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ASYMPTOTICALLY ALMOST PERIODIC AND ALMOST
PERIODIC SOLUTIONS FOR A CLASS OF PARTIAL

INTEGRODIFFERENTIAL EQUATIONS

EDUARDO HERNÁNDEZ M., JOSÉ PAULO C. DOS SANTOS

Abstract. In this note, we establish the existence of asymptotically almost
periodic and almost periodic solutions for a class of partial integrodifferential

equations.

1. Introduction

In this short note, we study the existence of asymptotically almost periodic and
almost periodic solutions for a class of abstract partial integrodifferential equations
of the form

u′(t) = Au(t) +
∫ t

0

B(t− s)u(s)ds + g(t, u(t)), (1.1)

u(0) = x0, (1.2)

where A : D(A) ⊂ X → X, B(t) : D(B(t)) ⊂ X → X, t ≥ 0, are linear, closed and
densely defined operators on a Banach space X; D(B(t)) ⊃ D(A) for every t ≥ 0
and g(·) is a continuous function.

Abstract partial integrodifferential equations arise in many areas of applied
mathematics and for this reason this type of equation has received much atten-
tion in recent years, see for example [8, 10, 13, 14]. The existence and qualitative
properties of solutions for different types of abstracts partial integrodifferential sys-
tems have been treated in several works, see for instance [11, 12] and the associated
references.

The existence of almost periodic and asymptotically almost periodic solutions is
one of the most attracting topics in the qualitative theory of differential equations
due to their significance in physical sciences. For the cases of ordinary differential
equations and abstract partial differential equations, this problem has been treated
in several works and respect to this matter we cite [4, 5, 15, 22, 18, 19, 20, 21] and
the references therein.

The almost periodicity of solutions of abstract partial integrodifferential equa-
tions have been studied in some research works. Prüss studied in [16] conditions
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under which a solution of u′(t) = Au(t) +
∫∞
0

dB(r)u(t− r) + g(t) is periodic or al-
most periodic if g has the corresponding property. On the other hand, Jakubowski
& Ruess investigated in [9] when some asymptotic properties (such as asymptotic
almost periodicity and weak almost periodicity in the sense of Eberlein) of the
forcing term g are inherited by the solutions of the integrodifferential equation

d

dt

(
κ(u(t)− u(0)) +

∫ t

0

K(t− s)(u(s)− u(0))ds
)

+ Au(t) 3 g(t),

where A is a multi-valued m-accretive operator. To the best of our knowledge, the
study of the existence of asymptotically almost periodic and almost periodic solu-
tions for semi-linear integrodifferential equation (the case f(t, u(t))) is a untreated
topic, and this fact is the main motivation of this work.

To obtain our results we will use the theory of resolvent of bounded linear op-
erators. This theory is related to partial integrodifferential equations in the same
manner that semigroup theory is related to first order linear partial differential equa-
tions. The existence of solutions and wellposedness of (1.1)-(1.2), (equivalently, the
existence of a resolvent of bounded linear operators associated to (1.1)-(1.2)), have
been considered in many works and under different assumptions on the operators
A,B(t). For additional details respect this theory and their applications to partial
integrodifferential equations, we suggest the reader the Grimmer works [3, 6, 7].

Next, we review some notations and properties needed to establish our results.
In this paper, (X, ‖ · ‖) is a abstract Banach space; A : D(A) ⊂ X → X and
B(t) : D(B(t)) ⊂ X → X, t ≥ 0, are linear, closed and densely defined operator on
X with D(B(t)) ⊃ D(A) for each t ≥ 0. To obtain our results we will assume that
the integrodifferential abstract Cauchy problem

x′(t) = Ax(t) +
∫ t

0

B(t− s)x(s)ds, t > 0, (1.3)

x(0) = x0 ∈ X, (1.4)

has associated a resolvent operator (R(t))t≥0 on X.

Definition 1.1. A one parameter family (R(t))t≥0 of bounded linear operators
from X into X is called a strongly continuous resolvent operator for (1.3)-(1.4) if
the following conditions are verified.

(i) R(0) = Id and the function R(t)x is continuous on [0,∞) for every x ∈ X.
(ii) R(t)D(A) ⊂ D(A) for all t ≥ 0 and for x ∈ D(A), AR(t)x is continuous on

[0,∞) and R(t)x is continuously differentiable on [0,∞).
(iii) For x ∈ D(A), the next resolvent equations are verified,

R′(t)x = AR(t)x +
∫ t

0

B(t− s)R(s)xds, t ≥ 0,

R′(t)x = R(t)Ax +
∫ t

0

R(t− s)B(s)xds. t ≥ 0.

In this paper, we always assume that the resolvent operator (R(t))t≥0 is uni-
formly exponentially stable and that M̃, δ are positive constants such that ‖R(t)‖ ≤
M̃e−δt for every t ≥ 0.

In the sequel, we mention a few results, definitions and notations related to
asymptotically almost periodic and almost periodic functions. Next, (Z, ‖ · ‖Z),
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(W, ‖ · ‖W ) are Banach spaces and C0([0,∞);Z) is the subspace of C([0,∞);Z)
formed by the functions that vanishes at infinity.

Definition 1.2. A set P ⊂ R is said to be relatively dense in R if there exists a
number l > 0 such that [a, a + l ]

⋂
P 6= ∅ for every a ∈ R.

Definition 1.3. A function F ∈ C(R;Z) is called almost periodic (a.p.) if for
every ε > 0 there exists a relatively dense subset of R, denoted by H(ε, F, Z), such
that ‖F (t + ξ)− F (t)‖Z < ε for every t ∈ R and all ξ ∈ H(ε, F, Z).

Definition 1.4. A function F ∈ C([0,∞);Z) is called asymptotically almost peri-
odic (a.a.p.) if there exists an almost periodic function g(·) and w ∈ C0([0,∞);Z)
such that F (·) = g(·) + w(·).

The next Lemma is a useful characterization of a.a.p function.

Lemma 1.5. [19, Theorem 5.5] A function F ∈ C([0,∞);Z) is asymptotically
almost periodic if and only if, for every ε > 0 there exists L(ε, F, Z) > 0 and a
relatively dense subset of [0,∞), denoted by T (ε, F, Z), such that

‖F (t + ξ)− F (t)‖Z < ε, t ≥ L(ε, F, Z), ξ ∈ T (ε, F, Z).

In this paper, AP (Z) and AAP (Z) are the spaces

AP (Z) = {F ∈ C(R;Z) : F is a.p.},
AAP (Z) = {F ∈ C([0,∞);Z) : F is a.a.p.},

endowed with the norms | ‖u‖
∣∣
Z

= sups∈R ‖u(s)‖ and ‖u‖Z = sups≥0 ‖u(s)‖ re-
spectively. We know from [19] that AP (Z) and AAP (Z) are Banach spaces.

Definition 1.6. Let Ω be an open subset of W .
(a) A function F ∈ C(R× Ω; Z) is called pointwise almost periodic (p.a.p.) if

F (·, x) ∈ AP (Z) for every x ∈ Ω.
(b) A function F ∈ C([0,∞)× Ω; Z) is called pointwise asymptotically almost

periodic (p.a.a.p.) if F (·, x) ∈ AAP (Z) for every x ∈ Ω.
(c) A function F ∈ C(R×Ω; Z) is called uniformly almost periodic (u.a.p.), if

for every ε > 0 and every compact K ⊂ Ω there exists a relatively dense
subset of R, denoted by H(ε, F,K, Z), such that

‖F (t + ξ, y)− F (t, y)‖Z ≤ ε (t, ξ, y) ∈ R×H(ε, F,K, Z)×K.

(d) A function F : C([0,∞) × Ω; Z) is called uniformly asymptotically almost
periodic (u.a.a.p.), if for every ε > 0 and every compact K ⊂ Ω there
exists a relatively dense subset of [0,∞), denoted by T (ε, F,K, Z), and a
constant L(ε, F,K, Z) > 0 such that

‖F (t + ξ, y)− F (t, y)‖Z ≤ ε, t ≥ L(ε, F,K, Z), (ξ, y) ∈ T (ε, F, K, Z)×K.

The next lemma summarize some properties which are fundamental to obtain
our results. This results can be obtained from [18, Theorem 1.2.7].

Lemma 1.7. Let Ω ⊂ W be an open set. Then the following properties hold.
(a) If F ∈ C(R × Ω; Z) is p.a.p. and satisfies a local Lipschitz condition at

x ∈ Ω, uniformly at t, then F is u.a.p.
(b) If F ∈ C([0,∞)×Ω; Z) is p.a.a.p. and satisfies a local Lipschitz condition

at x ∈ Ω, uniformly at t, then F is u.a.a.p.
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(c) If F ∈ C(R×Ω; Z) is u.a.p. and y ∈ AP (W ) is such that {y(t) : t ∈ R}
W
⊂

Ω, then F (t, y(t)) ∈ AP (Z).

(d) If F ∈ C([0,∞)×Ω; Z) is u.a.a.p; y ∈ AAP (W ) and {y(t) : t ≥ 0}
W
⊂ Ω,

then F (t, y(t)) ∈ AAP (Z).

2. Existence Results

In this section we study the existence of asymptotically almost periodic and
almost periodic solutions of (1.1). The next result is proved using the ideas and
estimates in [19, Example 2.2].

Lemma 2.1. Let v ∈ AAP (X) and u : [0,∞) → X be the function defined by

u(t) =
∫ t

0

R(t− s)v(s)ds, t ≥ 0.

Then u ∈ AAP (X).

To prove our existence results we always assume that the next condition holds.
(H1) The function g : R × X → X is continuous and there exists a continuous

and nondecreasing function Lg : [0,∞) → [0,∞) such that

‖g(t, x1)− g(t, x2)‖ ≤ Lg(r)‖x1 − x2‖, t ∈ R, xi ∈ Br(0, X).

From Grimmer [6], we adopt the following concept of mild solutions of (1.1).

Definition 2.2. A function u ∈ AAP (X) is a asymptotically almost periodic mild
solution of system (1.1) if

u(t) = R(t)u(0) +
∫ t

0

R(t− s)g(s, u(s))ds, t ≥ 0.

Definition 2.3. A function u ∈ AP (X) is a almost periodic mild solution of system
(1.1) if

u(t) = R(t− σ)u(σ) +
∫ t

σ

R(t− s)g(s, u(s))ds, t, σ ∈ R, t ≥ σ.

Remark 2.4. It is easy to see that u ∈ AP (X) is a almost periodic mild solution
of system (1.1) if, and only if,

u(t) =
∫ t

−∞
R(t− s)g(s, u(s))ds, t ∈ R.

Now, we can to establish our first existence result.

Theorem 2.5. Assume that g(·) is p.a.a.p. If Lg(0) = 0 and g(t, 0) = 0 for
every t ∈ R, then there exists ε > 0 such that for each x0 ∈ Bε(0, X) there exists a
asymptotically almost periodic mild solution u(·, x0) of (1.1) such that u(0, x0) = x0.

Proof. Let r > 0 and 0 < λ < 1 be such that M̃λ +
fMLg(r)

δ < 1. We affirm that
the assertion holds for ε = λr. In fact, let x0 ∈ Bε(0, X). On the space

D = {u ∈ AAP (X) : u(0) = x0, ‖u(t)‖ ≤ r, t ≥ 0}
endowed with the metric d(u, v) = ‖u−v‖X , we define the map Γ : D → C([0,∞);X)
by

Γu(t) = R(t)x0 +
∫ t

0

R(t− s)g(s, u(s))ds, t ≥ 0.
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From the properties of (R(t))t≥0 and g(·), we infer that Γu(·) is well defined and
that Γu ∈ C([0,∞);X). Moreover, from Lemmas 1.7 and 2.1 it follows that Γu ∈
AAP (X).

Now, we prove that Γ(·) is a contraction from D into D. From the definition of
Γ, for u ∈ D and t ≥ 0 we get

‖Γu(t)‖ ≤ M̃λr +
∫ t

0

M̃e−δ(t−s)Lg(r)rds ≤
(
M̃λ +

M̃Lg(r)
δ

)
r,

which implies that Γ(D) ⊂ D. On the other hand, for u, v ∈ D we see that

‖Γu(t)− Γv(t)‖ ≤ M̃

∫ t

0

Lg(r)e−δ(t−s)‖u(s)− v(s)‖ds

≤ M̃Lg(r)
δ

‖u− v‖X ,

which shows that Γ(·) is a contraction from D into D. The assertion of the theorem
is now a consequence of the contraction mapping principle. �

The next result is proved using the ideas and estimates in the proof of the
previous theorem. The proof will be omit.

Theorem 2.6. If g(·) is p.a.a.p; Lg(t) = Lg for all t ≥ 0 and
fMLg

δ < 1, then for
every x0 ∈ X there exists a unique asymptotically almost periodic mild solution
u(·, x0) of (1.1) such that u(0, x0) = x0.

Now we discuss the existence of almost periodic solution for (1.1). In the next
results, we will assume that g(t, x) = p(t, x)+ϕ(t), (t, x) ∈ R×X, where ϕ ∈ AP (X)
and the following condition.

(H2) The function p : R × X → X is continuous and there exists a continuous
and nondecreasing function Lp : R → [0,∞) such that

‖p(t, x1)− p(t, x2)‖ ≤ Lp(r)‖x1 − x2‖, t ∈ R, xi ∈ Br(0, X).

Theorem 2.7. Assume that p(·) is p.a.p. If Lp(0) = 0 and p(t, 0) = 0 for every
t ∈ R, then there exists η > 0 such that for every ϕ ∈ Bη(0, AP (X)) there exists a
unique almost periodic mild solution of (1.1).

Proof. Let 1 > r > 0 and η > 0 be such that fM
δ (Lp(r)r + η) < r. On the space

Br = {u ∈ AP (X) :| ‖u‖
∣∣
X
≤ r} we define the operator Γ : Br → Cb(R;X) by

Γu(t) =
∫ t

−∞
R(t− s)g(s, u(s))ds, t ∈ R.

From the assumption, it is easy to see that Γu(·) is continuous and from Lemma 1.7
we infer that v(t) = g(t, u(t)) ∈ AP (X). Consequently, for t ∈ R and ξ ∈ H(ε, v, X)
we get

‖Γu(t + ξ)− Γu(t)‖ ≤
∫ t

−∞
M̃e−δ(t−s)‖g(s + ξ, u(s + ξ))− g(s, u(s))‖ds

≤
∫ t

−∞
M̃e−δ(t−s)ε ds ≤ M̃ε

δ
,
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which implies that Γu ∈ AP (X). Moreover, for u ∈ Br we see that

‖Γu(t)‖ ≤
∫ t

−∞
M̃e−δ(t−s)Lg(r)‖u(s)‖ds +

∫ t

−∞
M̃e−δ(t−s) | ‖ϕ‖|ds

≤ M̃

δ
(Lg(r)r + η)

which shows that Γ(Br) ⊂ Br. On the other hand, for u, v ∈ Br we find that

‖Γu(t)− Γv(t)‖ ≤
∫ t

−∞
M̃e−δ(t−s)Lg(r)‖u(s)− v(s)‖ds

≤ M̃Lg(r)
δ

| ‖u− v‖
∣∣
X

,

which allow us conclude that Γ is a contraction from Br into Br.
The existence of an almost periodic mild solution for (1.1) is now a consequence

of the contraction on mapping principle. This completes the proof. �

In a similar manner we can prove the next result.

Theorem 2.8. Assume condition (H2) holds and that p(·) is p.a.p. If Lg(t) = Lg

for all t ≥ 0 and
fMLg

δ < 1, then there exists a unique almost periodic mild solution
of (1.1).

3. Example

In this section we apply our abstract results to establish the existence of almost
periodic and asymptotically almost periodic solutions for the partial integrodiffer-
ential differential

Cθ′′(t) + β(0)θ′(t) = α(0)∆θ(t)−
∫ t

0

β′(t− s)θ′(s)ds

+
∫ t

0

α′(t− s)∆θ(s)ds + a1(t)a2(θ(t)),
(3.1)

which arise in the study of heat conduction in materials with fading memory, see
[14, 7, 2].

In the sequel, X = H1
0 (Ω) × L2(Ω) where Ω ⊂ R3 is a open set with smooth

boundary of class C∞; α(·), β(·) are R-valued functions of class C2 on [0,∞) with
α(0) > 0, β(0) > 0 and A : D(A) = (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) → X is the operator

defined by

A

[
x
y

]
=

[
y

α(0)∆− β(0)y

]
where ∆ is the Laplacian on Ω with boundary condition θ

∣∣
∂Ω

= 0. We know from
Chen [1], that A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X

and that there are positive constant M̃, γ such that ‖T (t)‖ ≤ M̃e−γt for all t ≥ 0.
Let B(t) = AF (t) where F (t) : X → X, t ≥ 0, is defined by

F = (Fij) =

[
0 0

−β′(t) + β(0)α′(t)
α(0)

α′(t)
α(0)

]
.
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Assume functions α(i)(·), β(i)(·), i = 1, 2, be bounded, uniformly continuous and
that

max{‖F22(t)‖, ‖F21(t)‖} ≤
γe−γt

2M
, t ≥ 0,

max{‖F ′
22(t)‖, ‖F ′

21(t)‖} ≤
γ2e−γt

4M2
, t ≥ 0.

Under these conditions, the abstract integrodifferential system

x′(t) = Ax(t) +
∫ t

0

AF (t− s)x(s)ds, (3.2)

has associated a resolvent of operator (R(t))t≥0 on X such that ‖R(t)‖ ≤ M̃e
−γt
2

for t ≥ 0, see Grimmer [7, p. 343] for details.
Consider the integrodifferential system[
θ′(t)
η′(t)

]
=

[
0 I

α(0)∆ −β(0)I

] [
θ(t)
η(t)

]
+

∫ t

0

[
0 I

α′(t− s)∆ −β′(t− s)I

] [
θ(s)
η(s)

]
+

[
0

a1(t)a2(θ(t))

] (3.3)

where the functions ai : R → R, i = 1, 2, are continuous. If g(·) is the function
defined by

g(t,
[
x
y

]
)(ξ) = a1(t)

[
0

a2(x(ξ))

]
the system (3.3) can be transformed into the abstract integrodifferential equation
(1.1).

The next result follows from Theorems 2.5 and 2.7. We will omit the proof.

Theorem 3.1. Assume that the previous conditions are satisfied and that there
exists a constant L > 0 such that

|a2(t)− a2(s)| ≤ L|t− s|, t, s ∈ R.

If a1(·) is asymptotically almost periodic (resp. almost periodic) and 2‖a1‖RML
γ < 1,

then there exist a asymptotically almost periodic mild solution (resp. a almost
periodic mild solution) of (3.3).
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