A CHARACTERIZATION OF BALLS USING THE DOMAIN DERIVATIVE

ANDRIY DIDENKO, BEHROUZ EMAMIZADEH

Abstract. In this note we give a characterization of balls in \mathbb{R}^N using the domain derivative. As a byproduct we will show that an overdetermined Stekloff eigenvalue problem is solvable if and only if the domain of interest is a ball.

1. Introduction

In this note we give a characterization of balls in \mathbb{R}^N using the domain derivative. As an application we prove that an overdetermined Stekloff eigenvalue problem is solvable if the domain of interest is a ball. This work is motivated by the following result.

Theorem 1.1. A domain $D \subset \mathbb{R}^N$ is a ball if and only if there exists a constant c such that the following integral equality is valid

$$\int_D h \, dx = c \int_{\partial D} h \, d\sigma, \quad (1.1)$$

for every harmonic function h.

For the proof of the above theorem, the reader is referred to [1, 3].

Our characterization replaces (1.1) by another integral equation which involves the domain derivative of the solution of the Saint-Venant equation in D. This result will enable us to show that an overdetermined Stekloff eigenvalue problem is solvable if and only if the domain of the problem is a ball.

2. Main result

To state the main result we need some preparation. Henceforth D is a smooth simply connected bounded domain in \mathbb{R}^N. By u we denote the unique solution of the Saint-Venant problem in D; i.e.,

$$-\Delta u = 1 \quad \text{in } D$$
$$u = 0 \quad \text{on } \partial D \quad (2.1)$$

2000 Mathematics Subject Classification. 35J25, 35P99.
Key words and phrases. Domain derivative; overdetermined problems; Stekloff problem.
©2006 Texas State University - San Marcos.
Given a vector field $V \in C^2(\mathbb{R}^N;\mathbb{R}^N)$, we denote by u', the domain derivative of u at D in direction of V; the reader is referred to [5] for a thorough treatment of the concept of domain derivatives. Using [5, Theorems 3.1 and 3.2], it follows that

$$\Delta u' = 0 \text{ in } D$$
$$u' = -\frac{\partial u}{\partial \nu} V \cdot \nu \text{ on } \partial D,$$

where ν stands for the unit outward normal vector on ∂D. Now we state our main result.

Theorem 2.1. The domain D is a ball if and only if there exists a constant c such that the following integral equation is valid

$$\int_D u' \, dx = c \int_{\partial D} u' \, d\sigma,$$ \tag{2.3}

for every vector field $V \in C^2(\mathbb{R}^N;\mathbb{R}^N)$.

We need the following result.

Lemma 2.2. Suppose $f \in C(\partial D)$ and the following equation holds

$$\int_{\partial D} f V \cdot \nu \, d\sigma = 0,$$ \tag{2.4}

for every $V \in C^2(\mathbb{R}^N,\mathbb{R}^N)$. Then f vanishes on ∂D.

Proof. To derive a contradiction suppose $f(x_0) \neq 0$, for some $x_0 \in \partial D$. Let us assume that in fact $f(x_0) > 0$; the case $f(x_0) < 0$ can be addressed similarly. Since f is continuous, we readily infer existence of an open component of ∂D, denoted γ, where

$$f(x) \geq \frac{1}{k}, \quad \forall x \in \gamma,$$

for some integer k. Thanks to smoothness of ∂D we can make the following observation; namely, ∂D is locally star-shaped. This means: For every $\xi \in \partial D$, there exists a ball B_ξ centered at ξ, and a point $x_\xi \in D$, such that

$$(x - x_\xi) \cdot \nu(x) > 0, \quad \forall x \in B_\xi \cap \partial D.$$

Without loss of generality we may assume there exists $x^* \in D$ such that

$$(x - x^*) \cdot \nu(x) > 0, \quad \forall x \in \gamma.$$

Let us now consider a non-negative test function $\phi \in C_0^\infty(\mathbb{R}^N)$, where the intersection of the support of ϕ with ∂D is a proper subset of γ and has positive measure.

Now we choose $V = \phi(x)(x - x^*)$ in (2.4); note that V is admissible since it belongs to $C^2(\mathbb{R}^N,\mathbb{R}^N)$. Thus

$$\int_{\gamma} f(x)\phi(x)(x - x^*) \cdot \nu(x) \, d\sigma = 0.$$ \tag{2.5}

However

$$\int_{\gamma} f(x)\phi(x)(x - x^*) \cdot \nu(x) \, d\sigma \geq \frac{1}{k} \int_{\text{support}(\phi) \cap \gamma} \phi(x)(x - x^*) \cdot \nu(x) \, d\sigma > 0,$$

which contradicts (2.5). Thus f must vanish on ∂D, as desired. □
Proof of Theorem 2.1. Assume that (2.3) is satisfied. Let us fix $V \in C^2(\mathbb{R}^N; \mathbb{R}^N)$. We claim
\[
\int_D u' \, dx = \int_{\partial D} \left(\frac{\partial u}{\partial \nu} \right)^2 V \cdot \nu \, d\sigma. \tag{2.6}
\]
To prove (2.6) we observe that from the differential equation in (2.1) we have $\int_D u' \, dx = -\int_D u' \Delta u \, dx$. Since u' is harmonic in D it then follows that
\[
\int_D u' \, dx = \int_D (u \Delta u' - u' \Delta u) \, dx.
\]
Now an application of the Green identity to the right hand side of the above equation yields
\[
\int_D u' \, dx = \int_{\partial D} \left(u \frac{\partial u'}{\partial \nu} - u' \frac{\partial u}{\partial \nu} \right) \, d\sigma.
\]
Since u vanishes on ∂D, the above equation implies
\[
\int_D u' \, dx = -\int_{\partial D} u' \frac{\partial u}{\partial \nu} \, d\sigma. \tag{2.7}
\]
From (2.7) and the boundary condition in (2.2) we derive (2.6). From the hypothesis and (2.6) we obtain $c \int_{\partial D} u' \, d\sigma = \int_{\partial D} \left(\frac{\partial u}{\partial \nu} \right)^2 V \cdot \nu \, d\sigma$. So again using the boundary condition in (2.2) we derive
\[
-c \int_{\partial D} \frac{\partial u}{\partial \nu} V \cdot \nu \, d\sigma = \int_{\partial D} \left(\frac{\partial u}{\partial \nu} \right)^2 V \cdot \nu \, d\sigma.
\]
So
\[
\int_{\partial D} \left(\left(\frac{\partial u}{\partial \nu} \right)^2 + c \frac{\partial u}{\partial \nu} \right) V \cdot \nu \, d\sigma = 0.
\]
Since $V \in C^2(\mathbb{R}^N; \mathbb{R}^N)$ is arbitrary Lemma 2.2 applied to the above equation, guarantees that
\[
\frac{\partial u}{\partial \nu} \left(\frac{\partial u}{\partial \nu} + c \right) = 0 \quad \text{on } \partial D.
\]
By the Hopf boundary point lemma applied to (2.1) we infer that $\frac{\partial u}{\partial \nu}$ is negative on ∂D. So the last equation implies $\frac{\partial u}{\partial \nu} = -c$ on ∂D. This result added to (2.1) yields the following overdetermined boundary value problem
\[
\begin{align*}
-\Delta u &= 1 \quad \text{in } D \\
u &= 0 \quad \text{on } \partial D \\
\frac{\partial u}{\partial \nu} &= -c \quad \text{on } \partial D
\end{align*}
\tag{2.8}
\]
It is classical, see [1, 6], that (2.8) is solvable if and only if D is a ball.

Conversely, let us assume that D is a ball. Without loss of generality we may assume that D is the ball with radius R centered at the origin. Note that in this case the solution of (2.1) is
\[
u(x) = \frac{1}{2N} (R^2 - |x|^2).
\]
Therefore $\frac{\partial u}{\partial \nu}$ will be equal to $-R/N$ on ∂D. So if we apply (2.7) we find that
\[
\int_D u' \, dx = -\frac{R}{N} \int_{\partial D} u' \, d\sigma,
\]
which coincides with the integral equation (2.3), with $c = -R/N$. This completes the proof. □
Note that \(c = -\frac{R}{N} \), as in the above argument, could also be written as \(c = -\frac{\omega_N R^N}{S_N} = -\frac{V(D)}{S(D)} \), where \(\omega_N \) stands for the volume of the unit \(N \)-dimensional ball, and \(V(D), S(D) \) denote the volume and the surface area of \(D \), respectively.

In the remaining of this section we focus on the Stekloff eigenvalue problem; i.e.,

\[
\Delta w = 0 \quad \text{in } D.
\]
\[
\frac{\partial w}{\partial \nu} = pw \quad \text{on } \partial D
\]

In (2.9), \(p \) denotes the eigenvalue. It is well known that there are infinitely many eigenvalues \(0 = p_1 < p_2 \leq p_3 \leq \ldots \) for which (2.9) has non trivial solutions. These solutions are the corresponding eigenfunctions denoted by \(w_1, w_2, \ldots \), where \(w_1 \) is clearly constant. We now prove the following result.

Theorem 2.3. The overdetermined boundary-value problem

\[
\Delta w = 0 \quad \text{in } D
\]
\[
\frac{\partial w}{\partial \nu} = pw \quad \text{on } \partial D
\]
\[
\int_D w_k \, dx = 0 \quad \forall k \geq 2
\]

is solvable if and only if \(D \) is a ball.

Proof. Let us assume \(D \) is a ball. Let \(w_k \) be an eigenfunction corresponding to \(p_k, k = 2, 3, \ldots \). Since \(w_k \) is harmonic it follows from the mean value property that

\[
\int_D w_k \, dx = d \int_{\partial D} w_k \, d\sigma,
\]

for some constant \(d \). Thus using the boundary condition in (2.9) in conjunction with the Divergence Theorem we infer

\[
\int_D w_k \, dx = \frac{d}{p_k} \int_D \Delta w_k \, dx.
\]

Since \(w_k \) is harmonic in \(D \) we obtain \(\int_D w_k \, dx = 0 \), as desired.

To prove the converse we proceed along the same lines as in [2, Theorem 2] to prove the converse. To this end, let \(u \) be the solution of the Saint-Venant problem in \(D, V \in C^2(\mathbb{R}^N; \mathbb{R}^N) \), and \(u' \) the domain derivative of \(u \) in direction of \(V \). Since \(D \) is smooth it follows from (2.2) that \(u' \in C^2(\overline{D}) \). Hence \(u' \) can be represented in terms of the eigenfunctions \(w_k \) as follows

\[
u'(x) = \sum_{i=1}^{\infty} \gamma_i \, w_i(x),
\]

where

\[
\gamma_i = \int_{\partial D} w_i u' \, d\sigma.
\]

Integrating the equation before the last, over \(D \), and taking into account that \(\int_D w_i \, dx = 0 \), for \(i = 2, 3, \ldots \) yields

\[
\int_D u' \, dx = \gamma_1 \int_D w_1 \, dx = k \int_{\partial D} u' \, d\sigma,
\]

where \(k \) is a constant independent of the vector field \(V \). Since \(V \) is arbitrary we can apply Theorem 2.1 to conclude that \(D \) must be a ball, as desired. \(\square \)
Acknowledgements. This research is part of a project entitled “Applications of the domain derivative”. The authors would like to thank the Petroleum Institute for its financial support.

REFERENCES

Andriy Didenko
Department of Mathematics, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, UAE
E-mail address: adidenko@pi.ac.ae

Behrouz Emamizadeh
Department of Mathematics, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, UAE
E-mail address: bemamizadeh@pi.ac.ae