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L2-BOUNDEDNESS AND L2-COMPACTNESS OF A CLASS OF
FOURIER INTEGRAL OPERATORS

BEKKAI MESSIRDI, ABDERRAHMANE SENOUSSAOUI

Abstract. In this paper, we study the L2-boundedness and L2-compactness

of a class of Fourier integral operators. These operators are bounded (respec-

tively compact) if the weight of the amplitude is bounded (respectively tends
to 0).

1. Introduction

For ϕ ∈ S(Rn) (the Schwartz space), the integral operators

Fϕ(x) =
∫
eiS(x,θ)a(x, θ)Fϕ(θ) dθ (1.1)

appear naturally in the expression of the solutions of the hyperbolic partial differ-
ential equations and in the expression of the C∞ -solution of the associate Cauchy’s
problem (see [5, 10]).

If we write formally the Fourier transformation Fϕ(θ) in (1.1), we obtain the
following Fourier integral operators

Fϕ(x) =
∫∫

ei(S(x,θ)−yθ)a(x, θ)ϕ(y)dy dθ (1.2)

in which appear two C∞-functions, the phase function φ(x, y, θ) = S(x, θ)−yθ and
the amplitude a.

Since 1970, many efforts have been made by several authors in order to study
these type of operators (see, e.g., [1, 4, 6, 7, 8, 15]). The first works on Fourier inte-
gral operators deal with local properties. On the other hand, Asada and Fujiwara
have studied for the first time a class of Fourier integral operators defined on Rn.

For the Fourier integral operators, an interesting question is under which condi-
tions on a and S these operators are bounded on L2 or are compact on L2.

It has been proved in [1] by a very elaborated proof and with some hypothesis
on the phase function φ and the amplitude a that all operators of the form (2.1)
(see below) are bounded on L2. The technique used there is based on the fact
that the operators I(a, φ)I∗(a, φ), I∗(a, φ)I(a, φ) are pseudodifferential and it uses
Caldéron-Vaillancourt’s theorem (here I(a, φ)∗ is the adjoint of I(a, φ)).
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In this work, we apply the same technique of [1] to establish the boundedness
and the compactness of the operators (1.2). To this end we give a brief and simple
proof for a result of [1] in our framework.

We mainly prove the continuity of the operator F on L2(Rn) when the weight of
the amplitude a is bounded. Moreover, F is compact on L2(Rn) if this weight tends
to zero. Using the estimate given in [12] for h-pseudodifferential (h-admissible)
operators, we also establish an L2-estimate of ‖F‖.

We note that if the amplitude a is juste bounded, the Fourier integral operator
F is not necessarily bounded on L2(Rn). Recently, Hasanov [6] and Messirdi-
Senoussaoui [11] constructed a class of unbounded Fourier integral operators with
an amplitude in the Hörmander’s class S0

1,1 and in
⋂

0<ρ<1 S
0
ρ,1.

To our knowledge, this work constitutes a first attempt to diagonalize the Fourier
integral operators on L2(Rn) (relying on the compactness of these operators).

Let us now describe the plan of this article. In the second section we recall
the continuity of some general class of Fourier integral operators on S(Rn) and on
S ′(Rn). The assumptions and preliminaries results are given in the third section.
The last section is devoted to prove the main result.

2. A general class of Fourier integral operators

If ϕ ∈ S(Rn), we consider the following integral transformations

(I(a, φ)ϕ)(x) =
∫∫

Rn
y×RN

θ

eiφ(x,θ,y)a(x, θ, y)ϕ(y)dy dθ (2.1)

where, x ∈ Rn, n ∈ N∗ and N ∈ N (if N = 0, θ doesn’t appear in (2.1)).
In general the integral (2.1) is not absolutely convergent, so we use the technique

of the oscillatory integral developed by Hörmander in [8]. The phase function φ
and the amplitude a are assumed to satisfy the following hypothesis:

(H1) φ ∈ C∞(Rn
x × RN

θ × Rn
y ,R) (φ is a real function)

(H2) For all (α, β, γ) ∈ Nn × NN × Nn, there exists Cα,β,γ > 0 such that

|∂γ
y ∂

β
θ ∂

α
xφ(x, θ, y)| ≤ Cα,β,γλ

(2−|α|−|β|−|γ|)+(x, θ, y)

where λ(x, θ, y) = (1 + |x|2 + |θ|2 + |y|2)1/2 is called the weight and

(2− |α| − |β| − |γ|)+ = max(2− |α| − |β| − |γ|, 0)

(H3) There exist K1,K2 > 0 such that

K1λ(x, θ, y) ≤ λ(∂yφ, ∂θφ, y) ≤ K2λ(x, θ, y), ∀(x, θ, y) ∈ Rn
x × RN

θ × Rn
y

(H3*) There exist K∗
1 ,K

∗
2 > 0 such that

K∗
1λ(x, θ, y) ≤ λ(x, ∂θφ, ∂xφ) ≤ K∗

2λ(x, θ, y), ∀(x, θ, y) ∈ Rn
x × RN

θ × Rn
y .

For any open subset Ω of Rn
x × RN

θ × Rn
y , µ ∈ R and ρ ∈ [0, 1], we set

Γµ
ρ (Ω) =

{
a ∈ C∞(Ω) : ∀(α, β, γ) ∈ Nn × NN × Nn, ∃Cα,β,γ > 0 :

|∂γ
y ∂

β
θ ∂

α
x a(x, θ, y)| ≤ Cα,β,γλ

µ−ρ(|α|+|β|+|γ|)(x, θ, y)
}

When Ω = Rn
x × RN

θ × Rn
y , we denote Γµ

ρ (Ω) = Γµ
ρ .



EJDE-2006/26 L2-BOUNDEDNESS AND L2-COMPACTNESS 3

To give a meaning to the right hand side of (2.1), we consider g ∈ S(Rn
x ×RN

θ ×
Rn

y ), g(0) = 1. If a ∈ Γµ
0 , we define

aσ(x, θ, y) = g(x/σ, θ/σ, y/σ)a(x, θ, y), σ > 0.

Now we are able to state the following result.

Theorem 2.1. If φ satisfies (H1), (H2), (H3) and (H3*), and if a ∈ Γµ
0 , then

1. For all ϕ ∈ S(Rn), limσ→+∞[I(aσ, φ)ϕ](x) exists for every point x ∈ Rn and
is independent of the choice of the function g. We define

(I(a, φ)ϕ)(x) := lim
σ→+∞

(I(aσ, φ)ϕ)(x)

2. I(a, φ) ∈ L(S(Rn)) and I(a, φ) ∈ L(S ′(Rn)) (here L(E) is the space of
bounded linear mapping from E to E and S ′(Rn) the space of all distributions with
temperate growth on Rn).

The proof of the above theorem can be found in [7] or in [12, propostion II.2].

Example 2.2. Let us give two examples of operators of the form (2.1) which satisfy
(H1)-(H3*):

(1) The Fourier transform Fψ(x) =
∫

Rn e
−ixyψ(y)dy, ψ ∈ S(Rn),

(2) Pseudodifferential operators

Aψ(x) = (2π)−n

∫
R2n

ei(x−y)θa(x, y, θ)ψ(y)dy dθ,

with ψ ∈ S(Rn), a ∈ Γµ
0 (R3n).

3. Assumptions and Preliminaries

In this paper we consider the special form of the phase function

φ(x, y, θ) = S(x, θ)− yθ (3.1)

where S satisfies
(G1) S ∈ C∞(Rn

x × Rn
θ ,R),

(G2) For each (α, β) ∈ N2n, there exist Cα,β > 0, such that

|∂α
x ∂

β
θ S(x, θ)| ≤ Cα,βλ(x, θ)(2−|α|−|β|)+ ,

(G3) There exists C1 > 0 such that |x| ≤ C1λ(θ, ∂θS), for all (x, θ) ∈ R2n,
(G3*) There exists C2 > 0, such that |θ| ≤ C2λ(x, ∂xS), for all (x, θ) ∈ R2n.

Proposition 3.1. Let’s assume that S satisfies (G1), (G2), (G3) and (G3*). Then
the function φ(x, y, θ) = S(x, θ)− yθ satisfies (H1), (H2), (H3) and (H3*).

Proof. (H1) and (H2) are trivially satisfied. The condition (G3) implies

λ(x, θ, y) ≤ λ(x, θ) + λ(y) ≤ C3(λ(θ, ∂θS) + λ(y)), C3 > 0.

Also, we have ∂yj
φ = −θj and ∂θj

φ = ∂θj
S − yj and so

λ(θ, ∂θS) = λ(∂yφ, ∂θφ+ y) ≤ 2λ(∂yφ, ∂θφ, y),

which finally gives for some C4 > 0,

λ(x, θ, y) ≤ C3(2λ(∂yφ, ∂θφ, y) + λ(y)) ≤ 1
C4
λ(∂yφ, ∂θφ, y)

The second inequality in (H3) is a consequence of the assumption (G2). By a similar
argument we can show (H3*). �
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We now introduce the assumption
(G4) There exists δ0 > 0 such that

inf
x,θ∈Rn

|det
∂2S

∂x∂θ
(x, θ)| ≥ δ0.

We note that if φ(x, y, θ) = S(x, θ)− yθ, then

D(φ)(x, θ, y) =

(
∂2φ

∂x∂y (x, θ, y) ∂2φ
∂x∂θ (x, θ, y)

∂2φ
∂θ∂y (x, θ, y) ∂2φ

∂θ∂θ (x, θ, y)

)
=

(
0 ∂ 2S

∂x∂θ (x, θ)
−In ∂ 2S

∂θ∂θ (x, θ)

)
and ∣∣ detD(φ)(x, θ, y)

∣∣ = ∣∣ det
∂2S

∂x∂θ
(x, θ)

∣∣ ≥ δ0.

Remark 3.2. By the global implicit function theorem (cf. [14], [3, theorem 4.1.7])
and using (G1), (G2) and (G4), we can easily see that the mappings h1 and h2

defined by

h1 : (x, θ) → (x, ∂xS(x, θ)), h2 : (x, θ) → (θ, ∂θS(x, θ))

are global diffeomorphism of R2n. Indeed,

h′1(x, θ) =

(
In

∂2S
∂x2 (x, θ)

0 ∂2S
∂x∂θ (x, θ)

)
, h′2(x, θ) =

(
0 ∂2S

∂x∂θ (x, θ)
In

∂2S
∂θ2 (x, θ)

)
.

and |deth′1(x, θ)| = |deth′2(x, θ)| = |det ∂2S
∂x∂θ (x, θ)| ≥ δ0 > 0, for all (x, θ) ∈ R2n.

Then

‖(h′1(x, θ))−1‖ =
1

|det ∂2S
∂x∂θ (x, θ)|

‖tA(x, θ)‖

‖(h′2(x, θ))−1‖ =
1

|det ∂2S
∂x∂θ (x, θ)|

‖tB(x, θ)‖,

where A(x, θ), B(x, θ) are respectively the cofactor matrix of h′1(x, θ), h
′
2(x, θ). By

(G2), we know that ‖tA(x, θ)‖ and ‖tB(x, θ)‖ are uniformly bounded.

Let’s now assume that S satisfies the following condition which is stronger than
(G2).

(G5) For all (α, β) ∈ Nn × Nn, there exist Cα,β > 0, such that

|∂α
x ∂

β
θ S(x, θ)| ≤ Cα,βλ(x, θ)(2−|α|−|β|).

Lemma 3.3. If S satisfies (G1), (G4) and (G5), then S satisfies (G3) and (G3*).
Also there exists C5 > 0 such that for all (x, θ), (x′, θ′) ∈ R2n,

|x− x′|+ |θ − θ′| ≤ C5

[
|(∂θS)(x, θ)− (∂θS)(x′, θ′)|+ |θ − θ′|

]
(3.2)

Proof. The mappings

Rn 3 θ → fx(θ) = ∂xS(x, θ), Rn 3 x→ gθ(x) = ∂θS(x, θ)

are global diffeomorphisms of Rn. From (G4) and (G5), it follows that ‖(f−1
x )′‖,

‖(g−1
θ )′‖ and ‖(h−1

2 )′‖ are uniformly bounded on R2n. Thus (G5) and the Taylor’s
theorem lead to the following estimates: There exist M,N > 0, such that for all
(x, θ), (x′, θ′) ∈ R2n,

|θ| = | f−1
x (fx(θ))− f−1

x (fx(0))| ≤M |∂xS(x, θ)− ∂xS(x, 0)| ≤ C6λ(x, ∂xS),
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with C6 > 0;

|x| = | g−1
θ (gθ(θ))− g−1

θ (gθ(0))| ≤ N |∂θS(x, θ)− ∂θS(0, θ)| ≤ C7λ(∂θS, θ),

with C7 > 0;

|(x, θ)− (x′, θ′)| = |h−1
2 (h2(x, θ))− h−1

2 (h2(x′, θ′))|
≤ C5|(θ, ∂θS (x, θ))− (θ′, ∂θS (x′, θ′))|

�

When θ = θ′ in (3.2), there exists C5 > 0, such that for all (x, x′, θ) ∈ R3n,

|x− x′| ≤ C5|(∂θS)(x, θ)− (∂θS)(x′, θ)|. (3.3)

Proposition 3.4. If S satisfies (G1) and (G5), then there exists a constant ε0 > 0
such that the phase function φ given in (3.1) belongs to Γ2

1(Ωφ,ε0) where

Ωφ,ε0 =
{
(x, θ, y) ∈ R3n; |∂θS(x, θ)− y|2 < ε0 (|x|2 + |y|2 + |θ|2)

}
.

Proof. We have to show that: There exists ε0 > 0, such that for all α, β, γ ∈ Nn,
there exist Cα,β,γ > 0:

|∂α
x ∂

β
θ ∂

γ
yφ(x, θ, y)| ≤ Cα,β,γλ(x, θ, y)(2−|α|−|β|−|γ|), ∀(x, θ, y) ∈ Ωφ,ε0 . (3.4)

If |γ| = 1, then

|∂α
x ∂

β
θ ∂

γ
yφ(x, θ, y)| = |∂α

x ∂
β
θ (−θ)| =

{
0 if |α| 6= 0
|∂β

θ (−θ)| if α = 0;

If |γ| > 1, then |∂α
x ∂

β
θ ∂

γ
yφ(x, θ, y)| = 0.

Hence the estimate (3.4) is satisfied.
If |γ| = 0, then for all α, β ∈ Nn; |α|+ |β| ≤ 2, there exists Cα,β > 0 such that

|∂α
x ∂

β
θ φ(x, θ, y)| = |∂α

x ∂
β
θ S(x, θ)− ∂α

x ∂
β
θ (yθ)| ≤ Cα,βλ(x, θ, y)(2−|α|−|β|).

If |α|+ |β| > 2, one has ∂α
x ∂

β
θ φ(x, θ, y) = ∂α

x ∂
β
θ S(x, θ). In Ωφ,ε0 we have

|y| = |∂θS(x, θ)− y − ∂θS(x, θ)| ≤
√
ε0(|x|2 + |y|2 + |θ|2)1/2 + C8λ(x, θ),

with C8 > 0. For ε0 sufficiently small, we obtain a constant C9 > 0 such that

|y| ≤ C9λ(x, θ), ∀(x, θ, y) ∈ Ωφ,ε0 . (3.5)

This inequality leads to the equivalence

λ(x, θ, y) ' λ(x, θ) in Ωφ,ε0 (3.6)

thus the assumption (G5) and (3.6) give the estimate (3.4). �

Using (3.6), we have the following result.

Proposition 3.5. If (x, θ) → a(x, θ) belongs to Γm
k (Rn

x × Rn
θ ), then (x, θ, y) →

a(x, θ) belongs to Γm
k (Rn

x × Rn
θ × Rn

y ) ∩ Γm
k (Ωφ,ε0 ), k ∈ {0, 1}.
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4. L2-boundedness and L2-compactness of F

The main result is as follows.

Theorem 4.1. Let F be the integral operator of distribution kernel

K(x, y) =
∫

Rn

ei(S(x,θ)−yθ)a(x, θ)d̂θ (4.1)

where d̂θ = (2π)−n dθ, a ∈ Γm
k (R 2n

x,θ), k = 0, 1 and S satisfies (G1), (G4) and (G5).
Then FF ∗ and F ∗F are pseudodifferential operators with symbol in Γ2m

k (R2n),
k = 0, 1, given by

σ(FF ∗)(x, ∂xS(x, θ)) ≡ |a(x, θ)|2|(det
∂2S

∂θ∂x
)−1(x, θ)|

σ(F ∗F )(∂θS(x, θ), θ) ≡ |a(x, θ)|2|(det
∂2S

∂θ∂x
)−1(x, θ)|

we denote here a ≡ b for a, b ∈ Γ2p
k (R2n) if (a− b) ∈ Γ2p−2

k (R2n) and σ stands for
the symbol.

Proof. If u ∈ S(Rn), then Fu(x) is given by

Fu(x) =
∫

Rn

K(x, y)u(y) dy

=
∫

Rn

∫
Rn

ei(S(x,θ)−yθ)a(x, θ)u(y)dyd̂θ

=
∫

Rn

eiS(x,θ)a(x, θ)
(∫

Rn

e−iyθu(y)dy
)
d̂θ

=
∫

Rn

eiS(x,θ)a(x, θ)Fu(θ)d̂θ.

(4.2)

Here F is a continuous linear mapping from S(Rn) to S(Rn) (by Theorem 2.1). Let
v ∈ S(Rn), then

〈Fu, v〉L2(Rn) =
∫

Rn

(∫
Rn

eiS(x,θ)a(x, θ)Fu(θ)d̂θ
)
v(x) dx

=
∫

Rn

Fu(θ)
(∫

Rn

e−iS(x,θ)a(x, θ)v(x) dx
)
d̂θ

thus
〈Fu(x), v(x)〉L2(Rn) = (2π)−n〈Fu(θ),F((F ∗v))(θ)〉L2(Rn)

where
F((F ∗v))(θ) =

∫
Rn

e−iS(ex,θ)a(x̃, θ)v(x̃)dx̃. (4.3)

Hence, for all v ∈ S(Rn),

(FF ∗v)(x) =
∫

Rn

∫
Rn

ei(S(x,θ)−S(ex,θ))a(x, θ)a(x̃, θ)dx̃d̂θ. (4.4)

The main idea to show that FF ∗ is a pseudodifferential operator, is to use the fact
that (S(x, θ) − S(x̃, θ)) can be expressed by the scalar product 〈x − x̃, ξ(x, x̃, θ)〉
after considering the change of variables (x, x̃, θ) → (x, x̃, ξ = ξ(x, x̃, θ)).

The distribution kernel of FF ∗ is

K(x, x̃) =
∫

Rn

ei(S(x,θ)−S(x̃,θ))a(x, θ)a(x̃, θ)d̂θ.
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We obtain from (3.3) that if |x− x̃| ≥ ε
2λ(x, x̃, θ) (where ε > 0 is sufficiently small)

then
|(∂θS)(x, θ)− (∂θS)(x̃, θ)| ≥ ε

2C5
λ(x, x̃, θ). (4.5)

Choosing ω ∈ C∞(R) such that

ω(x) ≥ 0, ∀x ∈ R

ω(x) = 1 if x ∈ [−1
2
,
1
2
]

suppω ⊂]− 1, 1[

and setting

b(x, x̃, θ) := a(x, θ)a(x̃, θ) = b1,ε(x, x̃, θ) + b2,ε(x, x̃, θ)

b1,ε(x, x̃, θ) = ω(
|x− x̃|

ελ(x, x̃, θ)
)b(x, x̃, θ)

b2,ε(x, x̃, θ) = [1− ω(
|x− x̃|

ελ(x, x̃, θ)
)]b(x, x̃, θ).

We have K(x, x̃) = K1,ε(x, x̃) +K2,ε(x, x̃), where

Kj,ε(x, x̃) =
∫

Rn

ei(S(x,θ)−S(x̃,θ))bj,ε(x, x̃, θ)d̂θ, j = 1, 2.

We will study separately the kernels K1,ε and K2,ε.
On the support of b2,ε, inequality (4.5) is satisfied and we have

K2,ε(x, x̃) ∈ S(Rn × Rn).

Indeed, using the oscillatory integral method, there is a linear partial differential
operator L of order 1 such that

L
(
ei(S(x,θ)−S(x̃,θ))

)
= ei(S(x,θ)−S(x̃,θ))

where

L = −i|(∂θS)(x, θ)− (∂θS)(x̃, θ)|−2
n∑

l=1

[(∂θl
S)(x, θ)− (∂θl

S)(x̃, θ)] ∂θl
.

The transpose operator of L is

tL =
n∑

l=1

Fl(x, x̃, θ)∂θl
+G(x, x̃, θ)

where Fl(x, x̃, θ) ∈ Γ−1
0 (Ωε), G(x, x̃, θ) ∈ Γ−2

0 (Ωε),

Fl(x, x̃, θ) = i|(∂θS)(x, θ)− (∂θS)(x̃, θ)|−2((∂θl
S)(x, θ)− (∂θl

S)(x̃, θ)),

G(x, x̃, θ) = i
n∑

l=1

∂θl

[
|(∂θS)(x, θ)− (∂θS)(x̃, θ)|−2((∂θl

S)(x, θ)− (∂θl
S)(x̃, θ))

]
,

Ωε =
{
(x, x̃, θ) ∈ R3n : |∂θS(x, θ)− ∂θS(x̃, θ)| > ε

2C5
λ(x, x̃, θ)

}
.

On the other hand we prove by induction on q that

(tL)qb2,ε(x, x̃, θ) =
∑

|γ|≤q, γ∈Nn

gγ,q(x, x̃, θ)∂
γ
θ b2,ε(x, x̃, θ), g(q)

γ ∈ Γ−q
0 (Ωε),
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and so,

K2,ε(x, x̃) =
∫

Rn

ei(S(x,θ)−S(x̃,θ))(tL)qb2,ε(x, x̃, θ)d̂θ.

Using Leibnitz’s formula, (G5) and the form (tL)q, we can choose q large enough
such that for all α, α′, β, β′ ∈ Nn,∃Cα,α′,β,β′ > 0,

sup
x,ex∈Rn

|xαx̃α′
∂β

x∂
β′ex K2,ε(x, x̃)| ≤ Cα,α′,β,β′ .

Next, we study Kε
1: this is more difficult and depends on the choice of the

parameter ε. It follows from Taylor’s formula that

S(x, θ)− S(x̃, θ) = 〈x− x̃, ξ(x, x̃, θ)〉Rn ,

ξ(x, x̃, θ) =
∫ 1

0

(∂xS)(x̃+ t(x− x̃), θ)dt.

We define the vectorial function

ξ̃ε(x, x̃, θ) = ω
( |x− x̃|
2ελ(x, x̃, θ)

)
ξ(x, x̃, θ) +

(
1− ω(

|x− x̃|
2ελ(x, x̃, θ)

)
)
(∂xS)(x̃, θ).

We have
ξ̃ε(x, x̃, θ) = ξ(x, x̃, θ) on supp b1,ε.

Moreover, for ε sufficiently small,

λ(x, θ) ' λ(x̃, θ) ' λ(x, x̃, θ) on supp b1,ε. (4.6)

Let us consider the mapping

R3n 3 (x, x̃, θ) → (x, x̃, ξ̃ε(x, x̃, θ)) (4.7)

for which Jacobian matrix is  In 0 0
0 In 0

∂xξ̃ε ∂exξ̃ε ∂θ ξ̃ε

 .

We have

∂ξ̃ε,j
∂θi

(x, x̃, θ)

=
∂2S

∂θi∂xj
(x̃, θ) + ω

( |x− x̃|
2ελ(x, x̃, θ)

)(∂ξj
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

)
− |x− x̃|

2ελ(x, x̃, θ)
∂λ

∂θi
(x, x̃, θ)λ−1(x, x̃, θ)ω′

( |x− x̃|
2ελ(x, x̃, θ)

)(
ξj(x, x̃, θ)−

∂S

∂xj
(x̃, θ)

)
.

Thus, we obtain∣∣∂ξ̃ε,j
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣
≤
∣∣ω(

|x− x̃|
2ελ(x, x̃, θ)

)
∣∣∣∣∂ξj
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣
+ λ−1(x, x̃, θ)

∣∣ω′( |x− x̃|
2ελ(x, x̃, θ)

)
∣∣∣∣ξj(x, x̃, θ)− ∂S

∂xj
(x̃, θ)

∣∣.
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Now it follows from (G5), (4.6) and Taylor’s formula that

∣∣∂ξj
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣ ≤ ∫ 1

0

∣∣ ∂2S

∂θi∂xj
(x̃+ t(x− x̃), θ)− ∂2S

∂θi∂xj
(x̃, θ)

∣∣dt
≤ C10|x− x̃|λ−1(x, x̃, θ), C10 > 0

(4.8)

∣∣ξj(x, x̃, θ)− ∂S

∂xj
(x̃, θ)

∣∣ ≤ ∫ 1

0

∣∣ ∂S
∂xj

(x̃+ t(x− x̃), θ)− ∂S

∂xj
(x̃, θ)

∣∣dt
≤ C11|x− x̃|, C11 > 0 .

(4.9)

From (4.8) and (4.9), there exists a positive constant C12 > 0 such that

|∂ξ̃ε,j
∂θi

(x, x̃, θ)− ∂2S

∂θi∂xj
(x̃, θ)| ≤ C12ε, ∀i, j ∈ {1, . . . , n}. (4.10)

If ε < δ0

2 eC , then (4.10) and (G4) yields the estimate

δ0/2 ≤ −C̃ε+ δ0 ≤ −C̃ε+ det
∂2S

∂x∂θ
(x, θ) ≤ det ∂θ ξ̃ε(x, x̃, θ), (4.11)

with C̃ > 0 If ε is such that (4.6) and (4.11) hold, then the mapping given in (4.7)
is a global diffeomorphism of R3n. Hence there exists a mapping

θ : Rn × Rn × Rn 3 (x, x̃, ξ) → θ(x, x̃, ξ) ∈ Rn

such that
ξ̃ε(x, x̃, θ(x, x̃, ξ)) = ξ

θ(x, x̃, ξ̃ε(x, x̃, θ)) = x

∂αθ(x, x̃, ξ) = O(1), ∀α ∈ N3n\{0}

(4.12)

If we change the variable ξ by θ(x, x̃, ξ) in K1,ε(x, x̃), we obtain

K1,ε(x, x̃) =
∫

Rn

ei〈x−x̃,ξ〉b1,ε(x, x̃, θ(x, x̃, ξ))
∣∣ det

∂θ

∂ξ
(x, x̃, ξ)

∣∣d̂ξ. (4.13)

From (4.12) we have, for k = 0, 1, that b1,ε(x, x̃, θ(x, x̃, ξ))|det ∂θ
∂ξ (x, x̃, ξ)| belongs

to Γ2m
k (R3n) if a ∈ Γm

k (R2n).
Applying the stationary phase theorem (c.f. [12] ) to 4.13, we obtain the expres-

sion of the symbol of the pseudodifferential operator FF ∗,

σ(FF ∗) = b1,ε(x, x̃, θ(x, x̃, ξ))
∣∣ det

∂θ

∂ξ
(x, x̃, ξ)

∣∣
|ex=x

+R(x, ξ)

where R(x, ξ) belongs to Γ2m−2
k (R2n) if a ∈ Γm

k (R2n), k = 0, 1.
For x̃ = x, we have b1,ε(x, x̃, θ(x, x̃, ξ)) = |a(x, θ(x, x, ξ))|2 where θ(x, x, ξ) is the

inverse of the mapping θ → ∂xS(x, θ) = ξ. Thus

σ(FF ∗)(x, ∂xS(x, θ)) ≡ |a(x, θ)|2
∣∣ det

∂2S

∂θ∂x
(x, θ)

∣∣−1
.
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From (4.2) and (4.3), we obtain the expression of F ∗F : ∀v ∈ S(Rn),

(F(F ∗F )F−1)v(θ) =
∫

Rn

e−iS(x,θ)a(x, θ)(F (F−1v))(x)dx

=
∫

Rn

e−iS(x,θ)a(x, θ)
(∫

Rn

eiS(x,eθ)a(x, θ̃)(F(F−1v))(θ̃)d̂θ̃
)
dx

=
∫

Rn

∫
Rn

e−i(S(x,θ)−S(x,θ̃)) a(x, θ) a(x, θ̃)v(θ̃)d̂θ̃dx.

Hence the distribution kernel of the integral operator F(F ∗F )F−1 is

K̃(θ, θ̃) =
∫

Rn

e−i(S(x,θ)−S(x,θ̃))a(x, θ)a(x, θ̃)d̂x.

We remark that we can deduce K̃(θ, θ̃) from K(x, x̃) by replacing x by θ. On
the other hand, all assumptions used here are symmetrical on x and θ; therefore,
F(F ∗F )F−1 is a nice pseudodifferential operator with symbol

σ(F(F ∗F )F−1)(θ,−∂θS(x, θ)) ≡ |a(x, θ)|2
∣∣ det

∂2S

∂x∂θ
(x, θ)

∣∣−1
.

Thus the symbol of F ∗F is given by (c.f. [9])

σ(F ∗F )(∂θS(x, θ), θ) ≡ |a(x, θ)|2
∣∣ det

∂2S

∂x∂θ
(x, θ)

∣∣−1
.

�

Corollary 4.2. Let F be the integral operator with the distribution kernel

K(x, y) =
∫

Rn

ei(S(x,θ)−yθ)a(x, θ)d̂θ

where a ∈ Γm
0 (R2n

x,θ) and S satisfies (G1), (G4) and (G5). Then, we have:
(1) For any m such that m ≤ 0, F can be extended as a bounded linear mapping

on L2(Rn)
(2) For any m such that m < 0, F can be extended as a compact operator on

L2(Rn).

Proof. It follows from Theorem 4.1 that F ∗F is a pseudodifferential operator with
symbol in Γ2m

0 (R2n).
(1) If m ≤ 0, the weight λ2m(x, θ) is bounded, so we can apply the Caldéron-
Vaillancourt theorem (see [2, 12, 13]) for F ∗F and obtain the existence of a positive
constant γ(n) and a integer k(n) such that

‖(F ∗F ) u‖L2(Rn) ≤ γ(n) Qk(n)(σ(FF ∗))‖u‖L2(Rn), ∀u ∈ S(Rn)

where

Qk(n)(σ(FF ∗)) =
∑

|α|+|β|≤k(n)

sup
(x,θ)∈R2n

∣∣∂α
x ∂

β
θ σ(FF ∗)(∂θS(x, θ), θ)

∣∣
Hence, for all u ∈ S(Rn),

‖Fu‖L2(Rn) ≤ ‖F ∗F‖1/2

L(L2(Rn))
‖u‖L2(Rn) ≤ (γ(n) Qk(n)(σ(FF ∗)))1/2‖u‖L2(Rn).

Thus F is also a bounded linear operator on L2(Rn).
(2) If m < 0, lim|x|+|θ|→+∞ λm(x, θ) = 0, and the compactness theorem (see [12,
13]) show that the operator F ∗F can be extended as a compact operator on L2(Rn).
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Thus, the Fourier integral operator F is compact on L2(Rn). Indeed, let (ϕj)j∈N
be an orthonormal basis of L2(Rn), then

‖F ∗F −
n∑

j=1

〈ϕj , .〉F ∗Fϕj‖ → 0 as n→ +∞.

Since F is bounded, for all ψ ∈ L2(Rn),∥∥Fψ − n∑
j=1

〈ϕj , ψ〉Fϕj

∥∥2 ≤
∥∥F ∗Fψ − n∑

j=1

〈ϕj , ψ〉F ∗Fϕj

∥∥∥∥ψ − n∑
j=1

〈ϕj , ψ〉ϕj

∥∥,
it follows that

‖F −
n∑

j=1

〈ϕj , .〉Fϕj‖ → 0 as n→ +∞

�

Example 4.3. We consider the function given by

S(x, θ) =
∑

|α|+|β|=2, α,β∈Nn

Cα,βx
αθβ , for (x, θ) ∈ R2n

where Cα,β are real constants. This function satisfies (G1), (G4) and (G5).
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