Electronic Journal of Differential Equations, Vol. 2005(2005), No. 71, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON SYLVESTER OPERATOR EQUATIONS, COMPLETE TRAJECTORIES, REGULAR ADMISSIBILITY, AND STABILITY OF C₀-SEMIGROUPS

EERO IMMONEN

ABSTRACT. We show that the existence of a nontrivial bounded uniformly continuous (BUC) complete trajectory for a C_0 -semigroup $T_A(t)$ generated by an operator A in a Banach space X is equivalent to the existence of a solution $\Pi = \delta_0$ to the homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$. Here $S|_{\mathcal{M}}$ generates the shift C_0 -group $T_S(t)|_{\mathcal{M}}$ in a closed translation-invariant subspace \mathcal{M} of $BUC(\mathbb{R}, X)$, and δ_0 is the point evaluation at the origin. If, in addition, \mathcal{M} is operator-invariant and $0 \neq \Pi \in \mathcal{L}(\mathcal{M}, X)$ is any solution of $\Pi S|_{\mathcal{M}} = A\Pi$, then all functions $t \to \Pi T_S(t)|_{\mathcal{M}} f, f \in \mathcal{M}$, are complete trajectories for $T_A(t)$ in \mathcal{M} . We connect these results to the study of regular admissibility of Banach function spaces for $T_A(t)$; among the new results are perturbation theorems for regular admissibility and complete trajectories. Finally, we show how strong stability of a C_0 -semigroup can be characterized by the nonexistence of nontrivial bounded complete trajectories for the sun-dual semigroup, and by the surjective solvability of an operator equation $\Pi S|_{\mathcal{M}} = A\Pi$.

1. INTRODUCTION

Consider the abstract Cauchy problem

$$\dot{x}(t) = Ax(t), \quad t \ge 0, \quad x(0) = x_0 \in X$$
 (1.1)

where A generates a C_0 -semigroup $T_A(t)$ in some Banach space X. It is well known that a unique mild solution $x(t) = T_A(t)x_0, t \ge 0$, of (1.1) always exists. However, sometimes there also exist so-called complete trajectories for $T_A(t)$. A complete trajectory for $T_A(t)$ is a continuous function $x : \mathbb{R} \to X$ such that x(t) = $T_A(t-s)x(s)$ for each $t, s \in \mathbb{R}$ for which $t \ge s$, and $x(0) = x_0$. Such a trajectory is nontrivial if it is not identically zero. Bounded nontrivial complete trajectories for $T_A(t)$ are important e.g. in the study of equations (1.1) on the whole real line [18, 19]; Vu has studied their existence and construction in [19]. His main

²⁰⁰⁰ Mathematics Subject Classification. 47D03.

Key words and phrases. Sylvester operator equation; regularly admissible space;

complete nontrivial trajectory; C_0 -semigroup; exponential stability; strong stability; exponential dichotomy.

^{©2005} Texas State University - San Marcos.

Submitted April 17, 2005. Published June 30, 2005.

E. IMMONEN

result asserts that if $T_A(t)$ is uniformly bounded and sun-reflexive, and its sundual semigroup $T_A^{\odot}(t)$ (see Subsection 1.1) is not strongly stable¹, then there exist nontrivial bounded complete trajectories provided one of the following conditions holds: $i\mathbb{R} \notin \sigma(A)$ or $\operatorname{ran}(T_A^{\odot}(t_0))$ is dense in X^{\odot} for some $t_0 > 0$. Vu also shows in [19] that if the intersection of the approximate point spectrum of A and the imaginary axis is countable, then every bounded uniformly continuous complete trajectory for $T_A(t)$ is almost periodic provided X does not contain an isomorphic copy of c_0 , the Banach space of sequences convergent to 0, or the trajectory itself is weakly compact.

A related problem for the inhomogenous abstract Cauchy problem

$$\dot{x}(t) = Ax(t) + f(t), \quad t \in \mathbb{R}$$
(1.2)

in X is the following [15, 21]. Let \mathcal{M} be a closed translation-invariant operatorinvariant (i.e. CTO, see Definition 1.1) subspace of $BUC(\mathbb{R}, X)$, the space of bounded uniformly continuous X-valued functions. We say that \mathcal{M} is regularly admissible for $T_A(t)$ if for each $f \in \mathcal{M}$ there exists a unique mild solution $x \in \mathcal{M}$ of (1.2), i.e. for which

$$x(t) = T_A(t-s)x(s) + \int_s^t T_A(t-\tau)f(\tau)d\tau \quad \forall t \ge s, \quad t,s \in \mathbb{R}$$
(1.3)

Vu and Schüler [21] showed, among other things, that \mathcal{M} is regularly admissible for $T_A(t)$ if and only if the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \delta_0$, where $S|_{\mathcal{M}} = \frac{d}{dx}|_{\mathcal{M}}$ and δ_0 is the point evaluation operator in \mathcal{M} centered at the origin, has a unique solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$ (see Section 2).

The main purpose of the present article is to interconnect the results in [19] and [21]. To avoid repetition we shall assume the reader to have access to these papers. Our main results are the following. We show that the existence of a nontrivial complete trajectory $x \in BUC(\mathbb{R}, X)$ for $T_A(t)$ is equivalent to the existence of a solution $\Pi = \delta_0$ to the homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ for some closed translation-invariant subspace \mathcal{M} of $BUC(\mathbb{R}, X)$. If, in addition, \mathcal{M} is operatorinvariant and $0 \neq \Pi \in \mathcal{L}(\mathcal{M}, X)$ is any solution of $\Pi S|_{\mathcal{M}} = A\Pi$, then all functions $t \to \Pi T_S(t)|_{\mathcal{M}} f, f \in \mathcal{M}$ are complete trajectories for $T_A(t)$ in \mathcal{M} . There are three remarkable features in these results. First of all, we do not need to assume e.g. the uniform boundedness of $T_A(t)$ or restrict $\sigma(A) \cap i\mathbb{R}$ in any explicit way to obtain nontrivial bounded complete trajectories. Secondly, the complete trajectories are known to be in \mathcal{M} – hence we can conclude more than just boundedness of the trajectory. For example \mathcal{M} could be the space $AP(\mathbb{R}, X)$ of X-valued almost periodic functions. Finally, these results also provide a way to construct bounded complete trajectories for $T_A(t)$ via the solution operators Π .

By combining our main results with those in [19, 21] we obtain several useful corollaries. For example, we immediately see that if \mathcal{M} is regularly admissible for $T_A(t)$, then there cannot be complete nontrivial trajectories for $T_A(t)$ in \mathcal{M} . Since all CTO subspaces $\mathcal{M} \subset BUC(\mathbb{R}, X)$ are regularly admissible for an exponentially dichotomous semigroup $T_A(t)$ [21], exponentially dichotomous C_0 -semigroups cannot have bounded uniformly continuous complete trajectories. Consequently the same is true for exponentially stable C_0 -semigroups.

¹A C_0 -semigroup T(t) in a Banach space Z is strongly stable if $\lim_{t\to\infty} T(t)z = 0$ for every $z \in Z$

In Section 4 we shall show that the existence of nontrivial bounded complete trajectories for $T_A(t)$ is a fragile property; arbitrarily small bounded additive perturbations to the generator A may destroy it. On the other hand, we shall show that the *nonexistence* of such trajectories may be a stable property even under certain unbounded additive perturbations to A. We also show that regular admissibility of \mathcal{M} for $T_A(t)$ may sustain some unbounded additive perturbations to A. Hence we have another situation in which the nonexistence of bounded complete trajectories in \mathcal{M} is not affected by perturbations to A.

We conclude this article with some new characterizations for strong stability of a C_0 -semigroup $T_A(t)$. We shall show that if $T_A(t)$ is uniformly bounded and $\sigma_A(A) \cap i\mathbb{R}$ is countable, then $T_A(t)$ is not strongly stable if and only if the sundual semigroup $T_A^{\odot}(t)$ has a nontrivial bounded complete trajectory. We also show that strong stability of $T_A(t)$ is equivalent to the existence of a surjective solution to the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ for a closed translation-invariant subspace $\mathcal{M} \subset C_0(\mathbb{R}_+, X)$.

1.1. **Preliminaries.** As in the above, let X be a Banach space and consider a C_0 semigroup $T_A(t)$ in X generated by A. The spectrum, point spectrum, approximate point spectrum and resolvent set of A are denoted by $\sigma(A)$, $\sigma_P(A)$, $\sigma_A(A)$ and $\rho(A)$ respectively. A^* denotes the adjoint operator of A and for every $\lambda \in \rho(A)$ we denote by $R(\lambda, A)$ the resolvent operator of A. A linear operator $\Delta_A : \mathcal{D}(\Delta_A) \subset X \to X$ is called A-bounded if $\mathcal{D}(A) \subset \mathcal{D}(\Delta_A)$ and for some nonnegative constants a, b we have

$$\|\Delta_A x\| \le a \|x\| + b \|Ax\| \quad \forall x \in \mathcal{D}(A) \tag{1.4}$$

If the Banach space X is not reflexive, then the adjoint semigroup $T_A^*(t)$ is not necessarily strongly continuous. However, the subspace

$$X^{\odot} = \{ \phi \in X^* \mid T^*_A(t)\phi \text{ is strongly continuous} \}$$
(1.5)

is closed in X^* and invariant for $T^*_A(t)$. Additionally, $X^{\odot} = \overline{\mathcal{D}(A^*)}$ and the restriction $T^*_A(t)|_{X^{\odot}}$ defines a strongly continuous semigroup in X^{\odot} , the so-called sun-dual semigroup $T^{\odot}_A(t)$ [9, 19].

We denote the Banach space (with sup-norm) of bounded uniformly continuous functions $t \to X$ by $BUC(\mathbb{R}, X)$. The shift operators $T_S(t), t \in \mathbb{R}$, are defined for each $f \in BUC(\mathbb{R}, X)$ as $T_S(t)f = f(\cdot + t)$. It is clear that $T_S(t)$ constitutes a strongly continuous group in $BUC(\mathbb{R}, X)$. Its infinitesimal generator is the differential operator $S = \frac{d}{dx}$ with a suitable domain of definition. Clearly the restrictions $T_S(t)|_{\mathcal{M}}$ of the shift group to closed (in the sup-norm) translation-invariant subspaces $\mathcal{M} \subset BUC(\mathbb{R}, X)$ are also strongly continuous. The infinitesimal generator of such a restriction $T_S(t)|_{\mathcal{M}}$ is denoted by $S|_{\mathcal{M}}$. Of special interest are the so-called CTO (closed translation-invariant operator-invariant) subspaces \mathcal{M} of $BUC(\mathbb{R}, X)$:

Definition 1.1. A sup-norm closed translation-invariant function space $\mathcal{M} \subset BUC(\mathbb{R}, X)$ is operator-invariant if for each $C \in \mathcal{L}(\mathcal{M}, X)$ and every $f \in \mathcal{M}$ the function $t \to CT_S(t)f$ is in \mathcal{M} .

Several interesting function spaces are CTO. For example: Continuous *p*-periodic X-valued functions, almost periodic functions $\mathbb{R} \to X$ and functions in $BUC(\mathbb{R}, X)$ whose Carleman spectrum is contained in a given closed subset Λ of $i\mathbb{R}$, the imaginary axis. Recall that almost periodic functions are those which can be uniformly approximated by trigonometric polynomials [2], and that the Carleman spectrum

sp(f) of a function $f \in BUC(\mathbb{R},X)$ is defined as the set of singularities of its Carleman transform

$$\widetilde{f}(\lambda) = \begin{cases} \int_0^\infty e^{-\lambda t} f(t) dt, & \Re(\lambda) > 0\\ -\int_{-\infty}^0 e^{-\lambda t} f(t) dt, & \Re(\lambda) < 0 \end{cases}$$
(1.6)

on $i\mathbb{R}$. The reader is referred to [2, 11, 21] for more details.

In this article we shall use the well known fact that for every closed translationinvariant subspace $\mathcal{M} \subset BUC(\mathbb{R}, X)$ there exists a sequence $(\mathcal{M}_n)_{n \in \mathbb{N}} \subset \mathcal{M}$ of closed translation-invariant subspaces with the following properties [16, 21]:

- (1) $\mathcal{M}_n \subset \mathcal{M}_{n+1}$ for every $n \in \mathbb{N}$.
- (2) $S_n = S|_{\mathcal{M}_n}$ is a bounded operator for every $n \in \mathbb{N}$.
- (3) $\sigma(S_n) \subset \sigma(S|_{\mathcal{M}})$ for every $n \in \mathbb{N}$.
- (4) $\cup_{n\in\mathbb{N}}\mathcal{M}_n$ is dense in \mathcal{M} .
 - 2. MILD AND STRONG SOLUTIONS OF $\Pi S|_{\mathcal{M}} = A\Pi + \Delta$

Let $\mathcal{M} \subset BUC(\mathbb{R}, X)$ be a closed translation-invariant function space and let $\Delta \in \mathcal{L}(\mathcal{M}, X)$. As before, we assume that A generates the C_0 -semigroup $T_A(t)$ in X. In this section we shall study the operator equation

$$\Pi S|_{\mathcal{M}} = A\Pi + \Delta \tag{2.1}$$

which will play a prominent role throughout this article. Equation (2.1) is a special instance of general linear Sylvester type operator equations. Such equations have a long history: For classical finite-dimensional results the reader is referred to [10] and to the excellent survey article [8]. The treatment of Bhatia and Rosenthal [8] actually also covers the case of bounded linear operators in infinite-dimensional spaces. Many of these results can be generalized for unbounded operators which may or may not generate C_0 -semigroups. Such results can be found e.g. in [3, 14, 20, 21].

Vu and Schüler [21] concentrated on the unique solvability of (2.1) for each Δ . They showed that it is equivalent to the regular admissibility of \mathcal{M} for $T_A(t)$. It turns out, however, that also nonunique solutions of (2.1) have importance. We shall see in the next section that the existence of a nontrivial solution $\Pi = \delta_0$ to the homogenous equation $\Pi S|_{\mathcal{M}} = A\Pi$ — which implies nonuniqueness of solutions of (2.1) — is equivalent to the existence of nontrivial bounded uniformly continuous complete trajectories for $T_A(t)$. In order to establish this result we consider two types of solutions for (2.1):

Definition 2.1. An operator $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is called a strong solution of (2.1) if $\Pi(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A)$ and $\Pi S|_{\mathcal{M}} f = A \Pi f + \Delta f$ for every $f \in \mathcal{D}(S|_{\mathcal{M}})$.

Definition 2.2. An operator $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is called a mild solution of (2.1) if

$$\Pi T_S(t)|_{\mathcal{M}} f = T_A(t)\Pi f + \int_0^t T_A(t-s)\Delta T_S(s)|_{\mathcal{M}} f ds$$
(2.2)

for every $f \in \mathcal{M}$ and every $t \geq 0$.

The main result of this section shows that mild and strong solutions of (2.1) coincide. Hence we may refer to them as just solutions of (2.1).

Theorem 2.3. An operator $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is a mild solution of (2.1) if and only if it is a strong solution of (2.1).

Proof. Assume first that $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is a strong solution of the (2.1). Let $f \in \mathcal{D}(S|_{\mathcal{M}})$ be arbitrary. Then since $\Pi(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A)$, we have for every $t \geq 0$ that

$$\Pi T_S(t)|_{\mathcal{M}} f - T_A(t)\Pi f = \Big|_{\tau=0}^t T_A(t-\tau)\Pi T_S(\tau)|_{\mathcal{M}} f d\tau$$
(2.3)

$$= \int_{0} \frac{d}{d\tau} T_A(t-\tau) \Pi T_S(\tau) |_{\mathcal{M}} f d\tau \qquad (2.4)$$

$$= \int_{0}^{t} T_{A}(t-\tau) [\Pi S|_{\mathcal{M}} - A\Pi] T_{S}(\tau)|_{\mathcal{M}} f d\tau \qquad (2.5)$$

$$= \int_0^t T_A(t-\tau)\Delta T_S(\tau)|_{\mathcal{M}} f d\tau \qquad (2.6)$$

because $T_S(\tau)|_{\mathcal{M}} f \in \mathcal{D}(S|_{\mathcal{M}})$ for every $\tau \geq 0$. Since $\mathcal{D}(S|_{\mathcal{M}})$ is dense in \mathcal{M} , we must have that

$$\Pi T_S(t)|_{\mathcal{M}} f = T_A(t)\Pi f + \int_0^t T_A(t-\tau)\Delta T_S(\tau)|_{\mathcal{M}} f d\tau \quad \forall f \in \mathcal{M} \quad \forall t \ge 0 \quad (2.7)$$

In other words Π is a mild solution of (2.1).

Assume then that $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is a mild solution of (2.1). We first show that $\Pi(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A)$. Let $f \in \mathcal{D}(S|_{\mathcal{M}})$. Then for every h > 0

$$\frac{T_A(h)\Pi f - \Pi f}{h} = \frac{T_A(h)\Pi f - \Pi T_S(h)|_{\mathcal{M}}f}{h} + \frac{\Pi T_S(h)|_{\mathcal{M}}f - \Pi f}{h}$$
(2.8)

$$= -\frac{\int_0^h T_A(h-\tau)\Delta T_S(\tau)|_{\mathcal{M}} f d\tau}{h} + \frac{\Pi T_S(h)|_{\mathcal{M}} f - \Pi f}{h} \qquad (2.9)$$

which by the boundedness of Π shows that $\Pi f \in \mathcal{D}(A)$; also observe that the function $t \to \Delta T_S(t)|_{\mathcal{M}} f$ is continuously differentiable so that the convolution in (2.9) is differentiable. Moreover, we see that $A\Pi f = -\Delta f + \Pi S|_{\mathcal{M}} f$ for each $f \in \mathcal{D}(S|_{\mathcal{M}})$. Consequently Π is a strong solution of (2.1).

Remark 2.4. As mentioned in the introductory section, the special case $\Delta = \delta_0 \in \mathcal{L}(\mathcal{M}, X)$ has turned out to be particularly important in the qualitative theory of differential equations. Theorem 2.3 immediately reveals why this is so. Clearly $f(t) = \delta_0 T_S(t)|_{\mathcal{M}} f$ for every $f \in \mathcal{M}$ and $t \in \mathbb{R}$ and hence if $\Pi \in \mathcal{L}(\mathcal{M}, X)$ is a solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \delta_0$, then (2.2) reads

$$\Pi T_{S}(t)|_{\mathcal{M}}f = T_{A}(t)\Pi f + \int_{0}^{t} T_{A}(t-s)f(s)ds, \quad t \ge 0$$
(2.10)

so that for $x(0) = \Pi f$ the right hand side of (2.10) is the mild solution of the inhomogenous differential equation $\dot{x}(t) = Ax(t) + f(t), t \ge 0$. If in addition, \mathcal{M} is a CTO subspace of $BUC(\mathbb{R}, X)$, then this mild solution $t \to \Pi T_S(t)|_{\mathcal{M}} f$ is in \mathcal{M} for every $f \in \mathcal{M}$. Consequently we may deduce e.g. the existence of periodic mild solutions from solvability of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \delta_0$ in a suitable space \mathcal{M} . We shall not pursue this discussion any further; the interested reader is referred to [12, 21] for a related discussion.

The operator equation (2.1) has also been studied as an operator equation $\tau_{A,S|\mathcal{M}} \Pi = \Delta$ in the literature [3]. Here $\tau_{A,S|\mathcal{M}}$ is an (unbounded) operator on

 $\mathcal{L}(\mathcal{M}, X)$ defined as follows.

$$\mathcal{D}(\tau_{A,S|_{\mathcal{M}}}) = \left\{ X \in \mathcal{L}(\mathcal{M}, X) : X(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A), \exists Y \in \mathcal{L}(\mathcal{M}, X) : Yu = XS|_{\mathcal{M}}u - AXu \,\forall u \in \mathcal{D}(S|_{\mathcal{M}}) \right\}$$
(2.11a)

E. IMMONEN

$$\tau_{A,S|_{\mathcal{M}}} X = Y \tag{2.11b}$$

It can be shown that $\tau_{A,S|_{\mathcal{M}}}$ is a closed operator on $\mathcal{L}(\mathcal{M}, X)$ [3]. The following result is then evident.

Proposition 2.5. Equation (2.1) has a unique solution for every $\Delta \in \mathcal{L}(\mathcal{M}, X)$ if and only if $0 \in \rho(\tau_{A,S|_{\mathcal{M}}})$. The homogenous equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a nontrivial solution if and only if $0 \in \sigma_P(\tau_{A,S|_{\mathcal{M}}})$.

Proposition 2.5 is particularly useful if $T_A(t)$ is a holomorphic semigroup or if $S|_{\mathcal{M}}$ is bounded. By the results of Arendt, Räbiger and Sourour [3], in both cases $\sigma(\tau_{A,S|_{\mathcal{M}}}) = \sigma(A) + \sigma(S|_{\mathcal{M}})$. We shall, however, use Proposition 2.5 in a different context in Section 4: We make use of the well known fact that bounded invertibility of a closed operator is preserved under small (but possibly unbounded) additive perturbations.

3. Complete Trajectories, Regular Admissibility and
$$\Pi S|_{\mathcal{M}} = A \Pi$$

The main results of this article are Theorem 3.1 and Theorem 3.3 below. They connect the existence of nontrivial bounded uniformly continuous complete trajectories for $T_A(t)$ to the nonunique solvability of the homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$. Consequently they provide the link between the articles [19] and [21] mentioned in the introductory section.

Theorem 3.1. Let A generate a C_0 -semigroup $T_A(t)$ in X. Then the following are equivalent.

- (1) There exists a nontrivial bounded uniformly continuous complete trajectory x(t) for $T_A(t)$.
- (2) There exists a nontrivial closed translation-invariant subspace \mathcal{M} of $BUC(\mathbb{R}, X)$ in which δ_0 solves the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$.
- (3) There exists a nontrivial closed translation-invariant subspace \mathcal{M} of $BUC(\mathbb{R}, X)$ for which every $x \in \mathcal{M}$ is a bounded uniformly continuous complete trajectory for $T_A(t)$.

Proof. Since by Theorem 2.3 mild and strong solutions of the operator equation (2.1) coincide, we may restrict our attention to mild solutions. We show $1 \implies 2 \implies 3 \implies 1$.

1 \implies 2 : Assume that $x \in BUC(\mathbb{R}, X)$ is a nontrivial bounded complete trajectory for $T_A(t)$. Let $\mathcal{M} = \overline{\operatorname{span}}\{x(\cdot + t) \mid t \in \mathbb{R}\}$ where closure is taken in the sup-norm. Then $\mathcal{M} \neq 0$ is a closed translation invariant subspace of $BUC(\mathbb{R}, X)$ and clearly $\delta_0 \in \mathcal{L}(\mathcal{M}, X)$. Moreover $x(t) = \delta_0 T_S(t)|_{\mathcal{M}} x$ for each $t \in \mathbb{R}$. Furthermore, for any $\tau \geq 0$ and $s \in \mathbb{R}$ we have

$$x(\tau+s) = \delta_0 T_S(\tau)|_{\mathcal{M}} T_S(s)|_{\mathcal{M}} x = T_A(\tau) x(s) = T_A(\tau) \delta_0 T_S(s)|_{\mathcal{M}} x \tag{3.1}$$

since x is a complete trajectory for $T_A(t)$. This shows that $\delta_0 T_S(\tau)|_{\mathcal{M}} x(\cdot + s) = T_A(\tau)\delta_0 x(\cdot + s)$ for each $\tau \ge 0$ and $s \in \mathbb{R}$ because $T_S(s)|_{\mathcal{M}} x = x(\cdot + s)$. In other words δ_0 is a mild solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ in the set $\{x(\cdot + s) \mid s \in \mathbb{R}\}$. Upon extensions by linearity and continuity

we immediately have that for \mathcal{M} as in the above, the equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a nontrivial mild solution $\Pi = \delta_0$.

2 \implies 3 : Assume that the homogenous equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a mild solution $\delta_0 \in \mathcal{L}(\mathcal{M}, X)$. Let $f \in \mathcal{M}$. Then $f(t) = \delta_0 T_S(t)|_{\mathcal{M}} f$ for every $t \in \mathbb{R}$. Furthermore for every $t, s \in \mathbb{R}$ such that $t \geq s$ we have

$$T_A(t-s)f(s) = T_A(t-s)\delta_0 T_S(s)|_{\mathcal{M}} f$$

= $\delta_0 T_S(t-s)|_{\mathcal{M}} T_S(s)|_{\mathcal{M}} f$
= $\delta_0 T_S(t)|_{\mathcal{M}} f = f(t)$

This shows that every $f \in \mathcal{M}$ is a complete nontrivial trajectory for $T_A(t)$. 3 \implies 1 : This is trivial.

We state the following corollary to emphasize that in parts 2 and 3 of Theorem 3.1 the closed translation invariant spaces are equal.

Corollary 3.2. Let $T_A(t)$ be a C_0 -semigroup in X generated by A, and let $\mathcal{M} \subset BUC(\mathbb{R}, X)$ be a closed and translation-invariant subspace. Then every $x \in \mathcal{M}$ is a complete trajectory for $T_A(t)$ if and only if δ_0 is a solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$.

Proof. Assume that every $x \in \mathcal{M}$ is a bounded complete trajectory for $T_A(t)$. Then for any $\tau \geq 0$ and $s \in \mathbb{R}$ we have $x(\tau + s) = \delta_0 T_S(\tau)|_{\mathcal{M}} T_S(s)|_{\mathcal{M}} x = T_A(\tau) x(s) =$ $T_A(\tau) \delta_0 T_S(s)|_{\mathcal{M}} x$ for each $x \in \mathcal{M}$, because every $x \in \mathcal{M}$ is a complete trajectory for $T_A(t)$. Consequently δ_0 is a mild solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ in the set $\{x(\cdot + s) \mid s \in \mathbb{R}\}$ for each $x \in \mathcal{M}$. Since \mathcal{M} is translation-invariant, we have $\mathcal{M} = \bigcup_{x \in \mathcal{M}} \{x(\cdot + s) \mid s \in \mathbb{R}\}$. This shows that δ_0 is a mild solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$. The converse claim is contained in the proof of Theorem 3.1.

In the above results we assumed that \mathcal{M} is a closed and translation-invariant subspace of $BUC(\mathbb{R}, X)$. If \mathcal{M} is in addition CTO, then also other nontrivial solutions of the homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ yield nontrivial bounded complete trajectories for $T_A(t)$:

Theorem 3.3. Let $T_A(t)$ be a C_0 -semigroup in X generated by A. Then the following assertions are equivalent for a given CTO space $0 \neq \mathcal{M} \subset BUC(\mathbb{R}, X)$.

- (1) There exists a nonzero operator $\Pi \in \mathcal{L}(\mathcal{M}, X)$ such that for every $f \in \mathcal{M}$, the function $t \to \Pi T_S(t)|_{\mathcal{M}} f$ is a complete trajectory for $T_A(t)$ in \mathcal{M} .
- (2) The homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a nontrivial solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$.
- (3) There exists an operator $\Delta \in \mathcal{L}(\mathcal{M}, X)$ such that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \Delta$ has at least two distinct solutions.
- (4) The operator $\tau_{A,S|_{\mathcal{M}}}$ defined in (2.11) has 0 as its eigenvalue.

Proof. We show $1 \iff 2 \iff 3$ and $2 \iff 4$:

1 \iff 2 : First assume that for every $f \in \mathcal{M}$ the functions $t \to x_f(t) = \prod T_S(t)|_{\mathcal{M}} f$ are complete trajectories for $T_A(t)$ in \mathcal{M} . Hence for each $f \in \mathcal{M}$ and $\tau \ge 0$

and $s \in \mathbb{R}$ we have

$$x_{f}(\tau + s) = \Pi T_{S}(\tau + s)|_{\mathcal{M}} f$$

= $\Pi T_{S}(\tau)|_{\mathcal{M}} T_{S}(s)|_{\mathcal{M}} f$
= $T_{A}(\tau) x_{f}(s)$
= $T_{A}(\tau) \Pi T_{S}(s)|_{\mathcal{M}} f$

This shows that $\Pi T_S(\tau)|_{\mathcal{M}} f(\cdot + s) = T_A(\tau) \Pi f(\cdot + s)$ for each $f \in \mathcal{M}, \tau \ge 0$ and $s \in \mathbb{R}$. As we let s = 0 we see that Π satisfies the operator equation $\Pi S|_{\mathcal{M}} = A \Pi$.

Conversely assume that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a nonzero mild solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$. Let $f \in \mathcal{M}$ and define the function $x_f : \mathbb{R} \to X$ such that $x(t) = \Pi T_S(t)|_{\mathcal{M}} f$ for each $t \in \mathbb{R}$. Since \mathcal{M} is CTO, $x_f \in \mathcal{M}$. Furthermore for every $t, s \in \mathbb{R}$ such that $t \geq s$ we have

$$T_A(t-s)x_f(s) = T_A(t-s)\Pi T_S(s)|_{\mathcal{M}}f$$

= $\Pi T_S(t-s)|_{\mathcal{M}}T_S(s)|_{\mathcal{M}}f$
= $\Pi T_S(t)|_{\mathcal{M}}f = x_f(t)$

because $T_S(t)|_{\mathcal{M}} f = f(\cdot + t) \in \mathcal{M}$ for each $t \in \mathbb{R}$. This shows that for every $f \in \mathcal{M}$ the function x_f is a complete nontrivial trajectory for $T_A(t)$ in \mathcal{M} . $2 \iff 3$: This is trivial.

 $2 \iff 4$: This is contained in Proposition 2.5.

Remark 3.4. Vu [19] studied bounded uniformly continuous and almost periodic complete nontrivial trajectories for $T_A(t)$. Theorem 3.1 and Theorem 3.3 provide more flexibility. For example, in Theorem 3.3 one may look for *p*-periodic continuous complete trajectories or complete trajectories $x \in BUC(\mathbb{R}, X)$ such that the Carleman spectrum sp(x) of x is contained in some closed set $\Lambda \subset i\mathbb{R}$.

Remark 3.5. Theorem 3.3 also provides a way to construct nontrivial complete trajectories in $\mathcal{M} \subset BUC(\mathbb{R}, X)$ for $T_A(t)$ via nontrivial solutions of the homogenous operator equation $\Pi S|_{\mathcal{M}} = A\Pi$.

The following result is of fundamental importance, since it provides a simple necessary condition for the existence of a nontrivial bounded complete trajectory for $T_A(t)$, and since this condition allows us to combine our results with the regular admissibility theory of Vu and Schüler [21]. Because of its importance we choose to give two separate proofs for this result.

Theorem 3.6. Let \mathcal{M} be a nontrivial closed translation-invariant subspace of $BUC(\mathbb{R}, X)$ and assume that A generates a C_0 -semigroup $T_A(t)$ in X. If $\sigma(S|_{\mathcal{M}}) \cap \sigma(A) = \emptyset$, then there are no nontrivial complete trajectories for $T_A(t)$ in \mathcal{M} .

Proof 1. Assume, conversely, that there exists a nontrivial complete trajectory x for $T_A(t)$ in \mathcal{M} . Then by Proposition 3.5 in [19] $sp(x) = \sigma(S_x)$ where S_x is the restriction of $S|_{\mathcal{M}}$ to the space $\overline{\text{span}}\{x(\cdot + t) \mid t \in \mathbb{R}\}$. Consequently $sp(x) \subset \sigma(S|_{\mathcal{M}})$, and $sp(x) \cap \sigma(A) = \emptyset$. But by Proposition 3.7 in [19] $sp(x) \subset \sigma_A(A)$ which implies $sp(x) = \emptyset$. According to Wiener's Tauberian Theorem [19] this is possible only if x is identically zero — a contradiction.

8

Proof 2. Assume again, conversely, that there exists a nontrivial complete trajectory x for $T_A(t)$ in \mathcal{M} . By Theorem 3.1 there exists a nontrivial closed translationinvariant subspace $\mathcal{N} \subset \mathcal{M}$ in which the operator equation $\Pi S|_{\mathcal{N}} = A\Pi$ has a nontrivial solution. Then by a result stated in Subsection 1.1 there exists another nontrivial closed translation-invariant subspace $\mathcal{N}_0 \subset \mathcal{N}$ in which the restriction $S|_{\mathcal{N}_0}$ is a nonzero bounded operator. Moreover the operator equation $\Pi S|_{\mathcal{N}_0} = A\Pi$ also has a nontrivial solution. But this is impossible since $\sigma(S|_{\mathcal{N}_0}) \cap \sigma(A) \subset$ $\sigma(S|_{\mathcal{M}}) \cap \sigma(A) = \emptyset$ and the boundedness of $S|_{\mathcal{N}_0}$ imply that the only solution of $\Pi S|_{\mathcal{N}_0} = A\Pi$ is the zero operator (see Section 2 in [21]).

Throughout the following corollaries A generates a C_0 -semigroup $T_A(t)$ in X.

Corollary 3.7. If a given CTO space $\mathcal{M} \subset BUC(\mathbb{R}, X)$ is regularly admissible for $T_A(t)$, then there cannot be complete nontrivial trajectories for $T_A(t)$ in \mathcal{M} .

Proof. By Corollary 3.2 in [21] we have $\sigma(S|_{\mathcal{M}}) \cap \sigma(A) = \emptyset$. By Theorem 3.6 there cannot be complete nontrivial trajectories in \mathcal{M} .

Corollary 3.8. Let \mathcal{M} be a CTO subspace of $BUC(\mathbb{R}, X)$ and suppose that $\sigma(T_A(1)) \cap \sigma(T_S(1)|_{\mathcal{M}}) = \emptyset$. Then there cannot be complete nontrivial trajectories for $T_A(t)$ in \mathcal{M} .

Proof. By Corollary 2.4 and Theorem 3.1 in [21] \mathcal{M} is regularly admissible for $T_A(t)$. By Corollary 3.7 there cannot be complete nontrivial trajectories for $T_A(t)$ in \mathcal{M} .

Corollary 3.9. Assume that there are no complete trajectories for $T_A(t)$ in a CTO subspace \mathcal{M} of $BUC(\mathbb{R}, X)$ and that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \delta_0$ has a solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$. Then \mathcal{M} is regularly admissible.

Proof. By Theorem 3.3, Π must be the unique solution of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \delta_0$. The result follows by Theorem 3.1 in [21].

Recall that $T_A(t)$ is exponentially dichotomous if there exists a bounded projection operator P on X and positive constants M, ω such that

- (1) $PT_A(t) = T_A(t)P$ for all $t \ge 0$.
- (2) $||T_A(t)x_0|| \le Me^{-\omega t} ||x_0||$ for all $x_0 \in \operatorname{ran}(P)$ and all $t \ge 0$.
- (3) The restriction $T_A(t)|_{\ker(P)}$ extends to a C_0 -group and $||T_A(-t)|_{\ker(P)}x_0|| \le Me^{-\omega t}||x_0||$ for all $x_0 \in \ker(P)$ and all $t \ge 0$.

Clearly if $T_A(t)$ is exponentially stable, then it is also exponentially dichotomous. Vu ([19], Example 2.7) showed that there are no complete bounded trajectories for the diffusion semigroup on $C_0(\mathbb{R})$. The following result implies that the same is in fact true for all exponentially stable semigroups.

Corollary 3.10. Let $T_A(t)$ be exponentially dichotomous. Then there cannot exist nontrivial bounded uniformly continuous complete trajectories for $T_A(t)$.

Proof. By Theorem 4.1 in [21] the space $BUC(\mathbb{R}, X)$ is regularly admissible for $T_A(t)$. The result follows by Corollary 3.7.

The last corollary of Theorem 3.3 provides a sufficient condition for the almost periodicity of a nontrivial complete trajectory for $T_A(t)$.

E. IMMONEN

Corollary 3.11. Let $\sigma_A(A) \cap i\mathbb{R}$ be countable and assume that the space X does not contain a subspace which is isomorphic to c_0 (the Banach space of numerical sequences which converge to zero). Let \mathcal{M} be a CTO subspace of $BUC(\mathbb{R}, X)$. If the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a nontrivial solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$, then $x_f(t) = \Pi T_S(t)f$ is an almost periodic complete trajectory for $T_A(t)$ for each $f \in \mathcal{M}$.

Proof. By Theorem 3.10 in [19] all bounded uniformly continuous bounded trajectories are almost periodic. By Theorem 3.3, the function $t \to \Pi T_S(t) f$ is a complete trajectory in $\mathcal{M} \subset BUC(\mathbb{R}, X)$ for every $f \in \mathcal{M}$.

4. Some Perturbation Results

Consider again a closed translation-invariant subspace \mathcal{M} of $BUC(\mathbb{R}, X)$. Clearly for every $f \in \mathcal{M}$ the trajectory $T_S(t)|_{\mathcal{M}}f$ of the left shift group is bounded and complete, and it is in \mathcal{M} . However, for every $\epsilon > 0$ the semigroup $T_{S-\epsilon I}(t)$ generated by $S - \epsilon I$ in \mathcal{M} is exponentially stable. By Corollary 3.10 there are no nontrivial bounded complete trajectories for $T_{S-\epsilon I}(t)$ in \mathcal{M} , and hence the existence of nontrivial bounded complete trajectories for a semigroup is a fragile property; arbitrarily small bounded additive perturbations to the generator may destroy it. On the other hand, in this section we shall provide conditions under which the *nonexistence* of nontrivial bounded complete trajectories is not destroyed by small unbounded (but possibly structured) additive perturbations to the generator A.

Proposition 4.1. Let A generate a C_0 -semigroup $T_A(t)$ in X. Let \mathcal{M} be a closed translation-invariant subspace of $BUC(\mathbb{R}, X)$ and let $\sigma(A) \cap \sigma(S|_{\mathcal{M}}) = \emptyset$. Let $\Delta_A : \mathcal{D}(\Delta_A) \subset X \to X$ be a linear A-bounded operator such that

- (1) $A + \Delta_A$ with domain $\mathcal{D}(A)$ generates a C_0 -semigroup $T_{A+\Delta_A}(t)$ in X.
- (2) The A-boundedness constants a, b in (1.4) satisfy

$$\sup_{i\omega\in\sigma(S|_{\mathcal{M}})} a \|R(i\omega,A)\| + b\|AR(i\omega,A)\| < 1$$

$$(4.1)$$

Then there are no nontrivial complete trajectories in \mathcal{M} for $T_A(t)$ and the same holds for the perturbed C_0 -semigroup $T_{A+\Delta_A}(t)$.

Proof. By Theorem IV.3.17 in [13], $\sigma(S|_{\mathcal{M}}) \subset \rho(A + \Delta_A)$. The result then follows by Theorem 3.6.

It is well known that if A generates an analytic or contractive C_0 -semigroup, then so does $A + \Delta_A$ under rather mild additional conditions for the A-bounded perturbation Δ_A [9].

We next prove that regular admissibility of \mathcal{M} for $T_A(t)$ is also preserved under certain additive perturbations to A. According to Corollary 3.7 we then have another situation in which the nonexistence of bounded complete trajectories in \mathcal{M} is not affected by such perturbations. In order to establish this result, we need some notation. Let \mathcal{M} be a CTO subspace of $BUC(\mathbb{R}, X)$. Let $\Delta_A : \mathcal{D}(\Delta_A) \subset X \to X$ be a closed linear operator such that $\mathcal{D}(A) \subset \mathcal{D}(\Delta_A)$ and such that $A - \Delta_A$ (with domain $\mathcal{D}(A)$) generates a C_0 -semigroup in X. Define another linear operator $\Delta_A : \mathcal{D}(\Delta_A) \subset \mathcal{L}(\mathcal{M}, X) \to \mathcal{L}(\mathcal{M}, X)$ such that

$$\mathcal{D}(\underline{\Delta_A}) = \{ X \in \mathcal{L}(\mathcal{M}, X) \mid A_{\Delta}X \in \mathcal{L}(\mathcal{M}, X) \}$$
(4.2a)

$$\underline{\Delta}_{\underline{A}}X = A_{\underline{\Delta}}X \quad \forall X \in \mathcal{D}(\underline{\Delta}_{\underline{A}}) \tag{4.2b}$$

Proposition 4.2. In the above notation assume that \mathcal{M} is regularly admissible for $T_A(t)$. Let

$$M = \sup\{\|\Pi\| \mid \Pi S|_{\mathcal{M}} = A\Pi + \Delta, \|\Delta\| = 1\}$$

$$(4.3)$$

If $\underline{\Delta}_A$ is $\tau_{A,S|_{\mathcal{M}}}$ -bounded with the boundedness constants a, b in (1.4) satisfying aM + b < 1, then \mathcal{M} is regularly admissible for $T_{A-\Delta_A}(t)$.

Proof. First observe that by Theorem 3.1 in [21] regular admissibility of \mathcal{M} for $T_A(t)$ is equivalent to the unique solvability of the operator equation $\Pi S|_{\mathcal{M}} = A\Pi + \Delta$ for every $\Delta \in \mathcal{L}(\mathcal{M}, X)$. Consequently by Proposition 2.5 we have $0 \in \rho(\tau_{A,S|_{\mathcal{M}}})$ and $\Pi S|_{\mathcal{M}} = A\Pi + \Delta$ if and only if $\Pi = \tau_{A,S|_{\mathcal{M}}}^{-1} \Delta$. Hence

$$\|\tau_{A,S|_{\mathcal{M}}}^{-1}\| = \sup_{\|\Delta\|=1} \|\tau_{A,S|_{\mathcal{M}}}^{-1}\Delta\| = \sup_{\|\Delta\|=1} \{\|\Pi\| \mid \Pi S|_{\mathcal{M}} = A\Pi + \Delta\} = M$$
(4.4)

By our assumptions $\underline{\Delta}_A$ is $\tau_{A,S|\mathcal{M}}$ -bounded, with the boundedness constants a, b in (1.4) satisfying $a \| \tau_{A,S|\mathcal{M}}^{-1} \| + b < 1$. Theorem IV.1.16 in [13] then implies that the operator $\tau_{A,S|\mathcal{M}} + \underline{\Delta}_A$ with domain $\mathcal{D}(\tau_{A,S|\mathcal{M}})$ is also boundedly invertible. But for each $X \in \mathcal{D}(\tau_{A,S|\mathcal{M}})$ and $u \in \mathcal{D}(S|\mathcal{M})$ we have

$$\begin{aligned} [\tau_{A,S}|_{\mathcal{M}} + \underline{\Delta}_{A}]Xu &= XS|_{\mathcal{M}}u - AXu + \underline{\Delta}_{A}Xu \\ &= XS|_{\mathcal{M}}u - AXu + \underline{\Delta}_{A}Xu \\ &= XS|_{\mathcal{M}}u - (A - \Delta_{A})Xu \end{aligned}$$

which shows that for every $\Delta \in \mathcal{L}(\mathcal{M}, X)$ the operator equation $XS|_{\mathcal{M}} - (A - \Delta_A)X = \Delta$ has a unique solution $X = \prod_{\Delta} \in \mathcal{L}(\mathcal{M}, X)$. By Theorem 3.1 in [21] this implies regular admissibility of \mathcal{M} for $T_{A-\Delta_A}(t)$.

Remark 4.3. For bounded additive perturbations $\Delta_A \in \mathcal{L}(X)$ to A the content of Proposition 4.2 may be formulated in a much simpler way: There exists $\epsilon > 0$ such that whenever $\|\Delta_A\| < \epsilon$, the space \mathcal{M} is regularly admissible for $T_{A+\Delta_A}(t)$.

Remark 4.4. It follows from Theorem 5.1 in [21] that regular admissibility of a space \mathcal{M} is not destroyed by certain sufficiently continuous and small nonlinear perturbations to A. Theorem 4.2 is, however, not entirely contained in this result of Vu and Schüler, because we allow for a degree of unboundedness in the additive perturbation operator Δ_A . Furthermore, their proof relies on a fixed point argument, and consequently it is rather different from ours.

5. On Strong Stability of C_0 -semigroups

Exponential stability of a C_0 -semigroup can be completely characterized in many equivalent ways: There are the well-known conditions of the Datko Theorem [2], and a condition of Vu and Schüler [21] according to which exponential stability of a C_0 -semigroup $T_A(t)$ is equivalent to the uniform boundedness of $T_A(t)$ and the unique solvability of the operator equation $\Pi S = A\Pi + \delta_0$. On the other hand, it has turned out that strong stability of a C_0 -semigroup is considerably more difficult to characterize. Since the pioneering work of Arendt, Batty, Lyubich and Vu [1, 17] this question has received much attention in the literature; the reader is referred to [2, 4, 7, 5, 6] and the references therein. It is obvious that a strongly stable C_0 -semigroup $T_A(t)$ is uniformly bounded and that $\sigma_P(A^*) \cap i\mathbb{R} = \emptyset$. On the other hand, the ABLV Theorem states that if $T_A(t)$ is uniformly bounded, $\sigma_P(A^*) \cap i\mathbb{R} = \emptyset$ and $\sigma(A) \cap i\mathbb{R}$ is countable, then $T_A(t)$ is strongly stable. E. IMMONEN

We next present new characterizations for strong stability of a C_0 -semigroup $T_A(t)$ in terms of nontrivial bounded complete trajectories for the sun-dual semigroup $T_A^{\odot}(t)$ and nontrivial solvability of an operator equation $\Pi S|_{\mathcal{M}} = A\Pi$.

Theorem 5.1. Assume that $\sigma_A(A) \cap i\mathbb{R}$ is countable and that $T_A(t)$ is a uniformly bounded C_0 -semigroup in X generated by A. Then there exists a nontrivial bounded complete trajectory for the sun-dual semigroup $T_A^{\odot}(t)$ if and only if $T_A(t)$ is not strongly stable.

Proof. Assume first that $T_A(t)$ is not strongly stable. Then $\sigma(A) \cap i\mathbb{R} = \sigma_A(A) \cap i\mathbb{R} \neq i\mathbb{R}$, which by Theorem 2.3 in [19] immediately shows that there exists a nontrivial bounded complete trajectory for the sun-dual semigroup $T_A^{\odot}(t)$.

For the converse, suppose that there exists a nontrivial bounded complete trajectory f for the sun-dual semigroup $T_A^{\odot}(t)$. Since $T_A(t)$ is uniformly bounded, the sun-dual semigroup $T_A^{\odot}(t)$ is uniformly bounded, and hence $f \in BUC(\mathbb{R}, X^{\odot})$. Then $sp(f) \subset \sigma(A^{\odot}) \cap i\mathbb{R} \subset \sigma(A) \cap i\mathbb{R}$ by Proposition 3.7 in [19] and Proposition IV.2.18 in [9]. This shows that sp(f) is a closed countable subset of the imaginary axis, and so it must contain an isolated point. Consider the closed translationinvariant subspace $\mathcal{M}_f = \overline{\operatorname{span}}\{f(\cdot+t) \mid t \in \mathbb{R}\}$ of $BUC(\mathbb{R}, X^{\odot})$ and the restriction $T_S(t)|_{\mathcal{M}_f}$ of the translation group $T_S(t)$ to \mathcal{M}_f . By Theorem 3.1 and Corollary 3.2 every $g \in \mathcal{M}_f$ is a complete trajectory for $T_A^{\odot}(t)$. Furthermore, the generator S_f of this restriction $T_S(t)|_{\mathcal{M}_f}$ has an isolated point $i\lambda \in i\mathbb{R}$ in its spectrum because $\sigma(S_f) = sp(f)$ by Proposition 3.5 in [19]. It then follows from Gelfand's Theorem (cf. [2] Corollary 4.4.9) that $i\lambda$ must be an eigenvalue of S_f . Hence there exists a nonzero $g \in \mathcal{M}_f$ such that $T_S(t)|_{\mathcal{M}_f}g = e^{i\lambda t}g$ for each $t \in \mathbb{R}$. Now the func-tion $t \to \delta_0 T_S(t)|_{\mathcal{M}_f}g = g(t) = g(0)e^{i\lambda t}$ is a (nontrivial) complete trajectory for $T_A^{\odot}(t)$ in \mathcal{M}_f . It is easy to see that this implies $i\lambda \in \sigma_P(A^{\odot}) \cap i\mathbb{R} = \sigma_P(A^*) \cap i\mathbb{R}$. Consequently $T_A(t)$ cannot be strongly stable.

In the following theorem we shall characterize strongly stable semigroups by the solvability of an operator equation $\Pi S|_{\mathcal{M}} = A\Pi$. However, in contrast to the previous sections, here \mathcal{M} is a closed translation-invariant subspace of $C_0(\mathbb{R}_+, X) = \{f \in BUC([0, \infty), X) \mid \lim_{t\to\infty} f(t) = 0\}$, and $S|_{\mathcal{M}}$ generates the strongly continuous left shift semigroup in \mathcal{M} .

Theorem 5.2. Let $X \neq \{0\}$ and let $T_A(t)$ be a C_0 -semigroup in X generated by A. Then $T_A(t)$ is strongly stable if and only if there exists a nontrivial closed translation-invariant subspace $\mathcal{M} \subset C_0(\mathbb{R}_+, X)$ such that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a surjective solution $\Pi \in \mathcal{L}(\mathcal{M}, X)^2$.

Proof. Let $T_A(t)$ be strongly stable and let $\mathcal{M} = \overline{\operatorname{span}}\{T_A(\cdot)x \mid x \in X\}$ where closure is taken in the sup-norm. Then $0 \neq \mathcal{M} \subset C_0(\mathbb{R}_+, X)$. Let $\Pi = \delta_0$, the point evaluation operator in \mathcal{M} centered at the origin. Then $\delta_0 \in \mathcal{L}(\mathcal{M}, X)$ and δ_0 is surjective; for any $x \in X$ we have $x = \delta_0 T_A(t)x$. Moreover, for every trajectory $f_x(t) = T_A(t)x$ we have $\delta_0 T_S(t)|_{\mathcal{M}} f_x = f_x(t) = T_A(t)x = T_A(t)\delta_0 f_x$. Extension by continuity and linearity shows that $\delta_0 T_S(t)|_{\mathcal{M}} = T_A(t)\delta_0$ throughout \mathcal{M} for each

12

²In analogy to Section 2, by a surjective solution of $\Pi S|_{\mathcal{M}} = A\Pi$ we mean a bounded linear surjective operator Π such that $\Pi(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A)$ and $\Pi S|_{\mathcal{M}} f = A\Pi f$ for each $f \in \mathcal{D}(S|_{\mathcal{M}})$.

$$t \ge 0. \text{ Let } f \in \mathcal{D}(S|_{\mathcal{M}}). \text{ Then}$$

$$\frac{T_A(h)\delta_0 f - \delta_0 f}{h} = \frac{T_A(h)\delta_0 f - \delta_0 T_S(h)|_{\mathcal{M}} f}{h} + \frac{\delta_0 T_S(h)|_{\mathcal{M}} f - \delta_0 f}{h}$$

$$= \frac{\delta_0 T_S(h)|_{\mathcal{M}} f - \delta_0 f}{h} \quad \forall h > 0$$
(5.1)

which by the boundedness of δ_0 shows that $\delta_0 f \in \mathcal{D}(A)$ and that $A\delta_0 f = \delta_0 S|_{\mathcal{M}} f$ for each $f \in \mathcal{D}(S|_{\mathcal{M}})$. Consequently δ_0 is a surjective solution of $\Pi S|_{\mathcal{M}} = A\Pi$.

Conversely, assume that there exists a nontrivial closed translation-invariant subspace $\mathcal{M} \subset C_0(\mathbb{R}_+, X)$ such that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a surjective solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$. Then since $\Pi(\mathcal{D}(S|_{\mathcal{M}})) \subset \mathcal{D}(A)$, we have for every $t \geq 0$ and $f \in \mathcal{D}(S|_{\mathcal{M}})$ that

$$\Pi T_{S}(t)|_{\mathcal{M}}f - T_{A}(t)\Pi f = \Big|_{\tau=0}^{t} T_{A}(t-\tau)\Pi T_{S}(\tau)|_{\mathcal{M}}fd\tau$$
$$= \int_{0}^{t} \frac{d}{d\tau} T_{A}(t-\tau)\Pi T_{S}(\tau)|_{\mathcal{M}}fd\tau$$
$$= \int_{0}^{t} T_{A}(t-\tau)[\Pi S|_{\mathcal{M}} - A\Pi]T_{S}(\tau)|_{\mathcal{M}}fd\tau = 0$$

and by continuity $\Pi T_S(t)|_{\mathcal{M}} f - T_A(t)\Pi f = 0$ for each $f \in \mathcal{M}$ and $t \ge 0$. Let $x \in X$ be arbitrary. Then by the surjectivity of Π there exists $f \in \mathcal{M}$ such that $x = \Pi f$. Moreover,

$$\lim_{t \to \infty} T_A(t)x = \lim_{t \to \infty} T_A(t)\Pi f = \lim_{t \to \infty} \Pi T_S(t)|_{\mathcal{M}} f = 0$$
(5.2)

since $T_S(t)|_{\mathcal{M}}$ is strongly stable and $\Pi \in \mathcal{L}(\mathcal{M}, X)$. Consequently $T_A(t)$ is strongly stable.

In a very similar way we obtain the following corollary.

Corollary 5.3. Let $X \neq \{0\}$ and let $T_A(t)$ be a C_0 -semigroup in X generated by A. Then $T_A(t)$ is strongly stable if and only if $T_A(t)$ is uniformly bounded and there exists a nontrivial closed translation-invariant subspace $\mathcal{M} \subset C_0(\mathbb{R}_+, X)$ such that the operator equation $\Pi S|_{\mathcal{M}} = A\Pi$ has a solution $\Pi \in \mathcal{L}(\mathcal{M}, X)$ such that $\operatorname{ran}(\Pi)$ is dense in X.

Remark 5.4. Theorem 5.2 and Corollary 5.3 are related to, but independent of, a result of Batty [4]. He showed that if $T_S(t)$ is a C_0 -semigroup in some Banach space Y with generator S, if $T_A(t)$ is a uniformly bounded C_0 -semigroup in X with generator A, if $\sigma(S) \cap i\mathbb{R}$ is countable and $\sigma_P(A^*) \cap i\mathbb{R} = \emptyset$, and if $\Pi T_S(t) =$ $T_A(t)\Pi$ for some $\Pi \in \mathcal{L}(Y, X)$ with a dense range, then $T_A(t)$ is strongly stable. In the above, we had to assume that $T_S(t)$ is the translation semigroup in some $\mathcal{M} \subset C_0(\mathbb{R}_+, X)$. However, we also obtained complete characterizations for strong stability.

References

- Arendt, W., Batty, C.; Tauberian Theorems and Stability of One-Parameter Semigroups. Transactions of the American Mathematical Society 306, 1988. pp. 837-852.
- [2] Arendt, W., Batty, C., Hieber, M., Neubrander, F.; Vector-valued Laplace transforms and Cauchy problems. Berlin: Birkhäuser, 2001. 523 p.
- [3] Arendt, W., Räbiger, F. Sourour, A.; Spectral Properties of the Operator Equation AX + XB = Y. Quarterly Journal of Mathematics (Oxford) 2, 45, 1994. pp. 133-149.

- Batty, C.; Spectral Conditions for Stability of One-Parameter Semigroups. Journal of Differential Equations 127, 1996. pp. 87-96.
- [5] Batty, C., Van Neerven, J., Räbiger, F.; Local Spectra and Individual Stability of Uniformly Bounded C₀-semigroups. Transactions of the American Mathematical Society 350, 5, 1998. pp. 2071-2085.
- [6] Batty, C., Van Neerven, J., Räbiger, F.; Tauberian Theorems and Stability of Solutions of the Cauchy Problem. Transactions of the American Mathematical Society 350, 5, 1998. pp. 2087-2103.
- [7] Batty, C., Vu, Q.; Stability of Individual Elements Under One-Parameter Semigroups. Transactions of the American Mathematical Society 322, 2, 1990. pp. 805-818.
- [8] Bhatia, R., Rosenthal, P.; How and Why to Solve the Operator Equation AX XB = Y. Bulletin of the London Mathematical Society 29, 1997. pp. 1-21.
- [9] Engel, K.-J., Nagel, R.; One-Parameter Semigroups for Linear Evolution Equations. New York: Springer-Verlag, 2000. 586 p.
- [10] Gantmacher, F.; *The Theory of Matrices*. New York: Chelsea Publishing Company, 1960. 374 p.
- [11] Hino, Y., Naito, T., Van Minh, N., Shin, J.; Almost Periodic Solutions of Differential Equations in Banach Spaces. New York: Taylor-Francis, 2002. 250 p.
- [12] Immonen, E.; Function Generators, the Operator Equation $\Pi S = A\Pi + BQ$ and Inherited Dynamics in Inhomogenous Cauchy Problems. To appear in Journal of Differential Equations.
- [13] Kato, T.; Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1966. 592 p.
- [14] Lan, N.; On the Operator Equation AX XB = C with Unbounded Operators A, B and C. Abstract and Applied Analysis 6, 6, 2001. pp. 317-328.
- [15] Levitan, B., Zhikov, V.; Almost Periodic Functions and Differential Equations. Cambridge: Cambridge University Press, 1982. 211 p.
- [16] Lyubich, Y.; Introduction to the Theory of Banach Representation of Groups. Basel: Birkhäuser, 1988. 223 p.
- [17] Lyubich, Y., Vu, Q.; Asymptotic Stability of Linear Differential Equations on Banach Spaces. Studia Mathematica 88, 1988. pp. 37-42.
- [18] Pazy, A.; Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983. 279 p.
- [19] Vu, Q.; On the Spectrum, Complete Trajectories, and Asymptotic Stability of Linear Semidynamical Systems. Journal of Differential Equations 105, 1993. pp. 30-45.
- [20] Vu, Q.; The Operator Equation AX XB = C with Unbounded Operators A and B and Related Abstract Cauchy Problems. Mathematische Zeitschrift 208, 1991. pp. 567-588.
- [21] Vu, Q., Schüler, E.; The Operator Equation AX XB = C, Admissibility, and Asymptotic Behavior of Differential Equations. Journal of Differential Equations, 145, 1998. pp. 394-419.

INSTITUTE OF MATHEMATICS, TAMPERE UNIVERSITY OF TECHNOLOGY, PL 553, 33101 TAMPERE, FINLAND

E-mail address: Eero.Immonen@tut.fi