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ON A VARIATIONAL APPROACH TO EXISTENCE AND
MULTIPLICITY RESULTS FOR SEMIPOSITONE PROBLEMS

DAVID G. COSTA, HOSSEIN TEHRANI, JIANFU YANG

Abstract. In this paper we present a novel variational approach to the ques-

tion of existence and multiplicity of positive solutions to semipositone prob-
lems in a bounded smooth domain of RN . We consider both the sublinear and

superlinear cases.

1. Introduction

Let Ω ⊂ RN be a smooth bounded domain. We are interested in presenting a
variational approach to the question of finding positive solutions (i.e. nonnegative
solutions without interior zeros in Ω) to a class of problems of the form{

−∆u = λf(u) in Ω
u = 0 on ∂Ω,

(1.1)

where λ is a positive parameter and f : [0,+∞) → R is a continuous function
satisfying the condition

(F0) f(0) = −a < 0.
Such problems are usually referred in the literature as semipositone problems. We
refer the reader to [13], where Castro and Shivaji initially called them nonpositone
problems, in contrast with the terminology positone problems, coined by Cohen and
Keller in [18], when the nonlinearity f was positive and monotone. Here we will
consider both the sublinear case, where f satisfies

(F1) lims→+∞
f(s)

s = 0 < λ1,
(with λ1 > 0 denoting the first eigenvalue of−∆ under Dirichlet boundary condition
on Ω) and the superlinear, subcritical case, where f is such that

(F2) lims→+∞
f(s)

s = +∞, |f(s)| ≤ C(1 + |s|p−2),

with 2 ≤ p < 2∗ = 2N
N−2 if N ≥ 3 (2∗ = +∞ if N = 1, 2). In this latter case,

an assumption that is usually made to deal with compactness properties is the
Ambrosetti-Rabinowitz condition:

(F̂2) F (s) ≤ θf(s)s for all s ≥ K (and some θ ∈ (0, 1
2 )).
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The usual approaches to such semipositone problems are through quadrature
methods (see e.g. [14, 11]), the method of sub-super-solution (e.g. [6, 10]), degree
theory and/or bifurcation theory (see e.g. [2, 3]). We refer the author to the survey
paper by Castro-Maya-Shivaji [12] and references therein. Let us consider the
sublinear case, for example. As is well-known, in this case a super-solution can be
easily found by considering the solution u > 0 of the linear problem

−∆u = λ(εu + B) ,

where 0 < λε < λ1 and B > 0 are such that (cf. (F1))

f(s) ≤ εs + B ∀ s > 0 .

Moreover, by using the maximum principle, it follows that such a super-solution is
an upper bound for any positive solution, or even sub-solution, of (1.1) (see [19]).
Therefore, the main difficulty in proving the existence of a positive solution for
(1.1) consists in finding a positive sub-solution. As a matter of fact, as can be
easily seen, no positive sub-solution can exist if f does not assume positive values;
and the fact that f has negative values for s > 0 small precludes the existence of
any such sub-solution with small L∞ norm. Thus the nonlinearity f must assume
positive values and, as suggested by the results in [17], that should happen in such
a way that

(F3) F (δ) > 0 for some δ > 0,
where F (u) =

∫ u

0
f(s)ds as usual. In addition, one must also have λ bounded away

from zero (see [20] and Lemma 3.1 below).
As already mentioned, our main objective in this article is to present a variational

approach to the question of existence and multiplicity of positive solutions to such
semipositone problems. We will do so by looking at (1.1) as a problem with the
discontinuous nonlinearity g(s) defined by

g(s) = H(s)f(s) =

{
0 if s ≤ 0
f(s) if s > 0 ,

(1.2)

where H(s) = 0 for s ≤ 0, H(s) = 1 for s > 0 denotes the Heaviside function. More
precisely, we will be considering the slightly modified problem{

−∆u = λg(u) in Ω
u = 0 on ∂Ω .

(1.3)

We note that the set of positive solutions of (1.1) and (1.3) do coincide. Moreover,
any non-zero solution u of (1.3) is nonnegative and, in fact, if the set Au := {x ∈
Ω | u(x) = 0} has measure zero then u is an a.e. positive solution of (1.1). We will
show this to be the case for some solutions when Ω is a ball.

We should mention that our results were inspired by the works of Ambrosetti-
Struwe [5] and Chang [15]. On the other hand, we are not aware of any other work
where solutions of semipositone problems were obtained directly through variational
techniques. However, the authors in [7] have considered existence results for prob-
lem (1.3) through approximation of the discontinuous nonlinearity by a sequence of
continuous functions. Variational methods were then applied to the corresponding
sequence of problems and limits were taken. We believe that our direct variational
approach to such problems is rather natural and conducive to dealing with more
general situations.
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Our main results concerning problems (1.1) and (1.3) are the following:

Theorem 1.1. Assume (F0), (F1) and (F3). Then, there exist 0 < Λ0 ≤ Λ2 such
that (1.3) has no nontrivial nonnegative solution for 0 < λ < Λ0, and has at least
two nontrivial nonnegative solutions ûλ, v̂λ for all λ > Λ2. Moreover, when Ω is a
ball BR = BR(0), these two solutions are non-increasing, radially symmetric and,
if N ≥ 2, at least one of them is positive, hence a solution of (1.1).

Theorem 1.2. Assume (F0), (F2), (F̂2) and (F3). Then, (1.3) has at least one
nonnegative solution v̂λ for all λ > 0. If Ω = BR then v̂λ is non-increasing, radially
symmetric and one of the two alternatives occurs:

(i) There exists Λ1 > 0 such that, for all 0 < λ < Λ1, v̂λ is a positive solution
of (1.1) having negative normal derivative on ∂BR;

(ii) For some sequence µn → 0, problem (Pµn
) has a positive solution ŵµn

with
zero normal derivative on ∂BR.

2. The Abstract Framework

We start by recalling some basic results on variational methods for locally Lips-
chitz functionals I : X → R defined on a real Banach space X with norm ‖ · ‖ (cf.
[16, 15]), that is, for functionals such that, for each u ∈ X, there is a neighborhood
N = Nu of u and a constant K = Ku for which

|I(v)− I(w)| ≤ K‖v − w‖ ∀v, w ∈ N.

For given u, h ∈ X, the generalized directional derivative of I at u in the direction
of h is defined by the formula

I0(u;h) = lim sup
k→0, t↓0

1
t
[I(u + k + th)− I(u + k)]

The following properties are known to hold:
(i) h 7→ I0(u;h) is sub-additive, positively homogeneous, continuous, and con-

vex;
(ii) |I0(u;h)| ≤ Ku‖h‖;

(iii) I0(u;−h) = (−I)0(u;−h).
Therefore, the so-called generalized gradient of I at u, written ∂I(u), is defined as
the subdifferential of the convex function I0(u;h) at h = 0, that is,

µ ∈ ∂I(u) ⊂ X∗ ⇐⇒ 〈µ, h〉 ≤ I0(u;h) ∀h ∈ X.

For the convenience of the reader, we list below some of the main properties of the
generalized gradient ∂I(u):

(1) For each u ∈ X, ∂I(u) is a non-empty convex and w∗-compact subset of
X∗;

(2) ‖µ‖X∗ ≤ Ku for all µ ∈ ∂I(u);
(3) If I, J : X → R are locally Lipschitz functionals then

∂(I + J)(u) ⊂ ∂I(u) + ∂J(u);

(4) ∂(λI)(u) = λ∂I(u) for all λ ∈ R;
(5) If I is a convex functional then ∂I(u) coincides with the usual subdifferential

of I in the sense of convex analysis;
(6) If I has a Gateaux derivative DI(v) at every point v of a neighborhood N

of u and DI : N → X∗ is continuous, then ∂I(u) = {DI(u)};
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(7) I0(u;h) = max{〈µ, h〉 | µ ∈ ∂I(u)} for all h ∈ X;
(8) If I has a local minimum (or a local maximum) at u0 ∈ X then 0 ∈ ∂I(u0).

Now, by definition, one says that u ∈ X is a critical point of the locally Lipschitz
functional I if

0 ∈ ∂I(u).

In this case the real number c = I(u) is called a critical value of I. Note that
property (8) above says that a local minimum (or local maximum) of I is a critical
point of I.

On the other hand, I is said to satisfy the Palais-Smale condition (PS)c at
the level c ∈ R if, for any sequence (un) such that I(un) → c and λ(un) :=
minµ∈∂I(un) ‖µ‖X∗ → 0, one can extract a convergent subsequence. Finally, we
point out that many of the results of the classical critical point theory have been
extended by Chang [15] to this setting of locally Lipschitz functionals. For example,
one has the celebrated:

Theorem 2.1 (Mountain-Pass Theorem, Ambrosetti-Rabinowitz [4]). Let X be a
reflexive Banach space and I : X → R be a locally Lipschitz functional satisfying
(PS)c for all c > 0 and the following geometric conditions:

(i) I(0) = 0 and there exist ρ, α > 0 such that I(u) ≥ α if ‖u‖ = ρ;
(ii) there exists e ∈ X such that ‖e‖ > ρ and I(e) ≤ 0.

Then I has a critical value c ≥ α given by

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)) ,

where Γ = {γ ∈ C([0, 1], X) | γ(0) = 0 , γ(1) = e}.

For the rest of this article, we denote the H1
0 -norm by ‖u‖ = (

∫
Ω
|∇u|2 dx)1/2

and we often use the same letter C to represent various positive constants.

3. Proofs of the Main Results

Now, having listed some basic results on critical point theory for Lipschitz func-
tionals, let us consider the functional

Iλ(u) =
1
2

∫
Ω

|∇u|2 dx− λ

∫
Ω

G(u) dx ,

where G(u) =
∫ u

0
g(s) ds and g(s) were defined in (1.2). Clearly G : R → R is a

locally Lipschitz continuous function and satisfies G(s) = 0 for s ≤ 0. In view of
[15, Theorems 2.1 and 2.2], the above formula for Iλ(u) defines a locally Lipschitz
functional on H1

0 (Ω) whose critical points are solutions of the differential inclusion

−∆u(x) ∈ λ[g(u(x)), g(u(x))] a.e. in Ω ,

where g(s) := min{g(s− 0), g(s + 0)} and g(s) := max{g(s− 0), g(s + 0)}. In our
present case, it follows that g(s) = g(s) = f(s) for s > 0, g(s) = g(s) = 0 for s < 0,
and g(0) = −a, g(0) = 0.

We start with some preliminary lemmas.

Lemma 3.1. Assume (F0), (F1) and (F3). Then there exists Λ0 > 0 such that
(1.3) has no nontrivial solution 0 ≤ u ∈ H1

0 (Ω) for 0 < λ < Λ0.
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Proof. If u ≥ 0 is a solution of (1.3) then, multiplying the equation by u and
integrating over Ω yields

1
2
‖u‖2 = λ

∫
Ω

g(u)u dx = λ
( ∫

[u≤δ0]

ug(u) dx +
∫

[u≥δ0]

ug(u) dx
)

,

hence
1
2
‖u‖2 ≤ λ

∫
[u≥δ0]

ug(u) dx , (3.1)

where we have chosen δ0 > 0 so that g(s) ≤ 0 for 0 ≤ s ≤ δ0 (such a δ0 exists in
view of (F0)). Now, since (F1) implies the existence of C > 0 such that

sg(s) ≤ C(1 + s2)

for all s ≥ 0, we obtain from (3.1) that

1
2
‖u‖2 ≤ λC

∫
[u≥δ0]

(1 + u2) dx ≤ λC(
1
δ2
0

+ 1)
∫

[u≥δ0]

u2 dx ≤ λC

∫
Ω

u2 dx ,

so that
1
2
‖u‖2 ≤ λC‖u‖2 ,

where this last constant C > 0 is independent of both u and λ. Therefore we must
have

λ ≥ 1
2C

:= Λ0 > 0 .

�

Lemma 3.2. Assume (F0) and either (F1) or (F2). Then u = 0 is a strict local
minimum of the functional Iλ.

Proof. In fact, we only need to assume (F0) and the condition

G(s) ≤ C(1 + |s|2
∗
) for all s ∈ R,

which is implied by either (F1) or (F2). Recall also that G(s) = 0 for s ≤ 0.
Then, with δ0 > 0 as in the proof of Lemma 3.1 and noticing that G(s) ≤ 0 for all
−∞ < s ≤ δ0, we can write for an arbitrary u ∈ H1

0 (Ω),

Iλ(u) =
1
2
‖u‖2 − λ

∫
Ω

G(u) dx

≥ 1
2
‖u‖2 − λ

∫
[u≥δ0]

G(u) dx

≥ 1
2
‖u‖2 − λC

∫
[u≥δ0]

(1 + u2∗) dx

≥ 1
2
‖u‖2 − λC(

1
δ2∗
0

+ 1)
∫

[u≥δ0]

u2∗ dx ,

so that, using Sobolev embedding theorem in the last inequality, and with a constant
C > 0 independent of u and Ω, we obtain

Iλ(u) ≥ 1
2
‖u‖2 − λC‖u‖2

∗
=

1
2
‖u‖2(1− 2λC‖u‖2

∗−2).

Therefore, for each 0 < ρ < ρλ := 1/(2λC)2
∗−2, it follows that Iλ(u) ≥ αρ > 0 if

‖u‖ = ρ. This shows that u = 0 is a strict local minimum of Iλ. �
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Remark 3.3. We note that both ρλ > 0 and αρ > 0 obtained in the above proof
do not depend on the domain Ω.

Lemma 3.4. Under the same assumptions as in Lemma 3.2, let û ∈ H1
0 (Ω) be a

critical point of Iλ. Then, û ∈ C1,ε(Ω) and û is a nonnegative solution of (1.3).

Proof. We will follow some of the arguments in [5, 15]. As mentioned earlier, if û is
a critical point of Iλ then it is shown in [15] that û is a solution of the differential
inclusion

−∆u ∈ λ[g(u), g(u)] a.e. inΩ , (3.2)

where g(s) = min{g(s− 0), g(s + 0)} and g(s) = max{g(s− 0), g(s + 0)}. Since g is
only discontinuous at s = 0, the above differential inclusion reduces to an equality,
except possibly on the subset A ⊂ Ω where û = 0. And, in this latter case, −∆û
takes on values in the bounded interval [−a, 0]. Therefore, by standard elliptic
regularity, it follows that û ∈ H1

0 ∩W 2,p(Ω) for all p ≥ 2. In particular, û is of class
C1,ε, 0 < ε < 1.

Next, in view of a well-known result of Stampacchia, we have that −∆û = 0 a.e.
in A. Therefore, since we defined g(0) = 0, it follows that

−∆û = g(û) a.e. in Ω.

Replacing the inclusion (3.2) on û, we conclude that û ∈ C1,ε(Ω) is a solution of
(1.3). Finally, recalling that g(s) = 0 for s ≤ 0, it is clear that û ≥ 0. The proof of
Lemma 3.4 is complete. �

Lemma 3.5. Assume either (F1) or (F2), (F̂2). Then Iλ satisfies the Palais-Smale
condition (PS)c at every c ∈ R.

Proof. The proof in either case is a direct consequence of Theorem 4.3 and Theorem
4.4, respectively, in Chang [15]. In the superlinear case, it only suffices to notice
that (F̂2) implies the corresponding condition in Theorem 4.4,

J(u) ≤ θ min
µ∈∂J(u)

〈µ, u〉+ M ∀u ∈ H1
0 (Ω) , (3.3)

where J(u) =
∫
Ω

G(u) dx, u ∈ H1
0 (Ω), in our present case. But this follows imme-

diately by observing that we can identify µ ∈ (H1
0 )∗ with a function w ∈ H1

0 and
that the inclusion

∂J(u) ⊂ [g(u), g(u)]

says that given w ∈ ∂J(u) then w(x) = g(u(x)) if u(x) 6= 0, w(x) ∈ [−a, 0] if
u(x) = 0. Therefore,

〈w, u〉 =
∫

Ω

g(u)u dx for all w ∈ ∂J(u),

so that (F̂2) clearly implies ((3.3)) �

Lemma 3.6. Under assumptions (F0) and (F1), let Ω = BR ⊂ RN with N ≥ 2,
and let u ∈ C1(BR) be a radially symmetric, non-increasing function such that
u ≥ 0 and u is a minimizer of Iλ with Iλ(u) = m < 0. Then, u does not vanish in
BR, that is, u(x) > 0 for all x ∈ BR.



EJDE-2006/11 ON A VARIATIONAL APPROACH 7

Proof. Since g is discontinuous at zero, we note that the conclusion does not follow
directly from uniqueness of solution for the Cauchy problem with data at r = R
(In fact, writing u = u(r), r = |x|, we may have u(R) = u′(R) = 0 and u 6≡ 0).

Now, since u 6≡ 0 by assumption, R0 := inf{r ≤ R | u(s) = 0 for r ≤ s ≤ R}
satisfies 0 < R0 ≤ R. If R0 = R there is nothing to prove in view of the fact that
u is non-increasing. On the other hand, if R0 < R then u′(R0) = 0 and u(r) > 0
for r ∈ [0, R0). It is not hard to prove that this contradicts that u is a minimizer
of Iλ. Indeed, if R0 < R then

Iλ(u) =
1
2

∫
BR0

|∇u|2 dx− λ

∫
BR0

G(u) dx = m < 0 .

A simple calculation shows that the re-scaled function v(r) = u(R0r
R ) ∈ H1

0 (BR) ∩
C1(BR) satisfies

Iλ(v) = δ2−N
[1
2

∫
BR0

|∇u|2 dx− δ−2λ

∫
BR0

G(u) dx
]
,

where δ := R0/R is less than 1. Therefore, since we are assuming N ≥ 2, we would
reach the contradiction Iλ(v) < m. �

Proof of Theorem 1.1. We observe that the functional Iλ is weakly lower semi-
continuous on H1

0 (Ω). Moreover, the sublinearity assumption (F1) on g(u) implies
that Iλ is coercive. Therefore, the infimum of Iλ is attained at some ûλ:

inf
u∈H1

0

Iλ(u) = Iλ(ûλ).

And, in view of Lemma 3.4, ûλ ∈ C1,ε(Ω) is a nonnegative solution of (1.3). We
now claim that ûλ is nonzero for all λ > 0 large.
Claim: There exists Λ > 0 such that Iλ(ûλ) < 0 for all λ ≥ Λ.

In order to prove the claim it suffices to exhibit an element ŵ ∈ H1
0 (Ω) such that

Iλ(ŵ) < 0 for all λ > 0 large. This is quite standard considering that G(δ) > 0 by
(F3). Indeed, letting Ωε := {x ∈ Ω | dist(x, ∂Ω) > ε} for ε > 0 small, define ŵ so
that ŵ(x) = δ for x ∈ Ωε and 0 ≤ ŵ(x) ≤ δ for x ∈ Ω\Ωε. Then

Iλ(ŵ) =
1
2
‖ŵ‖2 − λ

( ∫
Ωε

G(ŵ) dx +
∫

Ω\Ωε

G(ŵ) dx
)

≤ 1
2
‖ŵ‖2 − λ

(
G(δ)meas(Ωε)− C(1 + δ2)meas(Ω\Ωε)

)
,

where we note that the expression in the above parenthesis is positive if we choose
ε > 0 sufficiently small. Therefore, there exists Λ > 0 such that Iλ(ŵ) < 0 for all
λ ≥ Λ, which proves the claim.

On the other hand, when Ω = BR, let û∗λ denote the Schwarz Symmetrization
of ûλ, namely, û∗λ is the unique radially symmetric, non-increasing, nonnegative
function in H1

0 (BR) which is equi-measurable with ûλ. As is well known,∫
BR

G(û∗λ) dx =
∫

BR

G(ûλ) dx

and ‖û∗λ‖ ≤ ‖ûλ‖, so that Iλ(û∗λ) ≤ Iλ(ûλ). Therefore, we necessarily have Iλ(û∗λ) =
Iλ(ûλ) and may assume that ûλ = û∗λ. Moreover, ûλ > 0 in Ω by Lemma 3.6.
Therefore, ûλ is a positive solution of both (1.1) and (1.3)
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Next, we recall that u = 0 is a strict local minimum of Iλ by Lemma 3.1.
Therefore, since Iλ satisfies the Palais-Smale condition by Lemma 3.5, we can use
the minima u = 0 and u = ûλ of Iλ to apply the Mountain Pass Theorem and
conclude that there exists a second nontrivial critical point v̂λ with Iλ(v̂λ) > 0.
Again, v̂λ is a nonnegative solution of (1.3) in view of Lemma 3.4. In addition,
when Ω = BR, arguments similar to those in [8, Theorem 3.4] (see pp. 403-405)
show that we may assume v̂λ = v̂∗λ. The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. As is well-known, the superlinearity condition (F2) readily
implies the existence of an element eλ ∈ H1

0 (Ω) such that Iλ(eλ) ≤ 0. In fact, the
weaker condition lims→+∞ F (s)/s2 = +∞ suffices for that purpose. On the other
hand, Lemma 3.2 says that u = 0 is a (strict) local minimum of Iλ and Lemma
3.5 says that Iλ satisfies (PS)c for every c ∈ R. Therefore, an application of the
Mountain-Pass Theorem stated in section 2 yields the existence of a critical point
v̂λ such that

Iλ(v̂λ) > 0.

In particular, v̂λ 6= 0, and it follows that v̂λ is a nonnegative solution of (1.3) by
Lemma 3.4. As in the proof of Theorem 1.1, we may assume that v̂λ = v̂∗λ in the
case of a ball Ω = BR.

Finally, still in the case of a ball Ω = BR, we claim that there exists Λ1 > 0 such
that, for all 0 < λ < Λ1, v̂λ = v̂∗λ is a positive solution of (1.3) (hence of (1.1))
having negative normal derivative on ∂BR.

Indeed, if that is not the case then, for any given λ > 0, we can find 0 <

µ = µ(λ) < λ such that the nonnegative solution v̂µ = v̂∗µ of (P̂µ) obtained above
satisfies

v̂µ(r) > 0 for r ∈ [0, R0), v̂′µ(R0) = 0 and v̂µ(r) = 0 for r ∈ [R0, R],

for some 0 < R0 ≤ R. Therefore, the re-scaled function ŵµ(r) := v̂µ(R0r
R ) is

a positive solution of (Pµ0) (again in the ball BR), with µ0 := µR2
0/R2 ≤ µ.

This shows that we can always construct a decreasing sequence µn > 0 satisfying
alternative (ii) of Theorem 1.2, in case alternative (i) does not hold. �

4. Final Remarks

As we shall explain, the results in both Theorem 1.1 and Theorem 1.2 concerning
the semipositone problem (1.1) in a ball are optimal in a sense to be made clear in
what follows.

4.1. The Sublinear Case. In view of the paper [11] we know that, in case Ω
is a bounded domain with a convex outer boundary, problem (1.1) has a unique
nonnegative solution for all λ > 0 large provided that, in addition to (F0), one
assumes

(i) lims→∞ f(s) = ∞,
(ii) lims→∞ f(s)/s = 0,
(iii) f is increasing and concave.

Furthermore, it is shown in [11] that this unique nonnegative solution is in fact
positive in Ω. Therefore, under these hypotheses, we conclude that at least one of
the two solutions obtained in Theorem 1.1 has to have a large zero-set in the sense
that meas{x ∈ Ω | u(x) = 0} > 0 (since, as we mentioned in the Introduction,
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a nontrivial solution of (1.3) with meas{x ∈ Ω | u(x) = 0} = 0 is a nonnegative
solution of (1.1)).

Moreover, in the specific case of a ball Ω = BR, we know from Theorem 1.1
that both nonnegative solutions of (1.3) are radially symmetric and non-increasing,
with one of them, say ûλ, being in fact the unique positive solution of (1.1) for
λ > 0 large. Therefore, the second solution v̂λ must necessarily satisfy v̂λ(r) > 0
for 0 ≤ r < R0, v̂λ(r) = 0 for R0 ≤ r ≤ R, and v̂′λ(R0) = 0, for some 0 < R0 < R

(recall that, by Lemma 2.4, we have v̂λ ∈ C1,ε(Ω)). Therefore, the natural extension
of v̂λ to RN , by letting v̂λ = 0 outside BR, yields a bump (compactly supported)
solution of

−∆u = λg(u) in RN .

4.2. The Superlinear Case. In view of the paper [9], it is known that when Ω
is a ball BR, problem (1.1) has no nonnegative radially symmetric solution for all
λ > 0 sufficiently large provided that, in addition to (F0), one assumes

(i) lim infs→∞
f(s)
sα > 0 (for some α > 1),

(ii) f is increasing.
Therefore, for λ > 0 large, the nonnegative solution v̂λ obtained in Theorem 1.2

for the case of the ball BR must have a large zero-set. It follows, similarly to the
previous case, that the natural extension of v̂λ to RN yields again a bump solution
of

−∆u = λg(u) in RN .

Secondly, a result in [14] yields existence of a positive radially symmetric solution for
(1.1) when λ > 0 is small and, in addition to (F0), one assumes suitable technical
conditions on the superlinearity f . Moreover, such a solution is shown to have
negative normal derivative on ∂BR. We thus see that, for appropriate classes of
f ’s, alternative (i) of Theorem 1.2 must hold true. On the other hand, under
still further conditions on f , it is shown in [1] that the above positive solution
obtained in [14] is unique, thus precluding alternative (ii) of Theorem 1.2. It would
be interesting to find out whether alternative (ii) can indeed occur in some other
superlinear situations.
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