf is a complete trajectory for T�A (t). Furthermore, the generator Sf

of this restriction TS(t)|Mf
has an isolated point iλ ∈ iR in its spectrum because

σ(Sf ) = sp(f) by Proposition 3.5 in [19]. It then follows from Gelfand’s Theorem
(cf. [2] Corollary 4.4.9) that iλ must be an eigenvalue of Sf . Hence there exists
a nonzero g ∈ Mf such that TS(t)|Mf

g = eiλtg for each t ∈ R. Now the func-
tion t → δ0TS(t)|Mf

g = g(t) = g(0)eiλt is a (nontrivial) complete trajectory for
T�A (t) in Mf . It is easy to see that this implies iλ ∈ σP (A�) ∩ iR = σP (A∗) ∩ iR.
Consequently TA(t) cannot be strongly stable. �

In the following theorem we shall characterize strongly stable semigroups by the
solvability of an operator equation ΠS|M = AΠ. However, in contrast to the previ-
ous sections, hereM is a closed translation-invariant subspace of C0(R+, X) = {f ∈
BUC([0,∞), X) | limt→∞ f(t) = 0}, and S|M generates the strongly continuous
left shift semigroup in M.

Theorem 5.2. Let X 6= {0} and let TA(t) be a C0-semigroup in X generated
by A. Then TA(t) is strongly stable if and only if there exists a nontrivial closed
translation-invariant subspace M ⊂ C0(R+, X) such that the operator equation
ΠS|M = AΠ has a surjective solution Π ∈ L(M, X)2.

Proof. Let TA(t) be strongly stable and let M = span{TA(·)x | x ∈ X} where
closure is taken in the sup-norm. Then 0 6= M ⊂ C0(R+, X). Let Π = δ0, the
point evaluation operator in M centered at the origin. Then δ0 ∈ L(M, X) and δ0

is surjective; for any x ∈ X we have x = δ0TA(t)x. Moreover, for every trajectory
fx(t) = TA(t)x we have δ0TS(t)|Mfx = fx(t) = TA(t)x = TA(t)δ0fx. Extension by
continuity and linearity shows that δ0TS(t)|M = TA(t)δ0 throughout M for each

2In analogy to Section 2, by a surjective solution of ΠS|M = AΠ we mean a bounded linear
surjective operator Π such that Π(D(S|M)) ⊂ D(A) and ΠS|Mf = AΠf for each f ∈ D(S|M).
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t ≥ 0. Let f ∈ D(S|M). Then

TA(h)δ0f − δ0f

h
=

TA(h)δ0f − δ0TS(h)|Mf

h
+

δ0TS(h)|Mf − δ0f

h

=
δ0TS(h)|Mf − δ0f

h
∀h > 0

(5.1)

which by the boundedness of δ0 shows that δ0f ∈ D(A) and that Aδ0f = δ0S|Mf
for each f ∈ D(S|M). Consequently δ0 is a surjective solution of ΠS|M = AΠ.

Conversely, assume that there exists a nontrivial closed translation-invariant
subspace M ⊂ C0(R+, X) such that the operator equation ΠS|M = AΠ has a
surjective solution Π ∈ L(M, X). Then since Π(D(S|M)) ⊂ D(A), we have for
every t ≥ 0 and f ∈ D(S|M) that

ΠTS(t)|Mf − TA(t)Πf =
∣∣t
τ=0

TA(t− τ)ΠTS(τ)|Mfdτ

=
∫ t

0

d

dτ
TA(t− τ)ΠTS(τ)|Mfdτ

=
∫ t

0

TA(t− τ)[ΠS|M −AΠ]TS(τ)|Mfdτ = 0

and by continuity ΠTS(t)|Mf −TA(t)Πf = 0 for each f ∈M and t ≥ 0. Let x ∈ X
be arbitrary. Then by the surjectivity of Π there exists f ∈ M such that x = Πf .
Moreover,

lim
t→∞

TA(t)x = lim
t→∞

TA(t)Πf = lim
t→∞

ΠTS(t)|Mf = 0 (5.2)

since TS(t)|M is strongly stable and Π ∈ L(M, X). Consequently TA(t) is strongly
stable. �

In a very similar way we obtain the following corollary.

Corollary 5.3. Let X 6= {0} and let TA(t) be a C0-semigroup in X generated by
A. Then TA(t) is strongly stable if and only if TA(t) is uniformly bounded and there
exists a nontrivial closed translation-invariant subspace M⊂ C0(R+, X) such that
the operator equation ΠS|M = AΠ has a solution Π ∈ L(M, X) such that ran(Π)
is dense in X.

Remark 5.4. Theorem 5.2 and Corollary 5.3 are related to, but independent of,
a result of Batty [4]. He showed that if TS(t) is a C0-semigroup in some Banach
space Y with generator S, if TA(t) is a uniformly bounded C0-semigroup in X
with generator A, if σ(S) ∩ iR is countable and σP (A∗) ∩ iR = ∅, and if ΠTS(t) =
TA(t)Π for some Π ∈ L(Y, X) with a dense range, then TA(t) is strongly stable.
In the above, we had to assume that TS(t) is the translation semigroup in some
M⊂ C0(R+, X). However, we also obtained complete characterizations for strong
stability.
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