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A REMARK ON C2 INFINITY-HARMONIC FUNCTIONS

YIFENG YU

Abstract. In this paper, we prove that any nonconstant, C2 solution of the

infinity Laplacian equation uxiuxj uxixj = 0 can not have interior critical

points. This result was first proved by Aronsson [2] in two dimensions. When

the solution is C4, Evans [6] established a Harnack inequality for |Du|, which

implies that non-constant C4 solutions have no interior critical points for any
dimension. Our method is strongly motivated by the work in [6].

1. Introduction

In the 1960’s, Aronsson introduced the notion of the absolutely minimizing Lip-
schitz extension. Namely, u ∈ W 1,∞(Ω) is said to be an absolutely minimizing
Lipschitz extension in some bounded open subset Ω if for any open set V ⊂ Ω, we
have that

sup
x6=y∈∂V

|u(x)− u(y)|
|x− y|

= sup
x6=y∈V̄

|u(x)− u(y)|
|x− y|

.

The results in Crandall-Evans-Gariepy [5] imply that the above definition is in fact
equivalent to say that for any open set V ⊂ Ω and v ∈ W 1,∞(V ),

u|∂V = v|∂V ⇒ ||Du||L∞(V ) ≤ ||Dv||L∞(V ).

The second characterization is what Jensen used in his influential paper [9] where
he proved that u ∈ W 1,∞(Ω) is an absolutely minimizing Lipschitz extension with
given Lipschitz continuous boundary date g if and only if it is a viscosity solution
of the following infinity Laplacian equation.

uxi
uxj

uxixj
= 0 in Ω

u|∂Ω = g.

He also showed that the above infinity Laplacian equation has a unique viscosity so-
lution with given continuous boundary data. A direct consequence is that absolute
minimizing Lipschitz extension is unique with given boundary data. We also name
a viscosity solution of the infinity Laplacian equation as an infinity harmonic func-
tion. Recently, people have tremendous interest in this degenerate elliptic equation.
The interested readers can find most of relevant works in the note Crandall [4].

2000 Mathematics Subject Classification. 35B38.
Key words and phrases. Infinity Laplacian equation; infinity harmonic function;

viscosity solutions.
c©2006 Texas State University - San Marcos.

Submitted June 15, 2006. Published October 6, 2006.

1



2 Y. YU EJDE-2006/122

The focus of this work is on classical solutions (i.e, C2) of the infinity Laplacian
equation. As observed by Aronsson [2], smooth solutions of the infinity Laplacian
equation have some special properties which are in general not possessed by viscosity
solutions. In our paper, we study one of them, i.e, the non-vanishing gradient. From
now on, we assume that Ω is a connected bounded open set. By carefully studying
the gradient flows of C2 solutions (note that |Du| is constant along the gradient flow
of a C2 solution u), Aronsson proved in [2] that |Du| will nowhere be zero unless u
is constant when n = 2. Recently Jensen mentioned a simple proof of Aronsson’s
result in a seminar talk. Using some elementary maximum principle argument,
Evans [6] extended Aronsson’s result to n ≥ 3 for C4 infinity harmonic functions.
In fact, Evans established a harnack inequality for |Du|. We found that part of
Evans’s argument can be interpreted in viscosity sense. From that, we are able
to establish a weak Hopf-type lemma for |Du| instead of the Harnack inequality,
which is sufficient to prove the following new result.

Theorem 1.1. Let Ω be a connected open subset of Rn. Assume that u is a C2

solution of
∆∞u = 0 in Ω.

If Du(z) = 0 for some z ∈ Ω, then u ≡ u(z).

Remark 1.2. In general, infinity harmonic functions might not be C2. For exam-
ple, u(x, y) = x

4
3 − y

4
3 is a C1, 1

3 infinity harmonic function in R2. See Aronsson
[3]. It is clear that Theorem 1.1 does not hold for this non-classical solution since
(0, 0) is its critical point. A main open problem of the infinity laplacian equation
is whether any viscosity solution is C1. Savin [8] proved the C1 regularity when
n = 2. We just learned that in a forthcoming paper, Evans and Savin [7] proved the
C1,α regularity when n = 2. For higher dimensions, the regularity issue remains a
very challenging problem.

2. Proof of the main theorem

In this section, we prove Theorem 1.1. Following the notations in Evans [6], we
denote v(x) = |Du(x)|. If v(x) 6= 0, set

νi =
uxi

|Du|
=

uxi

v
(1 ≤ i ≤ n),

and also write
hij = νiνj .

Then we have the following lemma.

Lemma 2.1. If v 6= 0 in Ω, then v is a viscosity solution of

hijvxixj
= −|Dv|2

v
in Ω. (2.1)

Proof. First we want to remark that (2.1) was derived in [6] for u ∈ C3. Since
u ∈ C2, we have that

νivxi = 0 in Ω.

Hence
(hijvxi

)xj
= 0.

Assume that for x0 ∈ Ω and φ ∈ C2(Ω),

φ(x)− v(x) > φ(x0)− v(x0) = 0,
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for x ∈ Ω\{x0}. Then a standard argument shows that

(hijφxi
)xj

(x0) ≥ 0.

Therefore, following the calculations in [6],

hijφxixj
(x0) ≥ −νi

xj
νjφxi

(x0)− νj
xj

νiφxi
(x0)

= −νi
xj

νjvxi
(x0)− νj

xj
νivxi

(x0)

= −νi
xj

νjvxi
(x0)

= −(
uxixj

v
−

uxivxj

v2
)νjvxi

(x0)

= −
νjvxi

uxixj

v
(x0) = −|Dv(x0)|2

v(x0)
.

Hence v is a viscosity subsolution of (2.1). Similarly, we can show that v is a
viscosity supersolution of (2.1). �

Next we prove a weak Hopf type Lemma.

Lemma 2.2. Suppose that v 6= 0 in Ω and B̄r(x0) ⊂ Ω for some r > 0. Assume
that minB̄ r

2
(x0) v ≥ δ. Then there exists ε0 > 0 which only depends on r and δ such

that if 0 < ε = min∂Br(x0) v < ε0, then

ε = min
∂Br(x0)

v > min
Ω̄

v.

Proof. Choose xε ∈ ∂Br(x0) such that

v(xε) = ε = min
∂Br(x0)

v.

Let
wε = log v − log ε.

Since νivxi
= 0, owing to Lemma 2.1, we discover that wε is a viscosity solution of

hijwε,xixj
= −|Dwε|2.

For k > 0, denote
fk(x) = k(r2 − |x− x0|2).

A simple calculation shows that if we choose k = 4/r2,

hijfk,xixj > −|Dfk|2 in {r

2
≤ |x− x0| ≤ r}.

Since minB r
2
(x0) logv ≥ logδ, there exists a ε0 depending only on r and δ such that

if ε < ε0, we have that
wε ≥ f4/r2 on ∂B r

2
(x0).

Also,
wε ≥ 0 = f4/r2 on ∂Br(x0).

Since f4/r2 is smooth, by comparison, we derive that

wε ≥ f4/r2 in {r

2
≤ |x− x0| ≤ r}.

In particular,
∂wε

∂n
(xε) ≥

∂f4/r2

∂n
(xε) =

8
r

> 0,

where n is the inward normal vector of ∂Br(x0) at xε. Hence Lemma 2.2 holds. �



4 Y. YU EJDE-2006/122

Proof of Theorem 1.1. We argue by contradiction. If u is not constant, then there
exists x0 ∈ Ω and r > 0 such that v > 0 in Br(x0) and

∂Br(x0) ∩ {x ∈ Ω| v(x) = 0} 6= Φ.

For ε > 0, denote

uε(x, xn+1) = u(x) + εxn+1, Br(x0, 0) = {(x, xn+1) ∈ Rn × R| |x− x0|2 + x2
n+1 ≤ r2}.

Then we have that for any ε > 0,

min
∂Br(x0,0)

|Duε| = ε = min
Ω×R

|Duε|,

min
B̄ r

2
(x0,0)

|Duε| > min
B r

2
(x0)

|Du| > 0.

Since uε is a C2 infinity harmonic function in Ω×R and |Duε| > 0, applying Lemma
2.2 to uε, we get contradiction for small ε. �

Remark 2.3. Evans [6] showed that if u ∈ C4, then z = |D|Du||
|Du| is a subsolution

of the following equation

−hijzxixj
≤ −z2 + wxi

zxi
, (2.2)

where w = log |Du|. Owing to the quadratic term z2, he is able to derive that z
is locally bounded, which implies that |Du| satisfies a Harnack inequality. Evans’s
proof also implies that the only entirely C4 solutions (i,e, u ∈ C4(Rn)) in Rn are
linear functions. Aronsson [2] proved this Liouville type theorem for C2 solutions
when n = 2. It is not clear to us whether z is a viscosity subsolution of (2.2) if we
only assume that u ∈ C2. If it is true, we can show that the only entirely classical
solutions (i.e, u ∈ C2(Rn)) in Rn are linear functions.
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