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PERIODIC SOLUTIONS FOR FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH PERIODIC DELAY CLOSE TO ZERO

MY LHASSAN HBID, REDOUANE QESMI

Abstract. This paper studies the existence of periodic solutions to the delay

differential equation

ẋ(t) = f(x(t− µτ(t)), ε) .

The analysis is based on a perturbation method previously used for retarded
differential equations with constant delay. By transforming the studied equa-

tion into a perturbed non-autonomous ordinary equation and using a bifur-

cation result and the Poincaré procedure for this last equation, we prove the
existence of a branch of periodic solutions, for the periodic delay equation,

bifurcating from µ = 0.

1. Introduction

Let us consider the periodic delay differential equations of the form

u̇(t) = f(u(t− µτ(t)), ε), (1.1)

under the following assumptions:

(H1) f ∈ C∞(R2 × R, R2), f(0, ε) = 0, and f ′u(0, ε) =
(

0 −β1(ε)
β1(ε) 0

)
where

β1(ε) > 0 and satisfies β1(1) = 1 and β′1(1) 6= 0. Moreover, f and its first
and second derivatives are bounded so that there is a number A > 0, such
that max(‖f‖∞, ‖f ′u‖∞, ‖f ′′u‖∞) < A.

(H2) τ ∈ C1(R, R+) is 2π-periodic in t and
∫ 2π

0
τ(s)ds 6= 0.

(H3) The system
u̇(t) = f(u(t), ε)

is 3-asymptotically stable for |ε− 1| sufficiently small.
Also we assume that µ > 0 and ε are parameters having values in a neighborhood
of 0 and 1, respectively.

When the function τ is independent of t (i.e: τ(t) = τ > 0), system (1.1) is an
autonomous equation which is extensively studied in [1, 5, 6, 8, 9, 11]. The aim of
this paper is to prove the existence of a branch of a bifurcated periodic solutions
for the differential equation (1.1) with periodic delay in the case where µ is small
enough.
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The problem studied here is local in nature. The work is in line with a previous
work by Arino and Hbid [1] in which the delay was assumed to be constant and
small. Smallness of the delay was an essential feature which made possible the
study of the equation as a perturbation of an ordinary differential equation (ODE).
It was also possible to go a little further than the Hopf bifurcation and extend to this
situation results obtained previously by Bernfeld and Salvadori [2] on generalized
Hopf bifurcation for ODEs. The authors have used a perturbation method to
transform the functional differential equation into an ODE. A Poincaré map was
constructed in a neighborhood of the bifurcating periodic solutions of the ordinary
differential system. The fixed points of this map correspond to periodic solutions
of the functional differential equations.

In this paper we proceed in the same general spirit as in [1]. Though our ap-
proach could be viewed as a simple adaptation of the one described in [1], some
specific features related to the dependence of the delay on the time t are to be
mentioned: the main one is that the perturbed method applied here transforms
the time dependent delay equation into a non-autonomous ordinary equation. Un-
der an additional hypothesis on h-asymptotic stability (see for instance [3]) the
non-autonomous ODE has an attractive bifurcating branch of periodic solutions.
A closed bounded convex subset of the space of Lipschitz continuous functions is
constructed in the neighborhood of this branch. Finally, we set up a Poincaré
map which transforms the convex set into itself. The Poincaré map being eventu-
ally compact in the space of Lipschitz continuous functions, has fixed points which
yield periodic solutions of the retarded differential equation with periodic delay
(1.1).

2. Background

In this section we recall some aspects of bifurcation given in [3] for the periodic
ordinary system

ż = g(t, z, µ, ε) (2.1)

where g ∈ C∞(R × R2 × R × R, R), g(t, 0, µ, ε) = 0 and 2π-periodic in t. µ and ε
are parameters and have values respectively in a neighborhood of 0 and 1. Because
of Floquet theory the Jacobian matrix f ′z(t, 0, µ, ε) may be assumed without loss of
generality to be independent of t and its eigenvalues will be denoted by α(µ, ε) ±
iβ(µ, ε). We will assume that

α(0, ε) = 0, β(0, 1) = 1

α′µ(0, 1) 6= 0 β′ε(0, 1) 6= 0.

By a linear transformation of z independent of t, and involving µ, ε, Equation (2.1)
may be written as

ẋ = α(µ, ε)x− β(µ, ε)y + X(t, x, y, µ, ε)

ẏ = α(µ, ε)y + β(µ, ε)x + Y (t, x, y, µ, ε),
(2.2)

where X, Y ∈ C∞ in (x, y, µ, ε) and 2π-periodic in t, and X, Y are O(x2 + y2).
We remark that there exist a neighborhood N of (x, y) := (0, 0) and three pos-

itive numbers a, b, ω such that for any t0 ∈ R, (x0, y0) ∈ N , µ < b, |ε − 1| <
a the solution (x(t), y(t)) of (2.2) through (t0, x0, y0, µ, ε) exists in the interval
[t0, t0 + 2π] and for the corresponding angle θ(t) we have |θ̇(t)| > τ . We denote
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by (x(t, t0, c, µ, ε), y(t, t0, c, µ, ε)) the solution of (2.2) such that x0 = c > 0, y0 =
0, (c, 0) ∈ N .

Lemma 2.1 ([3]). There exist three positive numbers a, b, c, (c, 0) ∈ N, and a func-
tion ε ∈ C∞(R × [0, c] × [−b, b], [1 − a, 1 + a]), ε(t0, 0, 0) = 1, such that for any
t0 ∈ R, c ∈ [0, c], µ ∈ [0, b], and |ε − 1| < a the equation y(t0 + 2π, t0, c, µ, ε) = 0 is
satisfied if and only if ε = ε(t0, c, µ).

Consider now the function V ∈ C∞(R× [0, c]× [−b, b], R) defined by

V (t0, c, µ) = x(t0 + 2π, t0, c, µ, ε(t0, c, µ))− c. (2.3)

Clearly the 2π-periodic solutions of (2.2) relative to any triplet (c, µ, ε) for which
c ∈ [0, c], |µ| ∈ [0, b], and |ε − 1| ∈ [0, a] correspond to the zeros of V (t0, c, µ). We
will call V the displacement function. The following theorem holds.

Theorem 2.2 ([3]). Suppose that a, b, c are sufficiently small. Assume that there
exist two functions µ∗ ∈ C∞(R × [0, c], [−b, b]), ε∗ ∈ C∞(R × [0, c], [1 − a, 1 + a])
such that if t0 ∈ R, c ∈ [0, c], |µ∗| ∈ [0, b], |ε − 1| ∈ [0, a]. Then the solution
(x(t, t0, c, µ, ε), y(t, t0, c, µ, ε)) of (2.2) is 2π-periodic if and only if µ = µ∗(t0, c), ε =
ε∗(t0, c). Moreover ε∗(t0, c) = ε(t0, c, µ∗(t0, c)).

We will assume also that the functions X and Y are independent of t when
µ = 0. Then system (2.2) may be written as

ẋ = α(µ, ε)x− β(µ, ε)y + X̃(x, y, ε) + µX∗(t, x, y, µ, ε)

ẏ = α(µ, ε)y + β(µ, ε)x + Ỹ (x, y, ε) + µY ∗(t, x, y, µ, ε).
(2.4)

which for µ = 0 has the form

ẋ = −β(0, ε)y + X̃(x, y, ε)

ẏ = β(0, ε)x + Ỹ (x, y, ε).
(2.5)

Definition 2.3 ([3]). Let h ∈ N. The solution ξ = 0 of system (2.5) is said to be
h-asymptotically stable (resp. h-completely unstable) if the following conditions
are satisfied:

(1) For all τ1, τ2 ∈ C(R2, R) of order h, the solution 0 of system

ẋ = −β(0, ε)y + X̃(x, y, ε) + τ1(x, y)

ẏ = β(0, ε)x + Ỹ (x, y, ε) + τ2(x, y).

is asymptotically stable (resp.unstable).
(2) h is the smallest integer such that the property (1) above is satisfied.

We have the following equivalence between h-asymptotic stability and the exis-
tence of an appropriate polynomial in (x, y). This polynomial may be determined
by an algebraic procedure due to Poincaré.

Proposition 2.4 ([3]). The origin of (2.5) is h-asymptotically stable if and only
if h is odd and there exists a polynomial in (x, y), F (x, y, ε), of degree h + 1 having
the form

F (x, y, ε) = x2 + y2 + f3(x, y, ε) + · · ·+ fh+1(x, y, ε)
(fi is homogeneous of degree i in (x, y)) such that the derivative along the solutions
of (2.5) is given by

Ḟ (x, y, ε) = Gh+1(ε)(x2 + y2)(h+1)/2 + o((x2 + y2)(h+1)/2).
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Here Gh+1(ε) < 0 is a constant.

The explicit constant Gh+1(ε), called Lyapunov constant, can be obtained for
each odd integer h by the following proposition

Proposition 2.5 ([11]). Given an even integer k > 2, the Poincaré constant Gk(ε)
is given in a unique way by

Gk(ε) =
pk + pk−2/(k − 1)β(0, ε) +

∑k/2−1
s=1 csds

k
2(k−1)β(0,ε) +

∑k/2−1
s=1 cs

C
k/2
s+1

(k−2s+1)β(0,ε) + 1
,

where cs = 3×5×7···×(2s+1)
(k−1)×(k−3)···×(k−2s+1) , ds = pk−2s−2

(k−2s−1) for all s ∈ {1, . . . , k
2 − 1}. and

the terms pj , j = 0..k are given by

ρk(ξ1, ξ2) =
k∑

j=0

pjξ
k−j
1 ξj

2

with ρj(ξ1, ξ2) is the homogeneous part of degree j of the function ρ(ξ1, ξ2) given by

ρ(ξ1, ξ2) = X̃(ξ1, ξ2, ε)
∂

∂ξ1
(
j−1∑
l=3

fl(ξ1, ξ2, ε)) + Ỹ (ξ1, ξ2, ε)
∂

∂ξ2
(
j−1∑
l=3

fl(ξ1, ξ2, ε)).

We have the following results.

Theorem 2.6 ([3]). Suppose there exists an odd integer h ≥ 3 such that the origin
of (2.5) is h-asymptotically stable for every ε ∈ [1− a, 1 + a]. Then if α′(0, 1) < 0
(resp α′(0, 1) > 0) the bifurcating 2π-periodic solutions of (2.4) occur for µ > 0
(resp µ < 0). Moreover the positive numbers a, b, c of Theorem 2.2 can be chosen
such that for any t0 ∈ R and µ ∈ [0, b] (resp µ ∈ [−b, 0]) there exists one and only
one c ∈ [0, c] such that µ = µ∗(t0, c).

3. Main result

In the sequel, we transform equation (1.1) into a periodic ODE perturbed by a
small time dependent-delay term.

We define τ∞ := sup{|τ(t)| : t ∈ [0, 2π]} and C the space of continuous functions
from [−µτ∞, 0] to R2, then we have the following result

Proposition 3.1. Under hypothesis (H2), the periodic delay system (1.1) can be
written in the form

u̇(t) = g(t, u(t), µ, ε) + H(t, ut, µ, ε),

where
g(t, u, µ, ε) :=

[
I + µτ(t)f ′u(u, ε)

]−1
f(u, ε)

and H a function defined on R× C1 × R× R and satisfies

H(t, ut, µ, ε)

=
[
I + µτ(t)f ′u(u(t), ε)

]−1
∫ 0

−µτ(t)

[f ′u(u(t), ε)u̇(t)− f ′u(u̇(t + σ), ε)u̇(t + σ)]dσ

for all solutions u of system (1.1).
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Proof. Let u be a solution of equation (1.1). We have

f(u(t− µτ(t)), ε) = f(u(t), ε)−
∫ 0

−µτ(t)

f ′u(u(t + σ), ε)u̇(t + σ)dσ

Then

f(u(t− µτ(t)), ε) = f(u(t), ε)− µτ(t)f ′u(u(t), ε)u̇(t)

+
∫ 0

−µτ(t)

[f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)]dσ.

Since u is a solution of equation (1.1), we obtain(
I + µτ(t)f ′u(u(t), ε)

)
f(u(t− µτ(t), ε)

= f(u(t), ε) +
∫ 0

−µτ(t)

[f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)]dσ.

For µ small enough, the matrix
(
I +µτ(t)f ′u(u(t), ε)

)
is invertible and we can write

f(u(t− µτ(t), ε) = g(t, u(t), µ, ε) + H(t, ut, µ, ε)

with g and H as defined above. �

In the sequel, the equation under study is

u̇(t) = g(t, u(t), µ, ε) + H(t, ut, µ, ε). (3.1)

In what follows we look for periodic solutions of the following 2-dimensional system

ẇ(t) = g(t, w(t), µ, ε). (3.2)

Theorem 3.2. Suppose (H1)–(H3) hold. Then there exists a sufficiently small
positive numbers a, b, c, and there exist two functions µ∗ in C∞(R × [0, c], [0, b]),
and ε∗ in C∞(R× [0, c], [1− a, 1 + a]) such that if t0 ∈ R, µ ∈ [0, b], |ε− 1| ∈ [0, a],
then there exists one and only one c ∈ [0, c], such that the solution

(w1(t, t0, c, µ, ε), w2(t, t0, c, µ, ε))

of (3.2) is 2π-periodic if and only if µ = µ∗(t0, c), ε = ε∗(t0, c). Moreover the family
of the bifurcating solutions are of amplitude of order

√
µ.

Proof. We first show the conditions imposed in [3]: We have g(t, u(t), 0, ε) :=
f(u(t), ε), and the eigenvalues of the Jacobian matrix g′w(t, 0, µ, ε) have the form
α(µ, ε) ± iβ(µ, ε), where α(0, ε) = 0 and β(0, ε) = β1(ε), then from hypothesis
(H1) we have α(0, ε) = 0, β(0, 1) = 1 and β′ε(0, 1) 6= 0, it remains to prove that
α′µ(0, 1) 6= 0, however, λ(µ) := α(µ, 1) + iβ(µ, 1) is the characteristic exponent of
the Jacobian matrix g′w(t, 0, µ, 1) = [I + µτ(t)f ′u(0, 1)]−1f ′u(0, 1), and with a few
computations, we obtain that

∂

∂µ
g′w(t, 0, µ, 1) = −τ(t)[[I + µτ(t)f ′u(0, 1)]−1f ′u(0, 1)]2,

then [ ∂

∂µ
g′w(t, 0, µ, 1)

]
µ=0

= −τ(t)β2
1(1)I,

and because of the regularity of λ(.), we deduce that λ′µ(0) is the characteristic

exponent of the matrix −τ(t)β2
1(1)I, that’s α′µ(0, 1) = β2

1(1)
2π

∫ 2π

0
τ(s)ds, and by
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hypothesis (H2) we have that α′µ(0, 1) > 0. Then the first part of theorem is a
consequence of Theorems 2.2 and 2.6. If the hypothesis (H3) is satisfied then the
origin of (3.2) is 3−asymptotically stable, consequently for any t0 ∈ R we have (see
the proof of Theorem 2.6 in [3]):

∂V

∂c
(t0, 0, 0) =

∂2V

∂c2
(t0, 0, 0) = 0 and

∂3V

∂c3
(t0, 0, 0) < 0,

Moreover, we have

∂2µ∗

∂c2
(t0, 0) = − 1

6πα′µ(0, 1)
∂3V

∂c3
(t0, 0, 0) > 0,

so by developing the function c 7→ µ∗(t0, c) in a neighborhood of zero, we obtain

µ∗(t0, c) =
1
2

∂2µ∗

∂c2
(t0, 0)c2 + o(c2).

Then µ∗(t0, c) is of order c2, however, the first part of the theorem tells us that the
map c 7→ µ∗(t0, c) is injective, consequently the inverse function c(t0, µ) of µ∗(t0, .)
is of order

√
µ. This shows the second part of the theorem. �

Remark 3.3. According to the above theorem, for a given µ and t0 there is one
and only one periodic solution of (3.2). Precisely, this periodic solution is obtained
by assuming ε = ε1(t0, µ), where ε1(t0, µ) = ε∗(t0, c(t0, µ)), in (3.2).

In the sequel, we let t0 = 0 and we assume that ε = ε1(0, µ) for any µ in
equation (1.1). Denote by y(µ) := (y1(µ), 0) the initial data of the bifurcating
periodic solutions of (3.2). From theorem 3.2 we see that there exists a constant
C > 0 such that ‖y(µ)‖ ≤ Cµ1/2. Let u(φ) be the solution of (1.1) with initial data
u0 = φ. From lemma 2.1 and remark 3.3 one can find a solution w∗of (3.2) such
that w∗(0) = φ(0), w∗2(2π) = 0 and w∗1(2π) > 0.

To state the nest proposition, we introduce the subset

B(µ) := {φ ∈ C1 : ‖φ(s)− y(µ)‖ ≤ Cµ3/2}.

Proposition 3.4. Under the hypothesis (H1)–(H3), there exists a constant C1 > 0,
such that for a given T > 0 and µ close to zero, we have

‖u(φ)(t)‖ ≤ C1µ
1/2

for all φ ∈ B(µ) and t ∈ [0, T ].

Proof. let τ0 := inf{τ(t) : t ∈ [0, 2π]}, t ∈ [0, µτ0], then t− µτ(t) ≤ 0, and

u(φ)(t) = φ(0) +
∫ t

0

f(φ(s− µτ(s)))ds

it follows that

‖u(φ)(t)‖ ≤ ‖φ‖∞ + µτ0A‖φ‖∞ ≤ C(1 + µτ0A)µ1/2.

In a similar manner, we show by iteration that for t ∈ [0, kµτ0], we have

‖u(φ)(t)‖ ≤ C(1 + µτ0A)kµ1/2.

Let k the unique natural integer such that kµτ0 ≤ T < (k+1)µτ0, then for t ∈ [0, T ]
we have

‖u(φ)(t)‖ ≤ C(1 + µτ0A)kµ1/2 ≤ Ceµτ0A(k+1)µ1/2 ≤ Ce(µτ0A+AT )µ1/2.
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Finally, for µ close to zero, one obtain a constant C1 independent of µ such that

‖u(φ)(t)‖ ≤ C1µ
1/2.

�

Proposition 3.5. Under the hypothesis (H1)–(H3), there exist positive constant
C2 such that for µ close to zero and φ ∈ B(µ), we have

‖H(t, ut, µ, ε)‖ ≤ C2µ
5/2 for t ∈ [3µτ∞, T ].

Moreover
‖H(t, ut, µ, ε)‖ ≤ C2µ

3/2 for t ∈ [0, 3µτ∞].

Proof. Note that from theorem 3.1, for t ∈ [3µτ∞, T ], we have

H(t, ut, µ, ε)

= [I + µτ(t)f ′u(u(t), ε)]−1

∫ 0

−µτ(t)

[f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)]dσ.

Using the inequality

‖f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)‖
≤ ‖f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t)‖

+ ‖f ′u(u(t + σ), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)‖,
we obtain

‖f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)‖
≤ A‖u(t + σ)− u(t)‖‖u̇(t)‖+ A‖u̇(t + σ)− u̇(t)‖.

On the other hand, for t ∈ [3µτ∞, T ] and σ ∈ [−µτ∞, 0], we have

‖u(t + σ)− u(t)‖ ≤ −σ sup
s∈[t,t+σ]

‖u̇(s)‖

= −σ sup
s∈[t,t+σ]

‖f(u(s− µτ(s))‖

≤ −σA sup
s∈[t,t+σ]

‖u(s)‖

≤ −σACµ1/2 := −σA1µ
1/2,

and

‖u̇(t + σ)− u̇(t)‖ ≤ −σ sup
s∈[t,t+σ]

‖ü(s)‖

= −σ sup
s∈[t,t+σ]

‖f ′u(u(s− µτ(s)), ε)u̇(s− µτ(s))(1− µτ̇(s))‖

≤ −σA2Cµ1/2(1 + µ sup
s∈[0,2π]

‖τ̇(s)‖ ≤ −σA2µ
1/2,

for some constant A2 > 0. This implies

‖f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)‖ ≤ −σAA2
1µ− σAA2µ

1/2,

it follows that there exists a constant C∗
2 > 0 such that for µ close to zero we have

‖
∫ 0

−µτ(t)

[f ′u(u(t), ε)u̇(t)− f ′u(u(t + σ), ε)u̇(t + σ)]dσ‖ ≤ C∗
2

2
µ5/2.
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On the other hand, for µ close to zero such that µAτ∞ < 1
2 we obtain

‖[I + µτ(t)f ′u(u(t), ε)]−1‖ ≤ 2.

Which prove the first inequality of the proposition.
Now let t be in the interval [0, 3µτ∞] and u(t) = u(φ)(t) for some φ ∈ B(µ). We

have

g(t, u(t), µ, ε) = [I + µτ(t)f ′u(u(t), ε)]−1f(u(t), ε) = f(u(t), ε) + µO(u(t)).

Using proposition 3.4 we obtain

g(t, u(t), µ, ε) = f(u(t), ε) + O(µ3/2).

Then
H(t, ut, µ, ε) = f(u(t− µτ(t)), ε)− f(u(t), ε) + O(µ3/2)

and
‖H(t, ut, µ, ε)‖ ≤ ‖f(u(t− µτ(t)), ε)− f(u(t), ε)‖+ O(µ3/2).

Since f is a smooth function, we deduce that

‖H(t, ut, µ, ε)‖ ≤ A‖u(t− µτ(t))− u(t)‖+ O(µ3/2)

≤ A

∫ t

t−µτ∞

‖u̇(s)‖ds + O(µ3/2)

≤ A

∫ t

t−µτ∞

‖f((u(s− µτ(s)), ε)‖ds + O(µ3/2)

≤ A2

∫ t

t−µτ∞

‖u(s− µτ(s))‖ds + O(µ3/2)

Using once more proposition 3.4 we deduce that there exist C∗∗
2 > 0 such that

‖H(t, ut, µ, ε)‖ ≤ C∗∗
2 µ3/2

which completes the proof with C2 := min(C∗
2 , C∗∗

2 ). �

As a result of proposition 3.1 and the above theorem, the equation (1.1) can be
written as a perturbation of an ordinary differential equation by a small term.

We are now in position to give an estimation of the difference between u(φ) and
w∗.

Lemma 3.6. There exist a positive constant C3 such that for all φ ∈ B(µ) and
t ∈ [0, 2π] we have

‖u(φ)(t)− w∗(t)‖ ≤ C3µ
5/2.

Proof. Let φ ∈ B(µ), we have

d

dt
[u̇(φ)(t)− ẇ∗(t)] = g(t, u(φ)(t), µ, ε) + H(t, ut(φ), µ, ε)− g(t, w∗(t), µ, ε),

then from hypothesis (H1) and (H2) and using the inner product in R2, we obtain

1
2

d

dt
‖u(φ)(t)− w∗(t)‖2

≤ 2A2‖u(φ)(t)− w∗(t)‖2 + ‖u(φ)(t)− w∗(t)‖‖H(t, ut(φ), µ, ε)‖,
form which it follows that

D+‖u(φ)(t)− w∗(t)‖ ≤ 2A2‖u(φ)(t)− w∗(t)‖+ ‖H(t, ut(φ), µ, ε)‖,
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where D+ denotes the derivative from the right. Using the Gronwall’s inequality
and in view of u(φ)(0) = φ(0) = w∗(0), we obtain

‖u(φ)(t)− w∗(t)‖ ≤
∫ t

0

e2A2(t−s)‖H(s, us(φ), µ, ε)‖,

then

‖u(φ)(t)− w∗(t)‖

≤
∫ 3µτ∞

0

e2A2(t−s)‖H(s, us(φ), µ, ε)‖+
∫ t

3µτ∞

e2A2(t−s)‖H(s, us(φ), µ, ε)‖.

From proposition 3.5, we have∫ 3µτ∞

0

e2A2(t−s)‖H(s, us(φ), µ, ε)‖ ≤
∫ 3µτ∞

0

e2A2(t−s)O(µ3/2) ≤ C3

2
µ5/2

and ∫ t

3µτ∞

e2A2(t−s)‖H(s, us(φ), µ, ε)‖ ≤
∫ t

3µτ∞

e2A2(t−s)O(µ5/2) ≤ C3

2
µ5/2

for some constant C3 > 0. Thus

‖u(φ)(t)− w∗(t)‖ ≤ C3µ
5/2

�

Lemma 3.7. For any t ∈ [2π − µτ∞, 2π] and any φ ∈ B(µ), we have

‖u(φ)(t)− u(φ)(2π)‖ ≤ C4µ
3/2

where C4 is a positive constant independent of µ.

Proof. Let t ∈ [2π − µτ∞, 2π], µ close to zero such that µ < 2π
τ∞

and φ ∈ B(µ), we
have

‖u(φ)(t)− u(φ)(2π)‖ ≤ µτ∞ sup
s∈[2π−µτ∞,2π]

‖ d

ds
u(φ)(s)‖

≤ µτ∞ sup
s∈[2π−µτ∞,2π]

‖f(u(s− µτ(s))‖

≤ µτ∞A sup
σ∈[0,2π]

‖u(σ)‖ ≤ µτ∞AC1µ
1/2 := C4µ

3/2.

Which completes the proof. �

Proposition 3.8. Assume (H1)–(H3) are satisfies, then there exists K1 > 0 such
that for µ close to zero and φ ∈ B(µ), we have

‖w∗(2π)− y(µ)‖ ≤ C[1−K1|y(µ)|2]µ3/2.

Proof. Put c′ := w∗1(0) and c := y1(µ), we have

‖w∗(2π)− y(µ)‖ = |V (0, c′, µ(c))) + c′ − c|.
On the other hand we have

V (0, c′, µ(c)) = V (0, c, µ(c)) +
∂

∂c
V (0, η, µ(c)(c′ − c)

for some η ∈]min(c, c′),max(c, c′)[ and

∂

∂c
V (0, η, µ(c)) =

∂

∂c
V (0, η, 0) +

∂2V (0, η, v0µ(c))
∂µ∂c

µ(c)
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for some v0 ∈]0, 1[. However, we have V (0, c, µ(c)) = 0 since c := y(µ) the initial
data of the bifurcating periodic solutions of (3.2), then

V (0, c′, µ(c)) = [
∂

∂c
V (0, η, 0) +

∂2V (0, η, v0µ(c))
∂µ∂c

µ(c)](c′ − c).

According to the 3-asymptotic stability, we have

∂V

∂c
(0, 0, 0) =

∂2V

∂c2
(0, 0, 0) = 0 and

∂3V

∂c3
(0, 0, 0) < 0.

Moreover, we have

µ∗(0, 0) = 0,
∂µ∗

∂c
(0, 0) = 0 and

∂2µ∗

∂c2
(0, 0) = −1

3
∂3V

∂c3
(0, 0, 0)/

∂2

∂µ∂c
V (0, 0, 0),

then
∂V

∂c
(0, η, 0) =

1
2!

∂3V

∂c3
(0, 0, 0)η2 + o(η2)

and
∂2V (0, η, v0µ(c))

∂µ∂c
µ(c) =

1
2!

∂2V (0, 0, 0)
∂µ∂c

∂2µ∗

∂c2
(0, 0)c2 + o(c2)

= −1
6

∂3V

∂c3
(0, 0, 0)c2 + o(c2),

it follows that
∂

∂c
V (0, η, 0) +

∂2V (0, η, v0µ(c))
∂µ∂c

µ(c)

=
1
2!

∂3V

∂c3
(0, 0, 0)η2 − 1

6
∂3V

∂c3
(0, 0, 0)c2 + o(η2) + o(c2).

However, we have |c− η| ≤ |c− c′| and

|c− c′| = ‖w∗(0)− y(µ)‖ = ‖φ(0)− y(µ)‖ ≤ Cµ(c)3/2,

then

lim
c−→0

1
c2

[
∂

∂c
V (0, η, 0) +

∂2V (0, η, v0µ(c))
∂µ∂c

µ(c)] =
1
3

∂3V

∂c3
(0, 0, 0) < 0.

Consequently, there exists a constant K1 > 0 such that for µ close to zero we have
1

c′ − c
V (0, c′, µ(c)) ≤ −K1c

2,

hence

|V (0, c′, µ(c)) + c′ − c| = |c′ − c||1 +
1

c′ − c
V (0, c′, µ(c))|

≤ |c′ − c|(1−K1c
2)

≤ Cµ3/2(1−K1c
2),

which implies
‖w∗(2π)− y(µ)‖ ≤ C[1−K1|y(µ)|2]µ3/2.

The proof is complete. �

Proposition 3.9. For each φ ∈ B(µ), we have u2π(φ) ∈ B(µ).
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Proof. From Lemma 3.6, 3.7 and Proposition 3.8, we have

‖u(φ)(t)− y(µ)‖
≤ ‖u(φ)(t)− u(φ)(2π)‖+ ‖u(φ)(2π)− w∗(2π)‖+ ‖w∗(2π)− y(µ)‖

≤ C4µ
3/2 + C3µ

5/2 + C[1−K1|y(µ)|2]µ3/2.

Then

‖u(φ)(t)− y(µ)‖ ≤ [C4 + C3µ + (1−K1|y(µ)|2)C]µ3/2,

from which we conclude that u2π(φ) ∈ B(µ) for µ close to zero. �

Theorem 3.10. Under hypotheses (H1)–(H3), equation (1.1) has at least one non-
trivial periodic solution for µ close to zero.

Proof. Define the Poincaré operator

P : B(µ) → C([−µτ∞, 0], R2)

such that for φ ∈ B(µ), Pφ := u2π(φ). Proposition 3.9 shows that P is defined
from B(µ), (which is a convex bounded set) into itself and that P as continuous
and compact (see [7]). So using the second Schauder fixed point theorem (see, for
example [4]) we conclude that P has at least one fixed point which corresponds to
a periodic solution of the retarded equation (1.1). Sine B(µ) does not contain zero,
the obtained periodic solutions are nontrivial. �

4. Examples

Consider the system of equations

d

dt
x1(t) = εx2(t− µτ(t)) + a1x

2
1(t− µτ(t)) + b1x

2
2(t− µτ(t))

+ O(x3
1(t− µτ(t)), x3

2(t− µτ(t)))
d

dt
x2(t) = −εx1(t− µτ(t)) + a2x

2
1(t− µτ(t)) + b2x

2
2(t− µτ(t))

+ O(x3
1(t− µτ(t)), x3

2(t− µτ(t)))

(4.1)

where a1, a2, b1, b2, µ, ε are real parameters. Here µ > 0, ε has values respectively in
a neighborhood of 0 and 1. τ ∈ C1(R, R+) is 2π-periodic in t and

∫ 2π

0
τ(s)ds 6= 0.

Thus, applying the formulas given in [11] for the computation of the Lyapunov
constant we obtain the expression of G4(ε) (see proposition 2.5)

G4(ε) = −1
2

4b1b2 + 7a1b2 + a2a1

ε
.

which implies that system (4.1) with µ = 0 is 3-asymptotically stable if (4b1b2 +
7a1b2 + a2a1)ε > 0.

From theorem 3.10 we have the following proposition

Proposition 4.1. If (4b1b2 + 7a1b2 + a2a1)ε > 0, then for any µ sufficiently small
there exists a periodic solution for system (4.1).
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amplitudes, Nonlinear anal. 14, (1990), 701-715.
[6] P. Dromayer; An attractivity region for characteristic multipliers of special symmetric solu-

tions of ẋ(t) = αf(x(t− 1)), J. Math. Anal. Appl. 168, (1992), 70-91.

[7] J. K. Hale, S. M. Verduyn Lunel; Introduction to Functional Differential Equations, Springer-
Verlag, New York, 1993.

[8] J. L. Kaplan, J. A. York; Ordinary differential equations which yield periodic solutions of

differential delay equations, J. Math. Anal. Appl. 48, (1993), 317-324.
[9] J. L. Kaplan, J. A. York; On the stability of a periodic solution of a differential delay equation,

SIAM J.Math. Anal. 6, (1975) 268-282.

[10] P. Negrini, L. Salvadori; Attractivity and Hopf Bifurcation, Nonlinear Analysis, Vol. 3, 1979,
87-100.

[11] R. Qesmi, M. Ait Babram, M. L. Hbid; A Maple program for computing a terms of center

manifolds and element of bifurcations for a class of retarded functional differential equations
with Hopf singularity, Journal of Applied Mathematics and Computation, Vol 175 (2005),

932-968.

My Lhassan Hbid
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B.P. S15, Marrakech, Morocco

E-mail address: qesmir@gmail.com


	1. Introduction
	2. Background
	3. Main result
	4. Examples
	References

