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SINGULAR INTEGRALS OF THE TIME-HARMONIC
RELATIVISTIC DIRAC EQUATION ON A PIECEWISE

LIAPUNOV SURFACE

BARUCH SCHNEIDER

Abstract. We give a short proof of a formula of Poincaré-Bertrand in the set-

ting of time-harmonic solutions of the relativistic Dirac equation on a piecewise
Liapunov surface, as well as for some versions of quaternionic analysis.

1. Introduction

Let Γ be a closed Liapunov curve in the complex plane and let f be a Hölder
function on Γ× Γ. Then, everywhere on Γ,

1
πi

∫
Γτ

dτ

τ − t
· 1
πi

∫
Γτ1

f(τ, τ1)dτ1

τ1 − τ

= f(t, t) +
1
πi

∫
Γτ1

dτ1 ·
1
πi

∫
Γτ

f(τ, τ1)dτ

(τ − t)(τ1 − τ)
,

(1.1)

which is usually called the Poincaré-Bertrand formula, the integrals being under-
stood in the sense of the Cauchy principal value. The Poincaré-Bertrand formula
plays a significant role in the theory of one-dimensional singular integral equations
with the Cauhy kernel and its numerous applications. Indeed, all the integrals in
(1.1) contain the (singular) Cauchy kernel, and its importance for one-dimensional
complex analysis is obvious.

It is known that the theory of solutions of the Dirac equation reduces, in some
degenerate cases, to that of complex holomorphic functions. Hence, one may con-
sider the former to be a generalization of the latter. At the same time, not many
facts from the holomorphic function theory have their extensions onto the Dirac
equation theory. In the present paper we study a number of generalization of (1.1).
In realizing this study we follow the approach first presented in [3] and developed
in [4], [6], [9] which are based on the intimate relation between time-harmonic
bispinor fields and quaternion-valued α-hyperholomorphic functions, see the book
[4]. This approach proved to be quite efficient and heuristic since it allows the
exploitation of profound similarity between holomorphic functions in one variable
and α-hyperholomorphic functions.
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The paper is organized as follows. In Section 2 the reader can find the Poincaré-
Bertrand formula for time-harmonic Dirac bispinors, i.e, time-harmonic solutions
of the relativistic Dirac equation. The proof can be found in the Section 6, and
is based on the contents of Sections 3-5. In section 4 we present the Poincaré-
Bertrand formula for α-hyperholomorphic quaternionic function theory on a piece-
wise Liapunov surface.

Note that the Poincaré-Bertrand formula on closed piece-wise smooth manifold
in Cn for Bochner-Martinelli type singular integrals was studied, for example, by
Liangyu Lin and Chunhui Qiu [5].

2. Time-harmonic bispinor fields theory and the Cauchy-Dirac
integral

Let Ω be a domain in R3, Γ := ∂Ω be its boundary. We consider the following
Dirac equation for a free massive particle of spin 1

2 :

D[Φ] :=
(
γ0∂t −

3∑
k=1

γk∂k + im
)
[Φ] = 0,

where the Dirac matrices have the standard Dirac-Pauli form

γ0 :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 :=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

γ2 :=


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 :=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

and where ∂t := ∂
∂t ; ∂k := ∂

∂xk
, m ∈ R, Φ : R4 → C4. Suppose that the spinor field

Φ is time-harmonic (= monochromatic):

Φ(t, x) = q(x)eiωt,

where ω ∈ R is the frequency and q : Ω ⊂ R3 → C4 is the amplitude. Then the
relativistic Dirac equation is equivalent to the time-harmonic Dirac equation:

Dω,m[q] :=
(
iωγ0 −

3∑
k=1

γk∂k + im
)
[q] = 0.

This is the equation which we are going to consider. We shall consider certain
objects related to it in a bounded domain. Physical phenomena which gave rise
to the Dirac equation occur usually in unbounded domains but some of them (the
Casimir effect, for instance) take place in bounded domains also. For more details
see, e.g. [4].

The integral

KDω,m
[g](x) := −

∫
Γ

Ǩx
Dω,m

[σDω,m
g(τ)], x /∈ Γ,

plays the role of the Cauchy-type integral in the theory of time-harmonic bispinor
fields with g : Γ → C4(see [6]) and we shall call it the Cauchy-Dirac-type integral,
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where

σDω,m
:=

1
2


(n2 − in1) in3 in3 (n2 + in1)

−n3 i(n2 + in1) i(n2 − in1) −n3

−in3 −(n2 + in1) (n2 − in1) in3

−i(n2 − in1) n3 −n3 i(n2 + in1)

 dS,

~n(τ) = (n1(τ), n2(τ), n3(τ)) is an outward pointing normal unit vector on Γ at
τ ∈ Γ, and dS is an element of the surface area in R3. The explicit form of time-
harmonic relativistic Cauchy-Dirac kernel Ǩx

Dω,m
can be seen, e.g. in reference [6].

Let Hµ(Γ, C4) := {f ∈ C4 : |f(t1) − f(t2)| ≤ Lf · |t1 − t2|µ; ∀{t1, t2} ⊂ Γ, Lf =
const} denote the class of functions satisfying the Hölder condition with the expo-
nent 0 < µ ≤ 1. Here |f | means the Euclidean norm in C4 = R8 while |t| is the
Euclidean norm in R3. Let Γ be a surface in R3 which contains a finite number
of conical points and a finite number of non-intersecting edges such that none of
the edges contains any of conical points. If the complement (in Γ) of the union
of conical points and edges, is a Liapunov surface, then we shall refer to Γ as a
piece-wise Liapunov surface in R3.

Theorem 2.1 (Poincaré-Bertrand formula for time-harmonic bispinor field theory
on a piece-wise Liapunov surface). Let Ω be a bounded domain in R3 with the piece-
wise Liapunov boundary. Let q ∈ Hµ(Γ × Γ, C4), 0 < µ < 1. Then the following
equality holds, everywhere on Γ:∫

Γτ1

∫
Γτ

Ǩt
Dω,m

[
σDω,m,τ

Ǩτ
Dω,m

[σDω,m,τ1
q(τ1, τ)]

]
+

1− γ(t)
2

q(t, t)

=
∫

Γτ

Ǩt
Dω,m

[
σDω,m,τ

∫
Γτ1

Ǩτ
Dω,m

[σDω,m,τ1
q(τ1, τ)]

]
,

(2.1)

where the integrals being understood in the sense of the Cauchy principal value,
γ(t) := η(t)

4π ; η(t) is the measure of a solid angle of the tangential conical surface at
the point t or is the solid measure of the tangential dihedral angle at the point t.

The proof will be presented in Section 6. Note that if Γ is a Liapunov surface,
then formula (2.1) coincides with the result in paper [6].

3. Basic facts of hyperholomorphic function theory

In this section, we provide some background on quaternionic analysis needed in
this paper. For more information, we refer the reader to [1], [4].

Let H(C) be the set of complex quaternions, it means that each quaternion a is
represented in the form a =

∑3
k=0 akik, with the standard basis {i0 := 1, i1, i2, i3},

where {ak : k ∈ N0
3 := N3 ∪ {0}; N3 := {1, 2, 3}} ⊂ C. We use the Euclidean norm

|a| in H(C), defined by |a| :=
√∑3

k=0 |ak|2.
Let λ ∈ H(C)\{0}, and let α be its complex-quaternionic square root: α ∈ H(C),

α2 = λ. The function f : Ω ⊂ R3 → H(C) is called left-α-hyperholomorphic if

Dαf := fα + i1
∂

∂x1
f + i2

∂

∂x2
f + i3

∂

∂x3
f = 0.

Let α ∈ H(C) and let θα be the fundamental solution of the Helmholtz operator
∆λ := ∆ + Iλ, where ∆ :=

∑3
k=1

∂2

∂x2
k

and I is the identity operator. Then the
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fundamental solution of the operator Dα, Kα, is given by the formula (see [4]):

Kα(x) := −Dαθα(x),

and its explicit form can be seen, e.g., in [10]. We shall use the notation Cp(Ω, H(C)),
p ∈ N ∪ {0} which has the usual component-wise meaning. Denote by G the set
of zero divisors from H(C), i.e., G := {a ∈ H(C) | a 6= 0; ∃b 6= 0 : ab = 0}.
Let στ =

∑3
k=1(−1)k−1ikdx[k], where dx[k] denotes as usual the differential form

dx1 ∧ dx2 ∧ dx3 with the factor dxk omitted. Let Ω = Ω+ be a domain in R3

with the boundary Γ which is assumed to be a piece-wise Liapunov surface; denote
Ω− := R3 \ (Ω+ ∪ Γ). If f is a Hölder function then its α-hyperholomorphic left
Cauchy-type integral is defined (see [4, Subsection 4.16]):

Kα[f ](x) := −
∫

Γ

Ǩx
α[στf(τ)], x ∈ Ω±,

where

(1) If α = α0 ∈ C, then

Ǩx
α[f ](τ) := Kα0(x− τ)f(τ).

(2) If α /∈ G, ~α2 6= 0, then

Ǩx
α[f ](τ) :=

1
2
√

~α2
Kξ+(x)f(τ)(

√
~α2 + ~α) +

1
2
√

~α2
Kξ−(x)f(τ)(

√
~α2 − ~α). (3.1)

(3) If α /∈ G, ~α2 = 0, then

Ǩx
α[f ](τ) := Kα0(x)f(τ) +

∂

∂α0
[Kα0 ](x)f(τ)~α. (3.2)

(4) If α ∈ G, α0 6= 0, then

Ǩx
α[f ](τ) :=

1
2α0

K2α0(x)f(τ)α +
1

2α0
K0(x)f(τ)α. (3.3)

(5) If α ∈ G, α0 = 0, then

Ǩx
α[f ](τ) := K0(x)f(τ) + θ0(x)f(τ)α. (3.4)

For more information about α-hyperholomorphic functions, we refer the reader to
[1], [4], [7].

4. The Poincaré-Bertrand formula for α-hyperholomorphic function
theory on a piece-wise Liapunov surface

Theorem 4.1 (Poincaré-Bertrand formula for α-hyperholomorphic function theory
on a piece-wise Liapunov surface). Let Ω be a bounded domain in R3 with piece-wise
Liapunov boundary and let f ∈ Hµ(Γ×Γ, H(C)). Then the following equality holds
everywhere on Γ: ∫

Γτ1

∫
Γτ

Ǩt
α[στ Ǩτ

α[στ1f(τ1, τ)]] +
1− γ(t)

2
f(t, t)

=
∫

Γτ

Ǩt
α

[
στ

∫
Γτ1

Ǩτ
α[στ1f(τ1, τ)]

]
.

(4.1)
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Proof. Let Γ be as above and f ∈ Hµ(Γ × Γ, H(C)). We begin with α = α0 ∈ C.
Then the formulas (4.1) takes the form∫

Γτ1

∫
Γτ

Kα0(t− τ)στKα0(τ − τ1)στ1f(τ1, τ) +
1− γ(t)

2
f(t, t)

=
∫

Γτ

∫
Γτ1

Kα0(t− τ)στKα0(τ − τ1)στ1f(τ1, τ),

and it was proved in [8]. Thus the case α = α0 ∈ C is covered. For other possible
situations, the argument is similar to the proof of [6, Theorem 3.1] �

5. Function theory for the quaternionic Dirac operator

We start this Section with a brief description of the relations between the time-
harmonic spinor fields theory and the theory of α-hyperholomorphic functions. One
can find more about this in [4], [6]. The standard Dirac matrices have the well-
known properties:

γ2
0 = E4, γ2

k = −E4, k ∈ N3 := {1, 2, 3},
γjγk + γkγj = 0, j, k ∈ N0

3 := N3 ∪ {0}, j 6= k,

where E4 is the 4× 4 identity matrix. The products of the Dirac matrices

î0 := E4, î1 := γ3γ2, î2 := γ1γ3, î3 := γ1γ2, î := γ0γ1γ2γ3,

have the following properties:

î20 = î0 = −î2k, î0îk = îk î0 = îk, k ∈ N3,

î1î2 = −î2î1 = î3, î2î3 = −î3î2 = î1, î3î1 = −î1î3 = î2,

î · îk = îk · î, k ∈ N0
3.

For b ∈ H(C), set

Bl(b) :=


b0 −b1 −b2 −b3

b1 b0 −b3 b2

b2 b3 b0 −b1

b3 −b2 b1 b0

 .

Matrix subalgebra Bl(C) := {Bl(b) : b ∈ H(C)} and H(C) are isomorphic as complex
algebras. Abusing a little we shall not distinguish, sometimes, between Bl(b), the

column


b0

b1

b2

b3

 and the quaternion b. Set

D := iωγ0 − E4∂1 − γ1∂2 − γ3∂3 + im.

We shall consider D on the set C1(Ω,Bl(C)) of corresponding matrices. Hence for
us

D : C1(Ω,Bl(C)) → C0(Ω,Bl(C)).
In [4, Section 12] (see also [2, page 7563]) there was introduced the map UA which
transforms a function q : Ω̃ ⊂ R3 → C4 into the function ρ : Ω ⊂ R3 → H(C) by
the rule:

ρ = UA[q] :=
1
2
[−(q̃1 − q̃2)i0 + i(q̃0 − q̃3)i1 − (q̃0 + q̃3)i2 + i(q̃1 + q̃2)i3],
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where q̃(x) := q(x1, x2,−x3), the domain Ω̃ is obtained from Ω ⊂ R3 by the reflec-
tion x3 → −x3. The corresponding inverse transform is given as follows:

(UA)−1[ρ] = A−1U−1[ρ] := (−iρ̃1 − ρ̃2,−ρ̃0 − iρ̃3, ρ̃0 − iρ3, iρ̃1 − ρ̃2).

The maps UA and (UA)−1 may be represented in a matrix form (see [4, Subsection
12.13]):

ρ = UA[q] :=
1
2


0 −1 1 0
i 0 0 −i
−1 0 0 −1
0 i i 0




q̃0

q̃1

q̃2

q̃3

 ,

q = (UA)−1[ρ] :=


0 −i −1 0
−1 0 0 −i
1 0 0 −i
0 i −1 0




ρ̃0

ρ̃1

ρ̃2

ρ̃3

 .

Direct computation leads to the equality

Dω,m = −γ0î(UA)−1Dî2(UA), (5.1)

on C1(Ω, C4). Also we get Dî2 = Dα, on Bl(C), where α := −(iωi1 + mi2). By
these reasons D is termed “the quaternionic relativistic Dirac operator”. Thus,

kerD =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ker Dα.

There exists a one-to-one correspondence between elements of kerD (which are
matrices) and matrices of the form Bl(q), with q = q0i0 + q1i1 + q2i2 + q3i3 being
α-hyperholomorphic function.

The “quaternionic relativistic Cauchy-Dirac kernel”, i.e., the fundamental solu-
tion of D, is given by

KD,α := î2Kα.

The integral

KD,α[f ](x) := −
∫

Γ

Ǩx
D,α[σD,τf(τ)], x ∈ Ω±,

plays the role of the Cauchy-type integral, the one with the quaternionic relativistic
Cauchy-Dirac kernel (see [6], [4]); with f : Γ → Bl(C) and

σD,τ :=


−n1(τ) 0 n3(τ) n2(τ)

0 −n1(τ) n2(τ) −n3(τ)
−n3(τ) −n2(τ) −n1(τ) 0
−n2(τ) n3(τ) 0 −n1(τ)

 dS.

We shall call also KD,α[f ] the quaternionic relativistic Cauchy-Dirac-type integral.

Theorem 5.1 (Poincaré-Bertrand formula for the quaternionic relativistic Cauchy-
Dirac integral on a piece-wise Liapunov surface). Let Ω be a bounded domain in R3

with the piece-wise Liapunov boundary and let f ∈ Hµ(Γ × Γ,Bl(C)), 0 < µ < 1.
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The following equality holds everywhere on Γ:∫
Γτ1

∫
Γτ

Ǩt
D,α[σD,τ Ǩτ

D,α[σD,τ1f(τ1, τ)]] +
1− γ(t)

2
f(t, t)

=
∫

Γτ

Ǩt
D,α

[
σD,τ

∫
Γτ1

Ǩτ
D,α[σD,τ1f(τ1, τ)]

]
.

(5.2)

Proof. Let f ∈ Hµ(Γ× Γ,Bl(C)), consider Ǩx
D,α. It was proved that

Ǩx
D,α[σDf ] = î2Ǩx

α

[
σ
(
−î2

)
f
]
.

Hence using formula (4.1) and after not complicated computation we obtain (5.2).
�

6. Proof of the Theorem 2.1

In this Section we use results form Section 4. For the reader’s convenience, recall
some information from [6]:

−γ0î(UA)−1 = −γ1(UA)−1(̂
i2

)−1
,

KDω,m
= (UA)−1(̂

i2
)−1KD,α = (UA)−1Kα,

σDω,m = σD î2(UA) = σ(UA),

Ǩx
Dω,m

= (UA)−1(̂
i2

)−1Ǩx
D,α.

The proof of Theorem 2.1 follows from Theorem 5.1 taking into account the above
relation between the class of the time-harmonic spinor fields and α-hyperholomorphic
functions.
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