ASYMPTOTIC PROFILE OF A RADially SYMMETRIC
SOLUTION WITH TRANSITION LAYERS FOR AN
UNBALANCED BISTABLE EQUATION

HIROSHI MATSUZAWA

ABSTRACT. In this article, we consider the semilinear elliptic problem
\[-\varepsilon^2 \Delta u = h(|x|)^2(\vert u - a(|x|)\vert)(1 - u^2)\]
in $B_1(0)$ with the Neumann boundary condition. The function a is a C^1 function satisfying $|a(x)| < 1$ for $x \in [0,1]$ and $a'(0) = 0$. In particular we consider the case $a(x) = 0$ on some interval $I \subset [0,1]$. The function h is a positive C^1 function satisfying $h'(0) = 0$. We investigate an asymptotic profile of the global minimizer corresponding to the energy functional as $\varepsilon \to 0$. We use the variational procedure used in [4] with a few modifications prompted by the presence of the function h.

1. Introduction and Statement of Main Results

In this article, we consider the boundary value problem
\[-\varepsilon^2 \Delta u = h(|x|)^2(\vert u - a(|x|)\vert)(1 - u^2) \quad \text{in } B_1(0)\]
\[\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial B_1(0)\]
(1.1)

where ε is a small positive parameter, $B_1(0)$ is a unit ball in \mathbb{R}^N centered at the origin, and the function a is a C^1 function on $[0, 1]$ satisfying $-1 < a(|x|) < 1$ and $a'(0) = 0$. The function h is a positive C^1 function on $[0,1]$ satisfying $h'(0) = 0$. We set $r = |x|$.

Problem (1.1) appears in various models such as population genetics, chemical reactor theory and phase transition phenomena. See [1] and the references therein. If the function h satisfies $h(r) \equiv 1$ and the function a satisfies $a(r) \neq 0$, then this problem (1.1) has been studied in [3], [4] and [7]. In this case, it is shown that there exist radially symmetric solutions with transition layers near the set $\{x \in B_1(0) | a(|x|) = 0\}$. If the set $\{r \in \mathbb{R} | a(r) = 0\}$ contains an interval I, then the problem to decide the configuration of transition layer on I is more delicate.

When $N = 1$, if the function h satisfies $h(r) \neq 1$ and the function a satisfies $a(r) \equiv 0$, then problem (1.1) has been studied in [8] and [9]. In this case, it is
shown that there exist stable solutions with transition layers near prescribed local minimum points of h.

In this paper, we consider the case where the function a satisfies $a(r) \neq 0$ with $a(r) = 0$ on some interval $I \subset (0, 1)$. We show the minimum point of the function $r^{N-1}h(r)$ on I has very important role to decide the configuration of transition layer on I in this case.

We note that in [4], Dancer and Shusen Yan considered a problem similar to ours. They assume that $N \geq 2$, $h \equiv 1$ and the nonlinear term is $u(u - a|x|)(1 - u)$ satisfying $a(r) = 1/2$ on $I = [l_1, l_2]$ and $a(r) < 1/2$ for $l_1 - r > 0$ small and $a(r) > 1/2$ for $r - l_2 > 0$ small, then a global minimizer of the corresponding functional has a transition layer near the l_1, that is, the minimum point of r^{N-1} on I (see [4, Theorem 1.3]). In this sense, we can say that our results are natural extension of the results in [4]. We are going to follow throughout the variational procedure used in [4] with a few modifications prompted by the presence of the function h.

Here we state the energy functional, corresponding to (1.1),

$$J_{\varepsilon}(u) = \int_{B_1(0)} \frac{\varepsilon^2}{2} |\nabla u|^2 - F(|x|, u) dx,$$

where $F(|x|, u) = \int_0^{|x|} f(|x|, s) ds$ and $f(|x|, u) = h(|x|)^2(u - a(|x|))(1 - u^2)$. It is easy to see that the following minimization problem has a minimizer

$$\inf\{J_{\varepsilon}(u) | u \in H^1(B_1(0))\}. \tag{1.2}$$

Let $A_- = \{x \in B_1(0)|a(|x|) < 0\}$ and $A_+ = \{x \in B_1(0)|a(|x|) > 0\}$.

In this paper, we will analyze the profile of the minimizer of (1.2), and prove the following results.

Theorem 1.1. Let u_{ε} be a global minimizer of (1.2). Then u_{ε} is radially symmetric and

$$u_{\varepsilon} \to \begin{cases} 1, & \text{uniformly on each compact subset of } A_-, \\ -1, & \text{uniformly on each compact subset of } A_+, \end{cases}$$

as $\varepsilon \to 0$. In particular u_{ε} converges uniformly near the boundary of $B_1(0)$, that is, if $a(r) < 0$ on $[r_0, 1]$ for some $r_0 > 0$, $u_{\varepsilon} \to 1$ uniformly on $\overline{B_1(0) \setminus B_{r_0}(0)}$ and if $a(r) > 0$ on $[r_0, 1]$ for some $r_0 > 0$, $u_{\varepsilon} \to -1$ uniformly on $\overline{B_1(0) \setminus B_{r_0}(0)}$.

Moreover, for any $0 < r_1 \leq r_2 < 1$ with $a(r_i) = 0$, $i = 1, 2$, $a(r) \neq 0$ for $r_1 - r > 0$ small and for $r - r_2 > 0$ small, $a(r) = 0$ if $r \in [r_1, r_2]$, we have:

(i) If $a(r) < 0$ for $r_1 - r > 0$ small and $a(r) > 0$ for $r - r_2 > 0$, then for any small $\eta > 0$ and any small $\theta > 0$, there exists a positive number ε_0 which has the following properties:

(a) For all $\varepsilon \in (0, \varepsilon_0)$, there exist $t_{\varepsilon, 1} < t_{\varepsilon, 2}$ such that

$$u_{\varepsilon}(r) > 1 - \eta \quad \text{for } r \in [r_1 - \theta, t_{\varepsilon, 1}),$$

$$u_{\varepsilon}(t_{\varepsilon, 1}) = 1 - \eta,$$

$$u_{\varepsilon}(t_{\varepsilon, 2}) = -1 + \eta,$$

$$u_{\varepsilon}(r) < -1 + \eta \quad \text{for } r \in (t_{\varepsilon, 2}, r_2 + \theta].$$

(b) The function $u_{\varepsilon}(r)$ is decreasing on the interval $(t_{\varepsilon, 1}, t_{\varepsilon, 2})$

(c) The inequality $0 < R_1 \leq \frac{t_{\varepsilon, 2} - t_{\varepsilon, 1}}{\varepsilon} \leq R_2$ holds, where R_1 and R_2 are two constants independent of $\varepsilon > 0$.
(d) If \(t_{\varepsilon,1}, t_{\varepsilon,2} \to \bar{t} \) for some positive sequence \(\{\varepsilon_j\} \) converging to zero as \(j \to \infty \), then \(\bar{t} \) satisfies
\[
 h(\bar{t})\bar{t}^{N-1} = \min_{s \in [r_1, r_2]} h(s)s^{N-1}.
\]

(ii) If \(a(r) > 0 \) for \(r_1 - r > 0 \) small and \(a(r) < 0 \) for \(r - r_2 > 0 \), then for each small \(\eta > 0 \) and for each small \(\theta > 0 \), there exists a positive number \(\varepsilon_0 \) which has the following properties: For each \(\varepsilon \in (0, \varepsilon_0) \), there exist \(t_{\varepsilon,1} < t_{\varepsilon,2} \) such that

(a)
\[
 u_\varepsilon(r) < -1 + \eta \quad \text{for } r \in [r_1 - \theta, t_{\varepsilon,1}),
 u_\varepsilon(t_{\varepsilon,1}) = -1 + \eta,
 u_\varepsilon(t_{\varepsilon,2}) = 1 - \eta,
 u_\varepsilon(r) > 1 - \eta, \quad \text{for } r \in (t_{\varepsilon,2}, r_2 + \theta] .
\]

(b) The function \(u_\varepsilon(r) \) is increasing in \((t_{\varepsilon,1}, t_{\varepsilon,2}) \).

(c) The inequality \(0 < R_1 \leq \frac{t_{\varepsilon,2} - t_{\varepsilon,1}}{\varepsilon} \leq R_2 \) holds, where \(R_1 \) and \(R_2 \) are two constants independent of \(\varepsilon > 0 \).

(d) If \(t_{\varepsilon,1}, t_{\varepsilon,2} \to \bar{t} \) for some positive sequence \(\{\varepsilon_j\} \) converging to zero as \(j \to \infty \), then \(\bar{t} \) satisfies
\[
 h(\bar{t})\bar{t}^{N-1} = \min_{s \in [r_1, r_2]} h(s)s^{N-1}.
\]

Figure 1. Profile of the global minimizer \(u_\varepsilon \)

Remarks.

- Note that results from (a) to (c) both in cases (i) and (ii) are not related to the presence of the function \(h \). The effect of presence of function \(h \) appears in the result (d) in (i) and (ii).
- If \(\min_{s \in [r_1, r_2]} s^{N-1}h(s) \) is attained at a unique point \(\bar{t} \), we can show \(t_{\varepsilon,1}, t_{\varepsilon,2} \to \bar{t} \) as \(\varepsilon \to 0 \) without taking subsequences.
- If the function \(r^{N-1}h(r) \) is constant on \([r_1, r_2] \), it is a very difficult problem to know the location of the point \(\bar{t} \in [r_1, r_2] \).

This paper is organized as follows: In section 2, we present some preliminary results. In section 3, we prove the main theorem.

2. Preliminary Results

Let \(D \) be a bounded domain in \(\mathbb{R}^N \). Let \(\bar{f}(x, t) \) be a function defined on \(\overline{D} \times \mathbb{R} \) which is bounded on \(\overline{D} \times [-1, 1] \). Suppose \(\bar{f} \) is continuous on \(t \in \mathbb{R} \) for each \(x \in \overline{D} \).
and is measurable in D for each $t \in \mathbb{R}$. We also assume
\[
\mathcal{J}(x, t) > 0 \quad \text{for } x \in \overline{D}, \ t < -1;
\]
\[
\mathcal{J}(x, t) < 0 \quad \text{for } x \in \overline{D}, \ t > 1.
\] (2.1)

Consider the minimization problem
\[
\inf \left\{ \mathcal{J}_\epsilon(u, D) := \int_D \frac{\epsilon^2}{2} |\nabla u|^2 - \mathcal{F}(x, u) \, dx : u - \eta \in H^1_0(D) \right\},
\] (2.2)
where $\eta \in H^1(D)$ with $-1 \leq \eta \leq 1$ on D and
\[
\mathcal{F}(x, t) = \int_{-1}^t \mathcal{J}(x, s) \, ds.
\]
We can prove next two lemmas by methods similar to [4]. For the readers convenience, we prove these lemmas in this section.

Lemma 2.1. Suppose that $\mathcal{J}(x, t)$ satisfies (2.1). Let u_ϵ be a minimizer of (2.2). Then $-1 \leq u_\epsilon \leq 1$ on D.

Proof. We prove $-1 \leq u_\epsilon$ on D. Let $M = \{ x : u_\epsilon(x) < -1 \}$. Define \tilde{u}_ϵ by
\[
\tilde{u}_\epsilon(x) = \begin{cases}
 u_\epsilon(x) & \text{if } x \in D \setminus M \\
 -1 & \text{if } x \in M.
\end{cases}
\]
Since $u_\epsilon(x) = \eta \geq -1$ on ∂D, we see that M is compactly contained in D. Thus $\tilde{u} - \eta \in H^1_0(D)$. If the measure $m(M)$ of M is positive, we have $\mathcal{J}_\epsilon(\tilde{u}_\epsilon, D) < \mathcal{J}_\epsilon(u_\epsilon, D)$. Because u_ϵ is a minimizer, we see $m(M) = 0$, where $m(A)$ denotes the Lebesgue measure of the set A. Thus $u_\epsilon \geq -1$. Similarly we can prove that $u_\epsilon \leq 1$. \hfill \Box

Lemma 2.2. Suppose that $\mathcal{J}_1(x, t)$ and $\mathcal{J}_2(x, t)$ both satisfy (2.1) and the same regularity assumption on \mathcal{J}. Assume that $\eta_i \in H^1(D)$ satisfy $-1 \leq \eta_i \leq 1$ on D for $i = 1, 2$. Let $u_{\epsilon,i}$ be a corresponding minimizer of (2.2), where $\mathcal{J} = \mathcal{J}_i$ and $\eta = \eta_i$, $i = 1, 2$. Suppose that $\mathcal{J}_1(x, t) \geq \mathcal{J}_2(x, t)$ for all $(x, t) \in D \times [-1, 1]$ and $1 \geq \eta_1 \geq \eta_2 \geq -1$. Then $u_{\epsilon,1} \geq u_{\epsilon,2}$.

Proof. Let $M = \{ x \in D : u_{\epsilon,2} > u_{\epsilon,1} \}$. Define $\varphi_\epsilon = (u_{\epsilon,2} - u_{\epsilon,1})^+$. Since $\eta_1 \geq \eta_2$, we have $\varphi_\epsilon \in H^1_0(D)$. Set $\tilde{F}_i(x, u) = \int_{-1}^u \mathcal{J}_i(x, s) \, ds$. Since $u_{\epsilon,i}$ is a minimizer of

\[
J_{\epsilon,i}(u) := \int_D \frac{\epsilon^2}{2} |\nabla u|^2 - \mathcal{F}_i(x, u) \, dx
\]
and $\varphi_\epsilon = 0$ for $x \in D \setminus M$, we have
\[
0 \leq J_{\epsilon,1}(u_{\epsilon,1} + \varphi_\epsilon) - J_{\epsilon,1}(u_{\epsilon,1})
= \int_M \frac{\epsilon^2}{2} (|\nabla (u_{\epsilon,1} + \varphi_\epsilon)|^2 - |\nabla u_{\epsilon,1}|^2) \, dx - \int_M \int_{u_{\epsilon,1}}^{u_{\epsilon,1} + \varphi_\epsilon} \mathcal{J}_1(x, s) \, ds
\leq \int_M \frac{\epsilon^2}{2} (|\nabla (u_{\epsilon,1} + \varphi_\epsilon)|^2 - |\nabla u_{\epsilon,1}|^2) \, dx - \int_M \int_{u_{\epsilon,1}}^{u_{\epsilon,1} + \varphi_\epsilon} \mathcal{J}_2(x, s) \, ds
= J_{\epsilon,2}(u_{\epsilon,2}) - J_{\epsilon,2}(u_{\epsilon,2} - \varphi_\epsilon) \leq 0.
\]
This implies that \(u_{\varepsilon,1} + \varphi_{\varepsilon} \) is also a minimizer of \(J_{\varepsilon,1}(u) \). Let \(L > 0 \) be large enough such that \(\tilde{f}_1(x,t) + Lt \) is strictly increasing for \(x \in D, \ t \in [-1,1] \). From

\[-\varepsilon^2 \Delta(u_{\varepsilon,1} + \varphi_{\varepsilon}) = \tilde{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}),\]

we obtain

\[-\varepsilon^2 \Delta \varphi_{\varepsilon} = \tilde{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}) - \tilde{f}_1(u_{\varepsilon,1}).\]

Thus

\[-\varepsilon^2 \Delta \varphi_{\varepsilon} + L \varphi_{\varepsilon} = \tilde{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}) + L(u_{\varepsilon,1} + \varphi_{\varepsilon}) - (\tilde{f}_1(u_{\varepsilon,1}) + Lu_{\varepsilon,1}) > 0\]

in \(D \). Fix \(z_0 \in M \). Let \(x_0 \in \partial M \) such that \(|x_0 - z_0| = \text{dist}(z_0, \partial M) \). Using the Strong maximum principle and Hopf’s lemma in \(B_{\text{dist}(z_0, \partial M)}(z_0) \), we obtain that \(\frac{\partial \varphi_{\varepsilon}}{\partial \nu}(x_0) < 0 \), where \(\nu = (x_0 - z_0)/|x_0 - z_0| \). But \(\varphi_{\varepsilon}(x) = 0 \) for \(x \notin M \). Thus, \(\frac{\partial \varphi_{\varepsilon}}{\partial \nu}(x_0) = 0 \). This is a contradiction. Thus we obtain \(M = \emptyset \).

3. Proof of Main Theorem

To prove Theorem 1.1, the following proposition is used as the first step.

Proposition 3.1. Let \(u_{\varepsilon} \) be a global minimizer of the problem \([1.2]\). Then \(u_{\varepsilon} \) satisfies

\[u_{\varepsilon} \rightarrow \begin{cases} 1 & \text{uniformly on each compact subset of } A_- \\ -1 & \text{uniformly on each compact subset of } A_+ \end{cases} \]
as \(\varepsilon \to 0 \).

Proof. Let \(x_0 \in A_- \). Choose \(\delta > 0 \) small so that \(B_\delta(x_0) \subset A \). Take \(b \in (\max_{x \in B_\delta(x_0)} a(z), 1/2) \). Define \(f_{x_0,\delta,b}(t) = (\min_{z \in B_\delta(x_0)} h(|z|)^2)(t - b)(1 - t^2) \).

Then for \(x \in B_\delta(x_0), t \in [-1,1] \), we have \(f(|x|,t) \geq f_{x_0,\delta,b}(t) \). Let \(u_{\varepsilon,x_0,\delta,b} \) be the minimizer of

\[\inf \left\{ \int_{B_\delta(x_0)} \frac{\varepsilon^2}{2} |\nabla u|^2 - F_{x_0,\delta,b}(u) dx : u \in H^1_0(B_\delta(x_0)) \right\}, \]

where \(F_{x_0,\delta,b}(t) = \int_{-1}^{t} f_{x_0,\delta,b}(s) ds \). It follows from Lemmas 2.1 and 2.2 that

\[u_{\varepsilon,x_0,\delta,b}(x) \leq u_{\varepsilon}(x) \leq 1, \quad \text{for } x \in B_\delta(x_0). \]

Since \(\int_{-1}^{1} f_{x_0,\delta,b}(s) ds > 0 \), it follows from \([2,3]\) that \(u_{\varepsilon,x_0,\delta,b}(x) \to 1 \) as \(\varepsilon \to 0 \) uniformly in \(B_{\delta/2}(x_0) \), thus \(u_{\varepsilon}(x) \to 1 \) as \(\varepsilon \to 0 \) uniformly in \(B_{\delta/2}(x_0) \).

To prove the rest of Theorem 1.1 we need the following proposition and lemma.

Proposition 3.2. Let \(u \) be a local minimizer of the problem

\[\inf \left\{ \int_{B_1(0)} \frac{1}{2} |\nabla u|^2 - G(|x|,u) dx : u \in H^1(B_1(0)) \right\}. \]

Here \(G(r,t) = \int_{-1}^{t} g(r,s) ds \), \(g(r,t) \) is \(C^1 \) in \(t \in \mathbb{R} \) for each \(r \geq 0 \), \(g(r,t) \) and \(q_t(r,t) \) are measurable on \([0,\infty)\) for each \(t \in \mathbb{R} \), and \(g_t(r,t) < 0 \) if \(t < -1 \) or \(t > 1 \) and \(|g(r,t)| + |q_t(r,t)| \) is bounded on \([0,k] \times [-2,2] \) for any \(k > 0 \). Then \(u \) is radial, i.e., \(u(x) = u(|x|) \).

The proof of the above proposition can be found in \([4]\) Proposition 2.6].
Lemma 3.3. Let $0 < \eta < 1$ be any fixed constant and w satisfies
\[-w_{zz} = w(1 - w^2) \quad \text{on } \mathbb{R}, \]
\[w(0) = -1 + \eta \quad (\text{resp. } w(0) = 1 - \eta), \]
\[w(z) \leq -1 + \eta \quad (\text{resp. } w(z) \geq 1 - \eta) \quad \text{for } z \leq 0, \]
\[w \text{ is bounded on } \mathbb{R}. \]

Then w is a unique solution of
\[-w_{zz} = w(1 - w^2) \quad \text{on } \mathbb{R}, \]
\[w(0) = -1 + \eta \quad (\text{resp. } w(0) = 1 - \eta), \]
\[w'(z) > 0 \quad (\text{resp. } w'(z) < 0) \quad z \in \mathbb{R}, \]
\[w(z) \to \pm 1 \quad (\text{resp. } w(z) \to \mp 1) \quad \text{as } z \to \pm \infty. \]

The proof of the above lemma can be found in [6]. Now we prove the rest of Theorem 1.1.

Proof of Theorem 1.1. For the sake of simplicity, we prove for the case where $a(r) < 0$ on $[0, r_1)$, $a(r) = 0$ on $[r_1, r_2]$ and $a(r) > 0$ on $(r_2, 1]$ for some $0 < r_1 < r_2 < 1$ (see Figure 1 in Section 1).

Part 1. First we show that u_ε converges uniformly near the boundary of $B_1(0)$, that is, $u_\varepsilon \to -1$ uniformly on $B_1(0) \setminus B_{r_2 + \varepsilon}(0)$ for any small $\tau > 0$. We note that we have $u_\varepsilon \to -1$ uniformly on $B_{1 - \tau}(0) \setminus B_{r_2 + \varepsilon}(0)$ as $\varepsilon \to 0$. Now we claim that $u_\varepsilon(r) \leq u_\varepsilon(1 - \tau) =: T_\varepsilon$ for $r \in [1 - \tau, 1]$. We define the function \bar{u}_ε by

\[
\bar{u}_\varepsilon(r) = \begin{cases} u_\varepsilon(r) & \text{if } r \in [0, 1 - \tau] \\
 u_\varepsilon(r) & \text{if } u_\varepsilon(r) < T_\varepsilon \text{ and } r \in [1 - \tau, 1], \\
 T_\varepsilon & \text{if } u_\varepsilon(r) \geq T_\varepsilon \text{ and } r \in [1 - \tau, 1]. \end{cases}
\]

We note that $\bar{u}_\varepsilon \in H^1(B_1(0))$ and $-F(r, T_\varepsilon) \leq -F(r, t)$ for $\varepsilon > 0$ and $|r - 1|$ small and $t \geq T_\varepsilon$. Hence we obtain $J_\varepsilon(\bar{u}_\varepsilon) < J_\varepsilon(u_\varepsilon)$ and we have a contradiction if we assume that the measure of the set $\{r \in [0, 1]|u_\varepsilon(r) > T_\varepsilon \text{ and } r \in [1 - \tau, 1]\}$ is positive. Hence $-1 < u_\varepsilon(r) \leq T_\varepsilon$ and $u_\varepsilon \to -1$ uniformly on $B_1(0) \setminus B_{r_2 + \varepsilon}(0)$.

Part 2. We remark that, by Proposition 3.1, u_ε is radially symmetric and we note that for any $t_2 > t_1$, u_ε is a minimizer of the following problem

\[
\inf \{ J_\varepsilon(u, B_2(0) \setminus B_1(0)) : u - u_\varepsilon \in H^1_0(B_2(0) \setminus B_1(0)) \},
\]

where

\[
J_\varepsilon(u, M) = \int_M \frac{\varepsilon^2}{2} |\nabla u|^2 - F(|x|, u)\,dx
\]

for any open set M. Let $m_{\varepsilon, t_1, t_2}$ be the minimum value of this minimization problem.

In this part we show that u_ε has exactly one layer near the interval $[r_1, r_2]$.

Step 2.1. First we estimate the energy of transition layer. Let $\eta > 0$ and $\theta > 0$ be small numbers. Since $u_\varepsilon \to 1$ uniformly on $[0, r_1 - \theta]$ and $u_\varepsilon \to -1$ uniformly on $[r_2 + \theta, 1 - \theta]$, we can find $r_\varepsilon \in (r_1 - \theta, r_2 + \theta)$ such that $u_\varepsilon(r_\varepsilon) \geq 1 - \eta$ if $r \in [0, r_\varepsilon]$, $u_\varepsilon(r_\varepsilon) < 1 - \eta$ for $r - r_\varepsilon > 0$ small. Let $\tilde{r}_\varepsilon > r_\varepsilon$ be such that $u_\varepsilon(r_\varepsilon) \leq \eta$ if $r \in [\tilde{r}_\varepsilon, 1 - \theta]$, $u_\varepsilon(r_\varepsilon) > \eta$ for $\tilde{r}_\varepsilon - r > 0$ small. We may assume that $r_\varepsilon \to r \in [r_1, r_2]$ and $\tilde{r}_\varepsilon \to \tilde{r} \in [r_1, r_2]$.

We employ the so-called blow-up argument. Let \(v_\varepsilon(t) = u_\varepsilon(\varepsilon t + \tau_\varepsilon) \). Then

\[
-\varepsilon^N v''_\varepsilon - \varepsilon^{N-1} \frac{N-1}{\varepsilon t + \tau_\varepsilon} v'_\varepsilon = f(\varepsilon t + \tau_\varepsilon, v_\varepsilon),
\]

\(-1 \leq v_\varepsilon \leq 1\) and \(v_\varepsilon(0) = 1 - \eta \). Since \(\tau_\varepsilon \rightarrow \tau \in [r_1, r_2] \), it is easy to see that \(v_\varepsilon \rightarrow v \) in \(C^1_{\text{loc}}(\mathbb{R}) \) and

\[
-v'' = h(\tau)^2 (v - v^3), \quad t \in \mathbb{R},
\]

and \(v(t) \geq 1 - \eta \) for \(t \leq 0 \). If we set \(v(t) = V(h(\tau)t) \), the function \(V(t) \) satisfies

\[
-V'' = V - V^3 \quad \text{on } \mathbb{R},
\]

\[
V(0) = 1 - \eta, \quad V'(t) \geq 1 - \eta \quad t \leq 0.
\]

Hence by Lemma 3.3, the function \(V \) is a unique solution for

\[
-V'' = V - V^3 \quad \text{on } \mathbb{R},
\]

\[
V(0) = 1 - \eta, \quad V'(t) < 0 \quad t \leq 0.
\]

\[
V(t) \rightarrow \pm 1 \quad \text{as } t \rightarrow \mp \infty.
\]

Thus, we can find an \(R > 0 \) large, such that \(v(R) = \eta \). Since \(v_\varepsilon \rightarrow v \) in \(C^1_{\text{loc}}(\mathbb{R}) \), we can find an \(R_\varepsilon \in (R-1, R+1) \), such that \(v'_\varepsilon(r) < 0 \) if \(r \in [0, R_\varepsilon] \) and \(v_\varepsilon(R_\varepsilon) = -1+\eta \). Hence \(u'_\varepsilon(r) < 0 \) if \(r \in [\tau_\varepsilon, \tau_\varepsilon + \varepsilon R_\varepsilon] \) and \(u_\varepsilon(\tau_\varepsilon + \varepsilon R_\varepsilon) = -1+\eta \). Then we have

\[
J_\varepsilon(u_\varepsilon, B_{\tau_\varepsilon + \varepsilon R_\varepsilon}(0)\backslash \overline{B_{\tau_\varepsilon}(0)})
\]

\[
= \omega_{N-1}(\tau_\varepsilon N^{-1} + o_\varepsilon(1)) \int_{\tau_\varepsilon}^{\tau_\varepsilon + \varepsilon R_\varepsilon} \left(\frac{\varepsilon^2}{2} |u'_\varepsilon|^2 - F(t, u_\varepsilon) \right) dt
\]

\[
= \omega_{N-1}(\tau_\varepsilon N^{-1} + o_\varepsilon(1))\varepsilon \int_0^{R_\varepsilon} \left(\frac{1}{2} |u'_\varepsilon|^2 - F(\varepsilon t + \tau_\varepsilon, v_\varepsilon) \right) dt
\]

\[
= \omega_{N-1}(\tau_\varepsilon N^{-1} + o_\varepsilon(1))(\beta_{h(\tau)} + O(\eta) + o_\varepsilon(1))\varepsilon,
\]

where \(\omega_{N-1} \) is the area of the unit sphere in \(\mathbb{R}^N \), \(o_\varepsilon(1) \rightarrow 0 \) as \(\varepsilon \rightarrow 0 \), \(\beta_{h(s)} \) is the positive value defined by

\[
\beta_{h(s)} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} |w'h(s)(t)|^2 + h(s)^2 \frac{(w^2 h(s) - 1)^2}{4} \right) dt
\]

\[
= h(s) \int_{-\infty}^{+\infty} \frac{1}{2} |V'(t)|^2 + \frac{(V(t)^2 - 1)^2}{4} dt
\]

\[
= h(s) \beta_1,
\]

and \(w_{h(s)}(t) = V(h(s)t) \) for \(s \in [0, 1] \). We note that although the function \(V \) depends on \(\eta \), the value

\[
\beta_1 = \int_{-\infty}^{+\infty} \frac{1}{2} |V'(t)|^2 + \frac{(V(t)^2 - 1)^2}{4} dt
\]

is independent of \(\eta \).

Step 2.2. We claim \(u_\varepsilon \) has exactly one layer near the interval \([r_1, r_2]\). To show \(u_\varepsilon \) has exactly one layer near the interval \([r_1, r_2]\), it sufficient to prove the following claim

Claim. \(\tilde{r}_\varepsilon = \tau_\varepsilon + \varepsilon R_\varepsilon \).
Suppose that the claim is not true. Then we can find a \(t_\varepsilon > \tau_\varepsilon + R_\varepsilon \eta \) such that \(u_\varepsilon (r) < -1 + \eta \) if \(r \in (\tau_\varepsilon + R_\varepsilon \eta, t_\varepsilon) \), \(u_\varepsilon (t_\varepsilon) = -1 + \eta \). Thus we can use the blow-up argument again at \(t_\varepsilon \) to deduce that there is a \(\hat{t}_\varepsilon = t_\varepsilon + \varepsilon \tilde{R} \tilde{e} \) with \(u'_\varepsilon (r) > 0 \) if \(r \in (t_\varepsilon, \hat{t}_\varepsilon) \), \(u_\varepsilon (\hat{t}_\varepsilon) = 1 - \eta \). We may assume that \(t_\varepsilon, \hat{t}_\varepsilon \to \tilde{t} \) as \(\varepsilon \to 0 \) for some \(\tilde{t} \in [r_2, r_3] \). Moreover
\[
J_\varepsilon (u_\varepsilon, B_{t_\varepsilon} (0) \setminus \overline{B}_{\hat{t}_\varepsilon} (0)) = \omega_{N-1} (t_\varepsilon^{N-1} + o_\varepsilon (1)) (\beta_h (\tau) + O (\eta)) \varepsilon + o_\varepsilon (1) \tag{3.4}
\]
Now we claim \(\hat{t}_\varepsilon \geq r_1 \). Suppose \(\hat{t}_\varepsilon < r_1 \). Let \(F_a (t) = \int_{t-1}^{t} (v - a) (1 - v^2) dv \). Then for any \(t > 0 \) small and \(s \in [-1 + t, 1 - t] \),
\[
F_a (1 - t) - F_a (s) = F_0 (1 - t) - F_0 (s) + F_a (1 - t) - F_0 (1 - t) - F_a (s) + F_0 (s)
= \left(\frac{v^2 - 1}{4} \right)_{s}^{1-t} - a \int_{s}^{1-t} (1 - v^2) dv
\tag{3.5}
\]
Thus it follows from \(\text{[3.5]} \) that if \(a < 0 \), then
\[
F_a (1 - t) - F_a (s) > 0 \tag{3.6}
\]
for \(s \in [-1 + t, 1 - t] \). Define
\[
\overline{\nu}_\varepsilon (r) \equiv \begin{cases} \dfrac{1 - \eta}{r - \tau_\varepsilon} & r \in [\tau_\varepsilon, \tau_\varepsilon + R_\varepsilon \varepsilon] \cup [t_\varepsilon, \hat{t}_\varepsilon], \\ -u_\varepsilon (r) & r \in [\tau_\varepsilon + R_\varepsilon, \tau_\varepsilon]. \end{cases}
\]
By the assumption that \(\hat{t}_\varepsilon < r_1 \) and using \(\text{[3.6]} \), we see \(F (r, u_\varepsilon) < F (r, \overline{\nu}_\varepsilon) \) if \(r \in [\tau_\varepsilon, \hat{t}_\varepsilon] \). Hence, we obtain
\[
J_\varepsilon (\overline{\nu}_\varepsilon, B_{\hat{t}_\varepsilon} (0) \setminus \overline{B}_{\tau_\varepsilon} (0)) < J_\varepsilon (u_\varepsilon, B_{t_\varepsilon} (0) \setminus \overline{B}_{\tau_\varepsilon} (0)).
\]
Thus we obtain a contradiction. Therefore we have that \(\hat{t}_\varepsilon \geq r_1 \).

Since \(a(r) \geq 0 \) for \(r \in [r_1, 1] \), we see \(F (r, t) \leq F (r, -1) = 0 \) if \(r \in [r_1, 1] \). Since \(u_\varepsilon (r) \in (-1, -1 + \eta) \) for \(r \in [\tau_\varepsilon + R_\varepsilon, t_\varepsilon] \), we have
\[
m_{\tau_\varepsilon, \overline{\nu}_\varepsilon, \tilde{t}_\varepsilon} = J_\varepsilon (\overline{\nu}_\varepsilon, B_{\tau_\varepsilon + R_\varepsilon} (0) \setminus \overline{B}_{\hat{t}_\varepsilon} (0)) + J_\varepsilon (\overline{\nu}_\varepsilon, B_{t_\varepsilon} (0) \setminus \overline{B}_{\hat{t}_\varepsilon} (0))
+ J_\varepsilon (\overline{\nu}_\varepsilon, B_{t_\varepsilon} (0) \setminus \overline{B}_{\tau_\varepsilon} (0)) + J_\varepsilon (\overline{\nu}_\varepsilon, B_{\hat{t}_\varepsilon} (0) \setminus \overline{B}_{\tau_\varepsilon} (0))
\geq \omega_{N-1} (t_\varepsilon^{N-1} - \beta_h (\tau) \varepsilon + t_\varepsilon^{N-1} \beta_h (\tau) \varepsilon) + O (\eta \varepsilon) + o (\varepsilon)
+ \inf \left\{ - \int_{B_{\tau_\varepsilon} (0) \setminus \overline{B}_{\hat{t}_\varepsilon} (0)} F (r, w) : -1 \leq w \leq -1 + \eta \right\} \tag{3.7}
+ \inf \left\{ - \int_{B_{\hat{t}_\varepsilon} (0) \setminus \overline{B}_{\tau_\varepsilon} (0)} F (r, w) : -1 \leq w \leq 1 \right\}
\geq \omega_{N-1} (t_\varepsilon^{N-1} - \beta_h (\tau) \varepsilon + t_\varepsilon^{N-1} \beta_h (\tau) \varepsilon) + O (\eta \varepsilon) + o (\varepsilon)
\]
Now we give an upper bound for \(m_{\tau_\varepsilon, \overline{\nu}_\varepsilon, \hat{t}_\varepsilon} \). Let \(R > 0 \) be such that \(V (h (\tau) R) = \eta \), where \(V \) is a unique solution to \(\text{[3.2]} \). Define \(\overline{\nu}_\varepsilon \) by
\[
\overline{\nu}_\varepsilon (r) \equiv \begin{cases} \dfrac{V (h (\tau)) - \tau_\varepsilon}{r - \tau_\varepsilon} & r \in [\tau_\varepsilon, \tau_\varepsilon + R_\varepsilon] \\ -1 + \eta - \dfrac{2}{\varepsilon} (r - \tau_\varepsilon - \varepsilon R) & r \in [\tau_\varepsilon + \varepsilon R, \tau_\varepsilon + \varepsilon R + \varepsilon + \tilde{R}_\varepsilon - \varepsilon] \\ -1 & r \in [\tau_\varepsilon + \varepsilon R + \varepsilon, \tilde{R}_\varepsilon] \\ -1 + \dfrac{2}{\varepsilon} (r - \tilde{R}_\varepsilon + \varepsilon) & r \in [\tilde{R}_\varepsilon - \varepsilon, \tilde{R}_\varepsilon] \end{cases} \tag{3.8}
\]
Now we note that $|F(r,t)| = O(\eta)$ for $r \in [r_\varepsilon, \bar{r}_\varepsilon]$ and $-1 \leq t \leq -1 + \eta$. Then we have

$$m_{r_\varepsilon, r_\varepsilon, \bar{r}_\varepsilon} \leq J_\varepsilon(\pi_\varepsilon, B_r(0) \setminus \partial B_{r'}(0))$$

$$\leq J_\varepsilon(\pi_\varepsilon, B_{r_\varepsilon+R}(0) \setminus \partial B_{r'}(0)) + J_\varepsilon(\pi_\varepsilon, B_{r_\varepsilon}(0) \setminus \partial B_{r'-\varepsilon}(0))$$

$$+ J_\varepsilon(\pi_\varepsilon, B_{r_\varepsilon-\varepsilon}(0) \setminus \partial B_{r'}(0))$$

$$\leq \omega_{N-1} \pi_\varepsilon^{N-1} \beta_{h(r')} + O(\eta)\varepsilon + o(\varepsilon) + O(\varepsilon\eta) + o(\varepsilon)$$

(3.9)

By (3.7) and (3.9), we have

$$\omega_{N-1} \pi_\varepsilon^{N-1} \beta_{h(r')} + t_\varepsilon^{N-1} \beta_{h(r)}\varepsilon \leq \omega_{N-1} \pi_\varepsilon^{N-1} \beta_{h(r)}\varepsilon + O(\varepsilon\eta) + o(\varepsilon)$$

This is a contradiction. So we can conclude $\bar{r}_\varepsilon = r_\varepsilon + \varepsilon R_\varepsilon$.

Part 3. It remains to prove that if $r_j \to r$ for some positive sequence $\{\varepsilon_j\}$ converging to zero as $j \to \infty$ then r satisfies

$$\pi^{N-1} h(r) = \min_{s \in [r_1, r_2]} s^{N-1} h(s).$$

Step 3.1. First we note that from Part 1, the function u_ε satisfies $-1 \leq u_\varepsilon \leq -1 + \eta$ for $r \in [r_\varepsilon + \eta R_\varepsilon, 1]$ in this case.

Step 3.2. Set $H(s) = s^{N-1} h(s)$. Assume that the result is not true. Then there exists a subsequence of $\{r_\varepsilon\}$ (denoted by r_ε) such that $r_\varepsilon \to r' \in [r_1, r_2]$ and $H(r') > \min_{u \in [r_1, r_2]} H(u)$. Then we can find a point $\bar{r} \in (r_1, r_2)$ such that $H(\bar{r}) = H(r') > H(\bar{r})$.

Now we give a lower estimate for $J_\varepsilon(u_\varepsilon)$. We have

$$J_\varepsilon(u_\varepsilon) = J_\varepsilon(u_\varepsilon, B_{r_\varepsilon}(0)) + J_\varepsilon(u_\varepsilon, B_{r_\varepsilon+\varepsilon R_\varepsilon}(0) \setminus \partial B_{r'}(0)) + J_\varepsilon(u_\varepsilon, B_1(0) \setminus \partial B_{r_\varepsilon+\varepsilon R_\varepsilon}(0)).$$

(3.10)

First we note that $1 - \eta \leq u_\varepsilon(r) \leq 1$ for $r \leq r_\varepsilon$ and for sufficiently small $\eta > 0$, $-F(r, u) \geq -F(r, 1) (u \in [1 - \eta, 1])$. We also remark that since $a(r) < 0$ for $r < r_1$ and $a(r) = 0$ for $r_1 \leq r \leq r_2$, we have $-F(r, 1) < 0$ for $r < r_1$ and $-F(r, 1) = 0$ for $r_1 \leq r \leq r_2$ and $-F(r, 1) > 0$ for $r > r_2$. Hence we have $-\int_{r_1}^{r_\varepsilon} r^{N-1} F(r, 1) dr \geq 0$ and we obtain the estimate

$$J_\varepsilon(u_\varepsilon, B_{r_\varepsilon}(0)) \geq - \int_0^{r_\varepsilon} r^{N-1} F(r, u_\varepsilon) dr$$

$$\geq - \int_0^{r_\varepsilon} r^{N-1} F(r, 1) dr$$

$$= - \int_0^{r_1} r^{N-1} F(r, 1) dr - \int_{r_1}^{r_\varepsilon} r^{N-1} F(r, 1) dr$$

$$\geq - \int_0^{r_1} r^{N-1} F(r, 1) dr =: A.$$

(3.11)

Using methods similar to those in the proof of (3.3), we obtain

$$J_\varepsilon(u_\varepsilon, B_{r_\varepsilon+\varepsilon R_\varepsilon}(0) \setminus \partial B_{r'}(0)) \geq \omega_{N-1} H(r') \varepsilon + O(\varepsilon\eta) + o(\varepsilon).$$

(3.12)
Since \(-1 \leq u_\varepsilon(r) \leq -1 + \eta\) for \(r \geq \tau_\varepsilon + \varepsilon R_\varepsilon\) and for sufficiently small \(\eta > 0\),
\(-F(r, u) \geq -F(r, -1) = 0\) \((u \in [-1, -1 + \eta])\), we obtain the estimate

\[
J_\varepsilon(u_\varepsilon, B_1(0) \setminus B_{\tau_\varepsilon + R_\varepsilon}(0)) \geq - \int_{\tau_\varepsilon + \varepsilon R_\varepsilon}^{1} r^{N-1} F(r, u_\varepsilon) dr \\
\geq - \int_{\tau_\varepsilon + \varepsilon R_\varepsilon}^{1} r^{N-1} F(r, -1) dr = 0.
\] (3.13)

Thus we obtain

\[
J(u_\varepsilon) \geq A + \omega_{N-1} H(t') \beta_1 \varepsilon + O(\eta \varepsilon) + o(\varepsilon) .
\] (3.14)

Next we give an upper bound for \(J_\varepsilon(u_\varepsilon)\). Consider the function

\[
\bar{w}_\varepsilon(r) := \begin{cases}
1 & r \in [0, \bar{t} - \varepsilon] \\
1 - \frac{2}{\varepsilon}(r - \bar{t} + \varepsilon) & r \in [\bar{t} - \varepsilon, \bar{t}]
V(h(\bar{t}) \frac{r - \bar{t} + \varepsilon}{\varepsilon}) & r \in [\bar{t}, \bar{t} + \varepsilon R'] \\
-1 - \frac{2}{\varepsilon}(r - \bar{t} - \varepsilon R' - \varepsilon) & r \in [\bar{t} + \varepsilon R', \bar{t} + \varepsilon R' + \varepsilon] \\
-1 & r \in [\bar{t} + \varepsilon R' + \varepsilon, 1],
\end{cases}
\]

where \(R' > 0\) is the number satisfying \(V(h(\bar{t}) R') = -1 + \eta\). Then

\[
J_\varepsilon(u_\varepsilon) \leq J_\varepsilon(\bar{w}_\varepsilon) \leq A + \omega_{N-1} H(\bar{t}) \beta_1 \varepsilon + O(\eta \varepsilon) + o(\varepsilon).
\] (3.15)

By (3.14) and (3.15) we have a contradiction. The proof of Theorem 1.1 is complete.

The more complicate case, can be shown by a similar method (see Remark below).

\[\square\]

Remark. We briefly show the more complicate case, that is, when \(a\) is the function as in Figure 2. More precisely we set \(I_1 := [r_1, r_2]\) and \(I_2 := [r_3, r_4]\) and we assume \(a > 0\) on \([0, r_1) \cup (r_4, 1]\) and \(a < 0\) on \((r_3, r_4)\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Special case of coefficient \(a(t)\)}
\end{figure}

Let \(\eta > 0\) and \(\theta > 0\) be small numbers. As in Part 1, we can find pairs of numbers \((\tau_{1,\varepsilon}, \tau_{2,\varepsilon})\) and \((R_{1,\varepsilon}, R_{2,\varepsilon})\) satisfying \(\tau_{1,\varepsilon} \in (r_1 - \theta, r_2 + \theta), \tau_{2,\varepsilon} \in (r_3 - \theta, r_4 + \theta)\),
sup \varepsilon |R_{1,\varepsilon}| < \infty, \sup \varepsilon |R_{2,\varepsilon}| < \infty and
\begin{align*}
 u_\varepsilon(r) &< -1 + \eta \quad \text{for } 0 < r < \tau_{1,\varepsilon} \\
 u_\varepsilon(\tau_{1,\varepsilon}) &= -1 + \eta \\
 u_\varepsilon(\tau_{1,\varepsilon} + \varepsilon R_{1,\varepsilon}) &= 1 - \eta \\
 u_\varepsilon(r) &> 1 - \eta \quad \text{for } \tau_{1,\varepsilon} + \varepsilon R_{1,\varepsilon} < r < \tau_{2,\varepsilon} \\
 u_\varepsilon(\tau_{2,\varepsilon}) &= 1 - \eta \\
 u_\varepsilon(\tau_{2,\varepsilon} + \varepsilon R_{2,\varepsilon}) &= -1 + \eta \\
 u_\varepsilon(r) &< -1 + \eta \quad \text{for } \tau_{2,\varepsilon} + \varepsilon R_{2,\varepsilon} < r < 1
\end{align*}

We assume that \(\tau_{1,\varepsilon} \to \tau_1 \in I_1 \) and that \(\tau_{2,\varepsilon} \to \tau_2 \in I_2 \) for some sequence \(\{ \varepsilon_j \} \) which converges to 0 as \(j \to \infty \). In this case it is easy to show that the energy of global minimizer \(J(u_\varepsilon) \) is estimated as follows
\begin{equation}
J_{\varepsilon_j}(u_{\varepsilon_j}) \geq J_{\varepsilon_j}(u_{\varepsilon_j}, B_{r_2-\varepsilon}(0)) + \varepsilon_j \omega N - 1 H(\tau_2) \beta_1 + B + O(\varepsilon_j \eta) + o(\varepsilon_j), \quad (3.16)
\end{equation}
where \(B = -\int_{\tau_{2,\varepsilon}}^{\tau_{1,\varepsilon}} r^{N-1} F(r, 1) dr \).

Let us assume the result does not hold. Then \(H(\tau_1) > \min_{s \in I_2} H(s) \) or \(H(\tau_2) > \min_{s \in I_2} H(s) \) hold. We assume \(H(\tau_1) = \min_{s \in I_2} H(s) \) and \(H(\tau_2) > \min_{s \in I_2} H(s) \). We also assume \(\tau_1 = \tau_1 \). We note that if \(H(\tau_1) > \min_{s \in I_1} H(s) \) or \(\tau_1 \in \text{int} I_1 \), the proof is more easy.

Let we take \(\tilde{\tau}_2 \in \text{int} I_2 \) such that \(H(\tau_2) > H(\tilde{\tau}_2) > \min_{s \in I_2} H(s) \) and consider the function
\begin{equation}
\hat{u}_\varepsilon(r) := \begin{cases}
 u_\varepsilon(r) & \text{on } [0, \tau_2 - \varepsilon) \\
 1 + \frac{\varepsilon}{2}(r - \tau_2) & \text{on } [\tau_2 - \varepsilon, \tau_2] \\
 1 & \text{on } [\tau_2, \tilde{\tau}_2 - \varepsilon] \\
 1 - \frac{\varepsilon}{2}(r - \tilde{\tau}_2) & \text{on } [\tilde{\tau}_2 - \varepsilon, \tilde{\tau}_2] \\
 V(h(\tilde{\tau}_2)) & \text{on } [\tilde{\tau}_2, \tilde{\tau}_2 + \varepsilon R''] \\
 -1 - \frac{\varepsilon}{2}(r - \tilde{\tau}_2 - \varepsilon R' - \varepsilon) & \text{on } [\tilde{\tau}_2 + \varepsilon R', \tilde{\tau}_2 + \varepsilon R' + \varepsilon] \\
 -1 & \text{on } [\tilde{\tau}_2 + \varepsilon R' + \varepsilon, 1],
\end{cases}
\end{equation}
where \(V \) is the unique solution of \((3.2) \) and \(R'' \) is the unique value such that \(V(h(\tau_1)R'') = -1 + \eta \).

Since \(u_\varepsilon \) is global minimizer, we can estimate the energy of \(J_\varepsilon(\hat{u}_\varepsilon) \) as follows
\begin{equation}
J_\varepsilon(u_\varepsilon) \leq J_\varepsilon(\hat{u}_\varepsilon) \leq J_\varepsilon(u_\varepsilon, B_{r_2-\varepsilon}(0)) + \varepsilon \omega N - 1 H(\tilde{\tau}_2) \beta_1 + B + O(\varepsilon \eta) + o(\varepsilon), \quad (3.17)
\end{equation}
Then we have a contradiction from (3.16) and (3.17) by taking \(\varepsilon = \varepsilon_j \) and sufficiently large \(j \).

Acknowledgments. The author would like to thank Professor Kazuhiro Kurata for his valuable advice and help, also to the anonymous referee for the numerous and useful comments.

References

Hiroshi Matsuzawa

Numazu National College of Technology, Ooka 3600, Numazu-city, Shizuoka 410-8501, Japan

E-mail address: hmatsu@numazu-ct.ac.jp