A LIOUVILLE THEOREM FOR F-HARMONIC MAPS WITH FINITE F-ENERGY

M’HAMED KASSI

Abstract. Let (M, g) be a m-dimensional complete Riemannian manifold with a pole, and (N, h) a Riemannian manifold. Let $F : \mathbb{R}^+ \to \mathbb{R}^+$ be a strictly increasing C^2 function such that $F(0) = 0$ and $d_F := \sup(tF'(t)(F(t))^{-1}) < \infty$. We show that if $d_F < m/2$, then every F-harmonic map $u : M \to N$ with finite F-energy (i.e. a local extremal of $E_F(u) := \int_M F(|du|^2/2)dv_g$ and $E_F(u)$ is finite) is a constant map provided that the radial curvature of M satisfies a pinching condition depending to d_F.

1. Introduction and statement of result

Let (M, g) and (N, h) be two Riemannian manifolds and F be a given C^2 function $F : \mathbb{R}^+ \to \mathbb{R}^+$. Then, a map $u : M \to N$ of class C^2 is said to be F-harmonic if for every compact K of M, the map u is extremal of F-energy:

$$E_F(u) := \int_K F\left(\frac{|du|^2}{2}\right)dv_g.$$

In a normal coordinate system, the tension field associated with $E_F(u)$ by the Euler-Lagrange equations is

$$\tau_F(u) := \sum_{i=1}^{m} (\nabla e_i(F\left(\frac{|du|^2}{2}\right)du))e_i = F'\left(\frac{|du|^2}{2}\right)\tau(u) + du.\left\{\text{grad}\left(F\left(\frac{|du|^2}{2}\right)\right)\right\}$$

where $\tau(u)$ is the usual tension field of u defined by

$$\tau(u)_k = \Delta_M u^k + \sum_{\beta, \gamma;i,j}^{n,m} N^k_{\alpha \gamma}(u)g^{ij} \frac{\partial u^\beta}{\partial x_i} \frac{\partial u^\gamma}{\partial x_j}, \quad k = 1, \ldots, n.$$

Then, the map u is F-harmonic if $\tau_F(u) = 0$. For further properties of F-harmonic maps, we refer the reader to \[1,2\]. For the particular case of $F(t) = t$, the Liouville problem for harmonic maps with finite energy have been studied in \[4,6,7,8,9\]. While for $F(t) = \frac{2}{p}t^{p/2}$, with $p \geq 2$, this is the problem of p-harmonic maps with finite p-energy (corollary 1.2. If $F(t) = \sqrt{t+2t} - 1$ corresponding to the minimal graph (corollary 1.3). In this paper, we study the same problem for F-harmonic maps with finite F-energy without condition on the curvature for the
Let \((M, g)\) be a \(m\)-dimensional complete Riemannian manifold, \(m > 2\), with a pole \(x_0\), and let \((N, h)\) be a Riemannian manifold. If \(d_F < m/2\), then every \(F\)-harmonic map of \(M\) into \(N\) with finite \(F\)-energy is constant provided that the radial curvature \(K_r\) of \(M\) satisfies one of the following two conditions:

(i) \(-\alpha^2 \leq K_r \leq -\beta^2\) with \(\alpha > 0, \beta > 0\) and \(1 + (m - 1)\beta - 2d_F\alpha > 0\)

(ii) \(-\frac{\alpha}{1 + \tau^2} \leq K_r \leq \frac{\beta}{1 + \tau^2}\) with \(\alpha \geq 0\) and \(\beta \in [0, \frac{1}{2}]\) such that \(2 + (m - 1)(1 + \sqrt{1 - 4\beta}) - 2d_F(1 + \sqrt{1 + 4\alpha}) > 0\).

Furthermore, we have the following corollaries.

Corollary 1.2. Let \((M, g)\) and \((N, h)\) be as in the theorem. Then, every \(C^2\) \(p\)-harmonic map of \(M\) into \(N\) with finite \(p\)-energy, for \(p < m\), is constant.

Corollary 1.3. Let \((M, g)\) and \((N, h)\) be as in the theorem. Then, for \(m > 2\), every \(C^2\) map \(u\) of \(M\) into \(N\), with finite energy, solution of

\[
\frac{\tau(u)}{\sqrt{1 + |du|^2}} + du \left\{ \text{grad} \left(\frac{1}{\sqrt{1 + |du|^2}} \right) \right\} = 0
\]

is constant.

For \(m = 2\), the statement of the theorem is false in general. In fact, for the case (i), there exist holomorphic maps of the hyperbolic disc with finite energy \([9]\).

While for the case (ii) there exist holomorphic maps of \(\mathbb{C}\) into \(\mathbb{P}^1\) with finite energy \([9]\).

2. PROOF OF THEOREM 1.1

Let \(X\) and \(Y\) be two vector fields on \(M\). It is well-known \([3, 6]\), that the stress-energy for harmonic maps is

\[
S_u := \frac{|du|^2}{2} \langle X, Y \rangle_g - \langle du(X), du(Y) \rangle_h
\]

and satisfies

\[
\langle \text{div} S_u \rangle(X) = -\langle \tau(u), du(X) \rangle_h.
\]

Following \([2]\), we define the stress-energy of \(F\)-harmonic maps by

\[
S_{F,u}(X, Y) := F\left(\frac{|du|^2}{2} \right) \langle X, Y \rangle_g - F\left(\frac{|du|^2}{2} \right) \langle du(X), du(Y) \rangle_h.
\]

When \(F(t) := t\) we have \(S_{F,u} := S_u\). Also \(\langle \text{div} S_{F,u} \rangle(X) = -\langle \tau_F(u), du(X) \rangle_h\) thanks to the following lemma.

Lemma 2.1. For every vector field \(X\) on \(M\), we have

\[
\langle \text{div} S_{F,u} \rangle(X) = -\langle \tau_F(u), du(X) \rangle_h, \quad (2.1)
\]

\[
\text{div}(F\langle \frac{|du|^2}{2} \rangle X)
\]

\[
= \text{div}(F'(\frac{|du|^2}{2}) \langle du(X), du(e_i) \rangle_h e_i) - \langle \tau_F(u), du(X) \rangle_h + [S_{F,u}, X], \quad (2.2)
\]
where
\[
[S_{F,u}, X](x) = \sum_{i,j=1}^{m} \left(F\left(\frac{|du|^2}{2}\right)\delta_{ij} - F'\left(\frac{|du|^2}{2}\right)(du(e_i), du(e_j)) \right) \langle \nabla_e, X, e_j \rangle_g.
\]

In particular, if \(u \) is \(F \)-harmonic and \(D \subset M \) is a \(C^1 \) boundary domain, then we have
\[
\int_{\partial D} S_{F,u}(X, \nu) d\sigma_g = \int_D [S_{F,u}, X] dV_g
\]
where \(\nu \) is the normal to \(\partial D \).

Proof. Let \(x \in M \). Chose a normal coordinate system such that at \(x \). \(g_{ij}(x) = \delta_{ij} \)
d\(g(x) = 0 \), where \((e_1, \ldots, e_m) \) being a normal basis, we have \(\nabla_{e_j} e_k = 0 \) for all \(j, k \)
and
\[
(\text{div } S_{F,u})(X) = \sum_{i=1}^{m} \left\{ \nabla_{e_i} S_{F,u}(e_i, X) - S_{F,u}(e_i, \nabla_e X) - S_{F,u}(\nabla_{e_i} e_i, X) \right\}
\]
\[
= \sum_{i=1}^{m} \left\{ \nabla_{e_i} \left(F\left(\frac{|du|^2}{2}\right)\langle e_i, X \rangle - F'\left(\frac{|du|^2}{2}\right)(du(e_i), du(X)) \right) - F\left(\frac{|du|^2}{2}\right)(e_i, \nabla_e X)
+ F\left(\frac{|du|^2}{2}\right)(du(e_i), du(\nabla_e X)) - S_{F,u}(\nabla_{e_i} e_i, X) \right\}
\]
\[
= \sum_{i=1}^{m} \left\{ \nabla_{e_i} \left(F\left(\frac{|du|^2}{2}\right)(du(e_i), du(X)) \right) - F\left(\frac{|du|^2}{2}\right)(e_i, \nabla_e X)
+ F\left(\frac{|du|^2}{2}\right)(du(e_i), du(\nabla_e X)) - S_{F,u}(\nabla_{e_i} e_i, X) \right\}
\]
\[
= \sum_{i=1}^{m} \left\{ \sum_{j=1}^{m} F'\left(\frac{|du|^2}{2}\right)(\nabla_{e_i}(du(e_j)), du(e_j)) \langle e_i, X \rangle
+ F\left(\frac{|du|^2}{2}\right)\nabla_{e_i} \langle e_i, X \rangle - \nabla_{e_i} \left(F'\left(\frac{|du|^2}{2}\right)(du(e_i)), du(X) \right)
- F'\left(\frac{|du|^2}{2}\right)(du(e_i), \nabla_{e_i} (du(X)))
- F\left(\frac{|du|^2}{2}\right)(e_i, \nabla_{e_i} X) + F'\left(\frac{|du|^2}{2}\right)(du(e_i), du(\nabla_{e_i} X))
- S_{F,u}(\nabla_{e_i} e_i, X) \right\}.
\]
Thus
\[
(\text{div } S_{F,u})(X) = \sum_{i,j=1}^{m} \left\{ F'\left(\frac{|du|^2}{2}\right)(\nabla_{e_i}(du(e_j)), du(e_j)) X_i \right\}
+ \sum_{i=1}^{m} \left\{ F\left(\frac{|du|^2}{2}\right)(\nabla_{e_i} e_i, X) + F\left(\frac{|du|^2}{2}\right)(e_i, \nabla_{e_i} X)
- \nabla_{e_i} \left(F'\left(\frac{|du|^2}{2}\right)(du(e_i)), du(X) \right) \right\}.
Then, by straightforward computation, we obtain

\[
\begin{align*}
- F'\left(\frac{|du|^2}{2}\right)\langle du(e_i), \nabla_{e_i}(du(X)) \rangle & - F\left(\frac{|du|^2}{2}\right)\langle e_i, \nabla_{e_i}X \rangle \\
+ F'\left(\frac{|du|^2}{2}\right)\langle du(e_i), du(\nabla_{e_i}X) \rangle & - S_{F,u}(\nabla_{e_i}e_i, X) \\
= \sum_{i,j=1}^{m} \left\{ F'\left(\frac{|du|^2}{2}\right)\langle X_i\nabla_{e_i}(du(e_j)), du(e_j) \rangle \right. \\
- \sum_{i=1}^{m} \left\{ F'\left(\frac{|du|^2}{2}\right)\langle du(e_i), \nabla_{e_i}(du(X)) \rangle \\
+ F'\left(\frac{|du|^2}{2}\right)\langle du(e_i), du(\nabla_{e_i}X) \rangle & + F\left(\frac{|du|^2}{2}\right)\langle \nabla_{e_i}e_i, X \rangle - F\left(\frac{|du|^2}{2}\right)\langle e_i, \nabla_{e_i}X \rangle \\
- \langle \nabla_{e_i}(F'\left(\frac{|du|^2}{2}\right)du(e_i)), du(X) \rangle & - S_{F,u}(\nabla_{e_i}e_i, X) \right\}.
\end{align*}
\]

Since \(\nabla_{e_i}e_i = 0 \), with \((\nabla_{e_i}du)(X) = \nabla_{e_i}(du(X)) - du(\nabla_{e_i}X) \) and by symmetry \((\nabla_{e_i}du)(X) = (\nabla_X du)(e_i) \), we have

\[
\text{div}(S_{F,u})(X) = \sum_{j=1}^{m} \left\{ F'\left(\frac{|du|^2}{2}\right)\langle \nabla_X (du(e_j)), du(e_j) \rangle \right. \\
- \sum_{i=1}^{m} \left\{ F'\left(\frac{|du|^2}{2}\right)\langle du(e_i), \nabla_{e_i}(du(X)) \rangle - du(\nabla_{e_i}X) \rangle \\
- \langle \nabla_{e_i}(F'\left(\frac{|du|^2}{2}\right)du(e_i)), du(X) \rangle \right\}.
\]

Finally,

\[
\text{div}(S_{F,u})(X) = -\langle \tau_F(u), du(X) \rangle.
\]

Also

\[
\text{div}(F\left(\frac{|du|^2}{2}\right)X) \begin{aligned}
= & \sum_{i=1}^{m} \langle \nabla_{e_i}(F\left(\frac{|du|^2}{2}\right)X), e_i \rangle \\
= & \sum_{i=1}^{m} \left\{ \langle \nabla_{e_i}(F\left(\frac{|du|^2}{2}\right)X), e_i \rangle + F\left(\frac{|du|^2}{2}\right)\langle \nabla_{e_i}X, e_i \rangle \right\} \\
= & \nabla_X F\left(\frac{|du|^2}{2}\right) + \sum_{i=1}^{m} F\left(\frac{|du|^2}{2}\right)\langle \nabla_{e_i}X, e_i \rangle.
\end{aligned}
\]

Then, by straightforward computation, we obtain

\[
\nabla_X F\left(\frac{|du|^2}{2}\right) = \sum_{i=1}^{m} \frac{1}{2} F'\left(\frac{|du|^2}{2}\right)\nabla_X \langle du(e_i), du(e_i) \rangle \\
= \sum_{i=1}^{m} F'\left(\frac{|du|^2}{2}\right)\langle \nabla_X (du(e_i)), du(e_i) \rangle \\
= \sum_{i=1}^{m} F'\left(\frac{|du|^2}{2}\right)\langle \nabla_X du(e_i) + du(\nabla_X e_i), du(e_i) \rangle
\]
EJDE-2006/15
A LIOUVILLE THEOREM FOR F-HARMONIC MAPS

Thus

$$
\nabla_X F \left(\frac{|du|^2}{2} \right) = \sum_{i=1}^{m} \left\{ \nabla_{e_i} \langle du(X), F' \left(\frac{|du|^2}{2} \right) du(e_i) \rangle
- \langle du(X), \nabla_{e_i} \left(F' \left(\frac{|du|^2}{2} \right) du(e_i) \right) \rangle
- F' \left(\frac{|du|^2}{2} \right) \langle du(\nabla_{e_i} X), du(e_i) \rangle \right\}
$$

Thus

$$
\text{div} \left(\frac{|du|^2}{2} \right) X = \sum_{i=1}^{m} \left\{ \text{div} \left(F' \left(\frac{|du|^2}{2} \right) \langle du(X), du(e_i) \rangle e_i \right)
- \langle du(X), \tau_{F}\rangle(u) \right\} - \sum_{i=1}^{m} F' \left(\frac{|du|^2}{2} \right) \langle du(\nabla_{e_i} X), du(e_i) \rangle
$$

with

$$
[S_{F,u}, X] = \sum_{i,j=1}^{m} \left(F \left(\frac{|du|^2}{2} \right) \delta_{ij} - F' \left(\frac{|du|^2}{2} \right) \langle du(e_i), du(e_j) \rangle \right) \langle \nabla_{e_i} X, e_j \rangle \delta
$$

because $\nabla_{e_i} X = \langle \nabla_{e_i} X, e_j \rangle e_j$. If $D \subset M$ is a C^1 boundary domain, we get by the use of Stokes formula

$$
\int_D (\text{div} \, S_{F,u})(X) + \int_D [S_{F,u}, X] = \int_D \text{div} \left(F' \left(\frac{|du|^2}{2} \right) \langle du(X), du(e_i) \rangle e_i \right) - \int_D \sum_{i=1}^{m} \text{div} \left(F' \left(\frac{|du|^2}{2} \right) \langle du(X), du(e_i) \rangle e_i \right) < du(X), du(e_i) > e_i
$$
Thus, if \(u \) is \(F \)-harmonic:

\[
\int_{\partial D} \left(F\left(\frac{|du|^2}{2}\right) \langle X, \nu \rangle - F'(\frac{|du|^2}{2}) \langle du(X), du(\nu) \rangle \right) = \int_D [S_{F,u}, X].
\]

This completes the proof. \(\square \)

Lemma 2.2. Let \(u : M \to N \) be a \(F \)-harmonic with finite \(F \)-energy and \(X \) a vector field on \(M \) such that \(|X| \leq \phi(r)\) for \(\phi : \mathbb{R}^+ \to \mathbb{R}^+ \) satisfying

\[
\int_1^{+\infty} \frac{dt}{\phi(t)} = +\infty.
\]

Then there exists an increasing strictly sequence \((R_n) \) such that

\[
\lim_{n \to \infty} \int_{B(x_0, R_n)} [S_{F,u}, X] dV_g = 0.
\]

Proof. Since \(tF'(t) \leq d_F F(t) \) we have

\[
\left| \int_{B(x_0, R)} [S_{F,u}, X] \right|
\leq \left| \int_{\partial B(x_0, R)} F\left(\frac{|du|^2}{2}\right) \langle X, \nu \rangle \right| + \left| \int_{\partial B(x_0, R)} F'(\frac{|du|^2}{2}) \langle du(X), du(\nu) \rangle \right|
\leq \int_{\partial B(x_0, R)} F\left(\frac{|du|^2}{2}\right) |X| + \int_{\partial B(x_0, R)} F'(\frac{|du|^2}{2}) |X| dV_g,
\]

By the Co-area formula and \(|X| \leq \phi(r(x))\),

\[
\int_0^{\infty} \frac{1}{\phi(t)} \left(\int_{\partial B(x_0, t)} F\left(\frac{|du|^2}{2}\right) |X| \right) dt = \int_M \frac{|X| |
\leq \int_M \frac{\phi(r) |X|}{\phi(r)} F\left(\frac{|du|^2}{2}\right) |X|< \infty.
\]

Since \(\int_1^{+\infty} \frac{dt}{\phi(t)} = +\infty \), there exists an increasing strictly sequence \((R_n) \) such that

\[
\lim_{n \to \infty} \int_{\partial B(x_0, R_n)} F\left(\frac{|du|^2}{2}\right) |X| = 0.
\]

Hence

\[
\lim_{n \to \infty} \int_{B(x_0, R_n)} [S_{F,u}, X] dV_g = 0.
\]

This completes the proof of Lemma 2.2. \(\square \)

For the theorem, it suffices to choose \(X \) satisfying Lemma 2.2 and the condition

\[[S_{F,u}, X] \geq cF(|du|^2/2) \]

where \(c > 0 \) is a constant. For that we take \(X = r \nabla r \) and using the comparison theorem of the Hessian [5].

Theorem 2.3 (Comparison theorem). Let \((M, g)\) be a complete Riemannian manifold with a pole \(x_0 \) and \(k_1, k_2 \) be two continuous functions on \(\mathbb{R}^+ \) such that
where \(k_2(r) \leq K_r \leq k_1(r) \), where \(K_r \) is the radial curvature of \(M \), i.e., the sectional curvature of the tangent planes containing the radial vector \(\nabla r \). Also, let \(J_i, (i = 1, 2) \) be the solution of classical Jacobi equation

\[J_i'' + k_i J_i = 0; \quad J_i(0) = 0 \quad \text{and} \quad J_i'(0) = 1. \]

Then, if \(J_1 > 0 \) on \(\mathbb{R}^+ \), we have on \(M \setminus \{ x_0 \} \)

\[\frac{J_1'(r)}{J_1(r)}(g - dr \otimes dr) \leq \text{Hess}(r) \leq \frac{J_2'(r)}{J_2(r)}(g - dr \otimes dr). \]

Case (i) of Theorem 2.3 With \(k_1(r) = -\beta^2 \) and \(k_2(r) = -\alpha^2 \), we have

\[\beta \coth(\beta r)(g - dr \otimes dr) \leq \text{Hess}(r) \leq \alpha \coth(\alpha r)(g - dr \otimes dr). \]

Case (ii) of Theorem 2.3 With \(k_1(r) = \frac{\beta}{r} \) and \(k_2(r) = -\frac{\alpha}{r^2} \), and the fact that on \(M \setminus \{ x_0 \} \),

\[-\frac{\alpha}{r^2} \leq -\frac{\alpha}{1+r^2} \leq K_r \leq \frac{\beta}{1+r^2} \leq \frac{\beta}{r^2} \]

we have

\[\left(1 + \sqrt{1 - 4\beta^2}\right)(g - dr \otimes dr) \leq \text{Hess}(r) \leq \left(1 + \sqrt{1 - 4\alpha^2}\right)(g - dr \otimes dr). \]

Lemma 2.4. Under hypothesis of Theorem 2.3, in case (1), we have

\[[S_{F,u}, X] \geq (1 + (m - 1)\beta - 2d_F\alpha) F\left(\frac{|du|^2}{2}\right) \]

and in case (ii),

\[[S_{F,u}, X] \geq \frac{1}{2}(2 + (m - 1)(1 + \sqrt{1 - 4\beta^2}) - 2d_F(1 + \sqrt{1 + 4\alpha^2}) F\left(\frac{|du|^2}{2}\right). \]

Proof. First note that

\[[S_{F,u}, X] = \sum_{i,j=1}^{m} \left(F\left(\frac{|du|^2}{2}\right)\delta_{ij} - F'(\frac{|du|^2}{2})(du(e_i), du(e_j))h \right) < \nabla e_i, X, e_j, g, \]

where \((e_1, \ldots, e_{m-1}, \frac{\partial}{\partial r}) \) with \(e_m = \frac{\partial}{\partial r} \), being a normal basis on \(B(x_0, R) \). Then, since \(X = r \frac{\partial}{\partial r} \), it follows that \(\nabla \frac{\partial}{\partial r} X = \frac{\partial}{\partial r} \) and so we get

\[\langle \nabla_{\frac{\partial}{\partial r}} X, \frac{\partial}{\partial r} \rangle_g = 1, \]

\[\langle \nabla e_i, X, e_i \rangle_g = r \text{Hess}(r)(e_i, e_i), \quad \text{for} \quad i = 1, \ldots, m - 1, \]

\[\nabla e_i, X = \sum_{j=1}^{m-1} r \text{Hess}(r)(e_i, e_j), \quad \text{for} \quad i = 1, \ldots, m - 1. \]

Therefore,

\[[S_{F,u}, X] = F\left(\frac{|du|^2}{2}\right)(1 + \sum_{i=1}^{m-1} r \text{Hess}(r)(e_i, e_i)) \]

\[- \sum_{i,j=1}^{m-1} F'(\frac{|du|^2}{2})(du(e_i), du(e_j))h \langle \nabla e_i, X, e_j \rangle_g \]

\[- F'(\frac{|du|^2}{2})(du(\frac{\partial}{\partial r}), du(\frac{\partial}{\partial r}))h \langle \nabla \frac{\partial}{\partial r}, X, \frac{\partial}{\partial r} \rangle_g \]
\[- \sum_{j=1}^{m-1} F'(\frac{|du|^2}{2}) \langle du(\partial_r), du(e_j) \rangle_h \langle \nabla_\partial X, e_j \rangle_g \]
\[- \sum_{i=1}^{m-1} F'(\frac{|du|^2}{2}) \langle du(e_i), du(\partial_r) \rangle_h \langle \nabla_\partial e_i, \partial_r \rangle_g \]
\[= F(\frac{|du|^2}{2})(1 + \sum_{i=1}^{m-1} r \text{Hess}(r)(e_i, e_i)) \]
\[- \sum_{i,j=1}^{m-1} F'(\frac{|du|^2}{2}) \langle du(e_i), du(e_j) \rangle_r \text{Hess}(r)(e_i, e_j) \]
\[- F'(\frac{|du|^2}{2}) \langle du(\partial_r), du(\partial_r) \rangle \]

For the case (i), we have
\[\langle S_{F,u}, X \rangle \geq F(\frac{|du|^2}{2}) + (m-1)(\beta r) \text{coth}(\beta r) F(\frac{|du|^2}{2}) \]
\[- F'(\frac{|du|^2}{2})|du|^2(\alpha r) \text{coth}(\alpha r) \]
\[+ F'(\frac{|du|^2}{2})(\alpha r) \text{coth}(\alpha r) - 1) \langle du(\partial_r), du(\partial_r) \rangle \]
\[\geq F(\frac{|du|^2}{2}) + F(\frac{|du|^2}{2})((m-1)(\beta r) \text{coth}(\beta r) - 2d_F(\alpha r) \text{coth}(\alpha r)) \]
\[\geq F(\frac{|du|^2}{2}) + F(\frac{|du|^2}{2}) r \text{coth}(\beta r)((m-1)\beta - 2d_F(\alpha r) \text{coth}(\alpha r)). \]

Since the function $\text{coth}(x)$ is decreasing and, $x \text{coth}(x)$ is bounded below by a positive constant in \mathbb{R}^+, we have
\[\langle S_{F,u}, X \rangle \geq (1 + (m-1)\beta - 2d_F(\alpha r))F(\frac{|du|^2}{2}) \]

For the case (ii), we have
\[\langle S_{F,u}, X \rangle \geq F(\frac{|du|^2}{2}) + (m-1)a F(\frac{|du|^2}{2}) - b F'(\frac{|du|^2}{2})|du|^2 \]
\[+ (b-1) F'(\frac{|du|^2}{2}) \langle du(\partial_r), du(\partial_r) \rangle \]
\[\geq (1 + (m-1)a - 2d_F(\alpha r))F(\frac{|du|^2}{2}), \]

where we have set
\[a = \frac{1 + \sqrt{1 - 4\beta}}{2} \text{ and } b = \frac{1 + \sqrt{1 + 4\alpha}}{2} \geq 1. \]

\[\square \]

\textbf{Acknowledgements.} I would like to express my gratitude to Professor S. Asserda for his valuable suggestions and warm encouragement. Also I thank the anonymous referee for many valuable comments.
References

M’hamed Kassi
Equipe d’Analyse Complexe, Laboratoire d’Analyse Fonctionnelle, Harmonique et Complexe, Département de Mathématiques, Faculté des Sciences, Université Ibn Tofail, Kénitra, Maroc
E-mail address: mhamedkassi@yahoo.fr