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PERIODIC SOLUTIONS OF POLYNOMIAL NON-AUTONOMOUS
DIFFERENTIAL EQUATIONS

MOHAMAD A. M. ALWASH

Abstract. We present some results on the number of periodic solutions for
scalar non-autonomous polynomial equations of degree five. We also consider

a class of polynomial equations of any degree. Our results give upper bounds

for the number of limit cycles of two-dimensional systems.

1. Introduction

We consider differential equation

ż :=
dz

dt
= P0(t)zn + P1(t)zn−1 + · · ·+ Pn−1(t)z + Pn(t) (1.1)

where z is a complex-valued function and Pi are real-valued continuous functions.
This class of equations has received some attention in the literature. The number of
periodic solutions of such equations has been studied in [3, 5, 6, 8, 9, 10, 11, 12, 13].

We denote by z(t, c) the solution of (1.1) satisfying z(0, c) = c. Take a fixed real
number ω, we define the set Q to be the set of all complex numbers c such that
z(t, c) is defined for all t in the interval [0, ω]; the set Q is an open set. On Q we
define the displacement function q by

q(c) = z(ω, c)− c.

Zeros of q identify initial points of solutions of (1.1) which satisfy the boundary
conditions z(0) = z(ω). We describe such solutions as periodic even when the
functions Pi are not themselves periodic. However, if Pi are ω-periodic then these
solutions are also ω-periodic.

Note that q is holomorphic on Q. The multiplicity of a periodic solution ϕ is that
of ϕ(0) as a zero of q. It is useful to work with a complex dependent variable. The
reason is that periodic solutions cannot then be destroyed by small perturbations
of the right-hand side of the equation. Suppose that ϕ is a periodic solution of
multiplicity k. By applying Rouche’s theorem to the function q, for any sufficiently
small perturbations of the equation, there are precisely k periodic solutions in a
neighborhood of ϕ (counting multiplicity). Upper bounds to the number of periodic
solutions of (1.1) can be used as upper bounds to the number of periodic solutions
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when z is limited to be real-valued. This is the reason that Pi are not allowed to
be complex-valued.

When n = 3, equation (1.1) is known as the Abel differential equation. This case
is of particular interest because of a connection with Hilbert’s sixteenth problem;
see [5] for details. It was shown in [9] and [12] that when P0(t) = 1, then Abel
differential equation has exactly three periodic solutions provided account is taken
of multiplicity. However, local questions related to Hilbert’s sixteenth problem
(bifurcation of small-amplitude limit cycles and center conditions) are reduced to
polynomial equations in which P0 does have zeros. In this case the results of [9] and
[12] no longer hold; indeed Lins Neto [8] has given examples which demonstrate that
there is no upper bound for the number of periodic solutions. These examples can
be used to show that there is no upper bound to the number of periodic solutions
when n ≥ 4 and P0(t) = 1. On the other hand, systems with constant angular
velocities can be reduced to polynomial equations. Global results about the number
of periodic solutions can be used to obtain information about the number of limit
cycles; see, for example, [4] and [7]

The case n = 4 was considered in [3] and [6] with P0(t) = 1. The main concern
was the multiplicity of z = 0 when the coefficients are polynomial functions in
t and in cos t and sin t. It was shown in [6] that the multiplicity is at most 8
when the coefficients are of degree 2; this result provides a counterexample to
Shahshahani conjecture [13]. In [3], the methods of Groebner bases were used to
study multiplicity and bifurcation of periodic solutions. In particular, it was shown
that the multiplicity is at most 10 when the coefficients are polynomial functions
of degree 3.

In this paper, we consider the case n = 5. The aim is to gain information on
the total number of periodic solutions; this is a global question, while looking at
multiplicity leads only to local results. In Section 2, we describe the phase portrait
of (1.1) and recall some results from [9]. In Section 3, we present some results
on the number of periodic solutions. In Section 4, we consider the real equation
and from the derivatives of the displacement function, we deduce some results on
the number of real periodic solutions. We also consider a class of equations with
n ≥ 5 and give an upper bound to the number of real periodic solutions. This
result generalizes a recent result of Panov [11]. In the final Section, we return to
polynomial two-dimensional systems. We use the results of Sections 3 and 4 to give
upper bounds for the number of limit cycles.

2. The Phase Portrait

If ϕ(t) is a periodic solution of

ż = z5 + P1(t)z4 + P2(t)z3 + P3(t)z2 + P4(t)z + P5(t) (2.1)

we make the transformation z 7→ z − ϕ(t); (2.1) then becomes

ż = z5 + P1(t)z4 + P2(t)z3 + P3(t)z2 + P4(t)z. (2.2)

If ϕ is real, the coefficients of (2.2) are also real. No generality is lost by considering
equation (2.2) because (2.1) has at least one real periodic solution. In fact, if n is
odd and P0 ≡ 1 then equation (1.1) has at least one real periodic solution. This
result was given in [12] for equations with periodic coefficients. It can be verified
quite easily that the method of proof in [12] works whether the coefficients are
periodic or not.
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We identify equation (2.2) with the quadruple (P1, P2, P3, P4) and write L for the
set of all equations of this form. With the usual definitions of additions and scalar
multiplications, L is a linear space; it is a normed space if for P = (P1, P2, P3, P4),
we define

‖P‖ = max{ max
0≤t≤ω

|P1(t)|, max
0≤t≤ω

|P2(t)|, max
0≤t≤ω

|P3(t)|, max
0≤t≤ω

|P4(t)|}

The displacement function q is holomorphic on the open set Q. Since z = 0 is a
solution, Q contains the origin. Moreover, q depends continuously on P with the
above norm on L and the topology of uniform convergence on compact sets on the
set of holomorphic functions.

The positive real axis and the negative real axis are invariant. Moreover, if ϕ is
a non-real solution which is periodic, then so is ϕ̄, its complex conjugate.

In [9], it was shown that the phase portrait of (2.2) is as shown in Figure 1
below. We refer to [9] for the details. There, the coefficients Pi(t) were ω−periodic.
It can be verified that the same methods are applicable to the study of the number
solutions that satisfy z(0) = z(ω) whether the coefficients are periodic or not.
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Figure 1. Phase Portrait

Note that the radius, ρ, of the disc D depends only on ‖P‖ and ω. If z = reiθ

then the sets Gk, k = 0, 1, . . . , 7, which are the arms in the figure, are defined by

Gk = {z|r > ρ,
kπ

4
− a

r
< θ <

kπ

4
+

a

r
}

where a = max{6, 6‖P‖}. Between the arms are the sets Hk, k = 0, 1, . . . , 7, which
are defined by

Hk = {z|r > ρ,
kπ

4
+

a

r
≤ θ ≤ (k + 1)π

4
− a

r
}

For even k, trajectories can enter Gk only across r = ρ, and for odd k, trajectories
can leave Gk only across r = ρ. No solution can become infinite in Hk as time either
increases or decreases. Every solution enters D. Solutions become unbounded if
and only if they remain in one of the arms Gk, tending to infinity as t increases if
k is even and as t decreases if k is odd. For each k, there is a unique curve Ck on
the bottom of Gk such that the solution z(t, c) remains in Gk for as long as it is
defined if and only if c ∈ Ck.



4 M. A. M. ALWASH EJDE-2005/84

Let q(P, c) = zP (ω, c) − c, where zP (t, c) is the solution of P ∈ L satisfying
zP (0, c) = c. Suppose that (Pj) and (cj) are sequences in L and C, respectively,
such that q(Pj , cj) = 0. If Pj → P and cj → c as j → ∞, then either q(P, c) = 0,
in this case zP (t, c) is a periodic solution, or zP (t, c) is not defined for the whole
interval 0 ≤ t ≤ ω. In the later case, we say that zP (t, c) is a singular periodic
solution. We also say that P has a singular periodic solution if cj →∞; in this case
there are τ and c such that the solution zP with zP (τ) = c becomes unbounded at
finite time as t increases and as t decreases. We summarize the results of [9] when
applied to (2.2).

Proposition 2.1. (i) Let A be the subset of L consisting of all equations which
have no singular periodic solutions. The set A is open in L. All equations
in the same components of A have the same number of periodic solutions.

(ii) The equation ż = z5 has exactly five periodic solutions.
(iii) The number of periodic solutions of equation (2.2) is odd.
(iv) For each k, there is just one solution that crosses r = ρ at a given time and

becomes infinite without leaving Gk (under reversed time if k is odd).

3. Number of Periodic Solutions

We call the solution z = 0 a center if z(t, c) is periodic for all c in a neighborhood
of 0. When P0 has zeros then there are equations with a center. For cubic equa-
tions, this is related to the classical center problem of polynomial two-dimensional
systems; we refer to [5] for details. However, when P0 has no zeros then z = 0 is
never a center. This result was proven in [6] for the case n = 4. We give a brief
proof, with n = 5, for the sake of completeness.

Theorem 3.1. The solution z = 0 is isolated as a periodic solution of (2.2).

Proof. Suppose, if possible, that there is a open set U ⊂ C containing the origin
such that all solutions starting in U are periodic. Then q ≡ 0 in the component of
its domain of definition containing the origin. But the real zeros of q are contained
in the disc D. Thus

inf{c ∈ R : c > 0, z(t, c) is not defined for 0 ≤ t ≤ ω} < ∞
It follows that there is a real singular periodic solution; but a positive real periodic
solution which tends to infinity can do so only as t increases. This is a contradiction,
and the result follows. �

Now, we give the result about the number of periodic solutions.

Theorem 3.2. Suppose that r3−rP2(t)−P3(t) ≥ 0 and r3−rP2(t)+P3(t) ≥ 0 for
positive r and 0 ≤ t ≤ ω. Then equation (2.2) has exactly five periodic solutions.

Proof. With z = reiθ, we have

θ̇ = r4 sin 4θ + r3P1(t) sin 3θ + r2P2(t) sin 2θ + rP3(t) sin θ.

If |c| > ρ and is real then the real solution z(t, c) remains outside the disk D as
t increases and will become infinite. Solutions that enter G0 or G4 will leave G0

or G4, except the solution that enters at the intersection of C0 and C4 with the
real axis; this solution is real because any solution which is once real is always
real. Therefore, the unique solution that becomes infinite described in part (iv) of
Proposition 2.1 is a real solution if k = 0 or k = 4. On the other hand, no real
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solution is unbounded as t increases and decreases. Hence, no singular periodic
solution enters G0 or G4 because singular periodic solutions are unbounded both
as t increases and decreases. Thus, a singular periodic solution enters D from G1

or G3 and leaves D to G2. Hence, for a singular periodic solution θ̇ > 0 at θ = π
3

and θ̇ < 0 at θ = 2π
3 . On the other hand,

θ̇(
π

3
) =

−
√

3
2

r(r3 − rP2(t)− P3(t)),

θ̇(
2π

3
) =

√
3

2
r(r3 − rP2(t) + P3(t))

Under the above hypotheses, θ̇(π
3 ) < 0 and θ̇( 2π

3 ) > 0. Therefore, no singular
periodic solution can enter D from G1 or G3 and leaves D to G2. Since the phase
portrait is symmetric about the x−axis, no singular periodic solution can enter D
from G5 or G7 and leaves D to G6. It follows that the equation does not have a
singular periodic solution.

Now, consider the class of equations

ż = z5 + sP1(t)z4 + sP2(t)z3 + sP3(t)z2 + sP4(t)z,

with 0 ≤ s ≤ 1. If r3 − rP2(t) − P3(t) ≥ 0 and r3 − rP2(t) + P3(t) ≥ 0 then
r3−srP2(t)−sP3(t) ≥ 0 and r3−srP2(t)+sP3(t) ≥ 0 for 0 ≤ s ≤ 1. Therefore, any
equation in this family does not have singular periodic solutions. The equation ż =
z5 belongs to this family and has five periodic solutions. By part (i) of Proposition
2.1, each of these equations has five periodic solutions. �

Corollary 3.3. If P3(t) ≡ 0, and P2(t) ≤ 0 then (2.2) has five periodic solutions.

4. Real Periodic Solutions

Consider the equation
ẋ = f(x, t)

where x ∈ R and f is as smooth as is required in the argument. With fk = ∂kf
∂xk ,

we define

E(t, c) = exp
[ ∫ t

0

f1(x(t, c), τ)dτ
]
,

D(t, c) = E(t, c)f2(x(t, c), t),

G(t, c) =
∫ t

0

D(τ, c)dτ

From [8], we have the following formulae for the first three derivatives of q(c),

q′(c) = E(ω, c)− 1,

q′′(c) = E(ω, c)
∫ ω

0

D(t, c)dt,

q′′′(c) = E(ω, c)[
3
2
(G(ω, c))2 +

∫ ω

0

(E(ω, c))2f3(x(t, c), t)dt] .

Formulae for the fourth and fifth derivatives of q are given in [6]. Their use is not
as direct as that of the first three derivatives; simply f4 ≥ 0 does not imply that
q(iv) ≥ 0.
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If the n-th derivative of a function does not change sign on an interval, then the
function has at most n zeros in that interval. Using this fact and the formulae for
the derivatives of q, we prove the following.

Theorem 4.1. Consider the equation

ẋ = x5 + P1(t)x4 + P2(t)x3 + P3(t)x2 + P4(t)x + P5(t) (4.1)

with x ∈ R.
(i) If P2(t) ≥ 0.4(P1(t))2 then (4.1) has at most three real periodic solutions.
(ii) If P1(t) ≥ 0, P2(t) ≥ 0, and P3(t) ≥ 0, then (4.1) has at most two positive
periodic solutions.

Proof. (i) Since f3 = 6(10x2 +4P1x+P2), it follows that f3 ≥ 0 if 16(P1)2−40P2 ≤
0. Hence, q′′′(c) > 0 if P2 ≥ 0.4P 2

1 . Therefore, q has at most three zeros.
(ii) The conditions imply that f2 ≥ 0 for positive x. This implies that q′′(c) > 0

when c > 0. �

Now, we consider the equation

ẋ = xn + P1(t)xm + P2(t)x3 + P3(t)x2 + P4(t)x + P5(t), (4.2)

with n > m > 3. Using the ideas of cross-ratio, it was shown in [11] that equation
(4.2) has at most three periodic solutions when n is odd and P1 ≡ P2 ≡ 0. The
method used in the proof of Theorem 4.1. can be used to prove the following
generalization of this result.

Theorem 4.2. (i) If n and m are odd, P1(t) ≥ 0, and P2(t) ≥ 0 then (4.2)
has at most three periodic solutions.

(ii) If P1(t) ≥ 0, P2(t) ≥ 0, and P3(t) ≥ 0 then equation (4.2) has at most two
positive periodic solutions.

(iii) If n and m are odd, P1 ≥ 0, P2(t) ≥ 0 and P3(t) ≤ 0 then (4.2) has at most
two negative periodic solutions.

(iv) If P1(t) ≥ 0 and P2(t) ≥ 0 then (4.2) has at most three positive periodic
solutions.

(v) If n and m are even, P1 ≥ 0, P2(t) ≡ 0, and P3(t) ≥ 0 then (4.2) has at
most two real periodic solutions.

5. Number of Limit Cycles

Consider the system
ẋ = λx− y + x(Rn−1(x, y) + Rn−2(x, y) + · · ·+ R1(x, y))

ẏ = x + λy + y(Rn−1(x, y) + Rn−2(x, y) + · · ·+ R1(x, y)),
(5.1)

where Ri is a homogeneous polynomial of degree i. The system in polar coordinates
becomes

ṙ = rnRn−1(cos θ, sin θ) + rn−1Rn−2(cos θ, sin θ) + · · ·+ r2R1(cos θ, sin θ) + λr

θ̇ = 1.

Some necessary conditions for a center are given in [4]. It is clear that the origin is
the only critical point and if it is a center then it is a uniformly isochronous center.
Limit cycles of (5.1) correspond to positive 2π−periodic solutions of

dr

dθ
= Rn−1r

n + Rn−2r
n−1 + · · ·+ R1r

2 + λr
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Now, we consider the case n = 5. In the special case R3 ≡ 0 and R1 ≡ 0, the center
conditions were given in [1, 2, 14]. The following result follows from Theorems 3.2
and 4.1.

Theorem 5.1. Consider system (5.1) with n = 5 and R4 ≡ 1.
(i) If c3 − cR2(cos θ, sin θ) − R1(cos θ, sin θ) ≥ 0, and c3 − cR2(cos θ, sin θ) +

R1(cos θ, sin θ) ≥ 0 for positive c and 0 ≤ θ ≤ 2π, then the system has at
most four limit cycles.

(ii) If R2(cos θ, sin θ) ≥ 0.4(R3(cos θ, sin θ))2, then the system has at most two
limit cycles.

(iii) If R1 ≡ R3 ≡ 0, and R2(cos θ, sin θ) ≥ 0, then the system has at most two
limit cycles.

Finally, we consider the case
ẋ = λx− y + x(Rn−1(x, y) + Rm−1(x, y) + R2(x, y) + R1(x, y))

ẏ = x + λy + y(Rn−1(x, y) + Rm−1(x, y) + R2(x, y) + R1(x, y)),
(5.2)

with n > m > 3. In polar coordinates, this system reduces to
dr

dθ
= Rn−1r

n + Rm−1r
m + R2r

3 + R1r
2 + λr.

If a function Ri does not change sign, then it is necessary to assume that i is even.
The following result follows directly from Theorem 4.2.

Theorem 5.2. (i) Suppose that n and m are odd numbers, and Rn−1 ≡ 1.
If Rm−1(cos θ, sin θ) ≥ 0 and R2(cos θ, sin θ) ≥ 0 then system (5.2) has at
most two limit cycles.

(ii) If Rn−1 ≡ 1, Rm−1(cos θ, sin θ) ≥ 0, and R2(cos θ, sin θ) ≥ 0, then system
(5.2) has at most three limit cycles.

Remark 5.3. If the leading coefficient Rn−1 does not vanish anywhere then the
transformation of the independent variable

θ 7→ exp(
∫ θ

0

Rn−1(cos u, sinu)du)

reduces the polar equation into a similar equation but with a leading coefficient
equals one.
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PN (t), Proc. London Math. Soc. (3) 27 (1973), 667-700.
[10] N.G. Lloyd; A note on the number of limit cycles in certain two-dimensional systems, J.

London Math. Soc. 20 (1979), 277-286.

[11] A.A. Panov; The number of periodic solutions of polynomial differential equations, Math.
Notes 64 (1998), 622-628.

[12] V. A. Pliss; Nonlocal problems in the theory of oscillations, Academic Press, New York (1966).

[13] S. Shahshahani; Periodic solutions of polynomial first order differential equations, Nonlinear
Anal. 5 (1981), 157-165.

[14] E.P. Volokitin; Center conditions for a simple class of quintic systems, Int. J. of Math. and

Math. Sci. 29 (2002), 625-632.

Mohamad A. M. Alwash
Department of Mathematics, West Los Angeles College, 9000 Overland Avenue, Los

Angeles, CA 90230-3519, USA
E-mail address: alwashm@wlac.edu


	1. Introduction
	2. The Phase Portrait
	3. Number of Periodic Solutions
	4. Real Periodic Solutions
	5. Number of Limit Cycles
	Acknowledgments

	References

