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ON THE SOLVABILITY OF NONLINEAR FIRST-ORDER
BOUNDARY-VALUE PROBLEMS

CHRISTOPHER C. TISDELL

Abstract. This article investigates the existence of solutions to first-order
nonlinear boundary-value problems (BVPs) involving systems of ordinary dif-

ferential equations and two-point boundary conditions. Some sufficient condi-

tions are presented that will ensure solvability. The main tools employed are
novel differential inequalities and fixed-point methods.

1. Introduction

This paper considers the existence of solutions to the first-order differential equa-
tion

x′ = f(t, x), t ∈ [a, c], (1.1)
subject to the boundary conditions

Mx(a) + Rx(c) = 0, (1.2)

where f : [a, c] × Rn → Rn is a continuous, nonlinear function; a < c are given
constants in R; and M , R are given constants in R.

Equation (1.1) subject to (1.2) is known as a first-order, two-point boundary-
value problem (BVP). Two-point BVPs have been studied by many authors, both
in recent times [2, 4, 7, 9, 10, 11, 12, 13, 14], and also in a more classical setting
[5], [6, Chap VI], [8, Chap V]. A motivating factor for the study of these equations
is their application to the areas of science, engineering and technology. The inter-
ested reader is referred to [1, Chap.1] for some nice examples. These applications
naturally lead to a deeper theoretical analysis of the subject, including: solvability;
uniqueness and multiplicity of solutions etc.

In [5], [6, Chap VI], [8, Chap V] Gaines and Mawhin formulated existence re-
sults for first-order BVPs by introducing the concepts of curvature bound sets and
guiding functions through the formulation of appropriate differential inequalities.
These methods ensured a priori bounds on possible solutions to a certain family
of BVPs. They then coupled these a priori bound techniques with coincidence
topological degree theory to guarantee the existence of solutions.

In this article an alternate approach is proposed. In particular, the ideas of cur-
vature bound sets and guiding functions are not used. Instead, a general growth
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condition on f is introduced. Novel inequalities involving f , M and R are formu-
lated so all possible solutions to a certain family of BVPs are bounded a priori.
Fixed-point methods are applied, ensuring the existence of solutions to (1.1), (1.2).
Examples to illustrate the new results are presented throughout the paper. The
results contained herein are new for both systems of BVPs and also for scalar BVPs.

A solution to (1.1), (1.2) is a continuously differentiable function x : [a, c] → Rn

(denoted by x ∈ C1([a, c]; Rn)) that satisfies (1.1) and (1.2).
A topological tool used in this paper is the following simplified version of the

Nonlinear Alternative [3, Chap.4]. We say a map is compact if it is continuous with
relatively compact range. Also, let J denote a convex subset of a normed, linear
space E and let BP denote an open ball in J with radius P > 0 and centre 0.

Theorem 1.1. Let T : BP → J be a compact map and let λ ∈ [0, 1]. If

u 6= λTu, for all u ∈ ∂BP and all λ ∈ (0, 1)

then there exists at least one u ∈ BP such that u = Tu.

2. Solvability

In this main section, the solvability of (1.1), (1.2) is established.
In what follows, if y, z ∈ Rn then 〈y, z〉 denotes the usual inner product and ‖z‖

denotes the Euclidean norm of z on Rn.
Throughout this work, assume

M + R 6= 0. (2.1)

Lemma 2.1. Suppose (2.1) holds. The BVP (1.1), (1.2) is equivalent to the integral
equation

x(t) =
∫ t

a

f(s, x(s)) ds− (M + R)−1R

∫ c

a

f(s, x(s)) ds, t ∈ [a, c]. (2.2)

Proof. Let x : [a, c] → Rn satisfy (1.1) and (1.2). It is easy to see that

x(t) = x(a) +
∫ t

a

f(s, x(s)) ds, t ∈ [a, c], (2.3)

and
x(c) = x(a) +

∫ c

a

f(s, x(s)) ds. (2.4)

So (1.2) gives

0 = Mx(a) + R
(
x(a) +

∫ c

a

f(s, x(s)) ds
)

(2.5)

and rearranging (2.5) we obtain

x(a) = −(M + R)−1R

∫ c

a

f(s, x(s)) ds. (2.6)

So substituting (2.6) into (2.3) we obtain, for t ∈ [a, c],

x(t) = −(M + R)−1R

∫ c

a

f(s, x(s)) ds +
∫ t

a

f(s, x(s)) ds. (2.7)

If x is a solution to (2.2) then is it easy to show that (1.1) and (1.2) hold by direct
calculation. �

The two following two existence theorems are the main results of the paper.
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Theorem 2.2. Suppose (2.1) holds and f ∈ C([a, c] × Rn; Rn). If there exist
non-negative constants α and K such that

‖f(t, q)‖ ≤ 2α〈q, f(t, q)〉+ K, for all (t, q) ∈ [a, c]× Rn, (2.8)

and |M/R| ≤ 1, (2.9)

then the BVP (1.1), (1.2) has at least one solution.

Proof. In view of Lemma 2.1, we want to show that there exists at least one solution
to (2.2), which is equivalent to showing that (1.1), (1.2) has at least one solution.
To do this, we use the Nonlinear Alternative.

Consider the map T : C([a, c]; Rn) → C([a, c]; Rn) defined for all t ∈ [a, c] by

Tx(t) = −(M + R)−1R

∫ c

a

f(s, x(s)) ds +
∫ t

a

f(s, x(s)) ds . (2.10)

Thus our problem is reduced to proving the existence of at least one v such that

v = Tv. (2.11)

Since f is continuous, see that T is also a continuous map. Next we show that
T : BP → C([a, c]; Rn) satisfies

x 6= λTx, for all x ∈ ∂BP and all λ ∈ (0, 1) (2.12)

for some suitable ball BP ⊂ C([a, c]; Rn) with radius P > 0. Let

BP =
{
x ∈ C([a, c]; Rn) | max

t∈[a,c]
‖x(t)‖ < P

}
P =

[
1 + |(M + R)−1R|

]
K(c− a) + 1.

See that the family x = λTx is equivalent to the family of BVPs

x′ = λf(t, x), t ∈ [a, c], λ ∈ [0, 1], (2.13)

Mx(a) + Rx(c) = 0. (2.14)

Let x be a solution to the family of BVPs (2.13), (2.14). Consider r(t) := ‖x(t)‖2
for all t ∈ [a, c]. By the product rule we have

r′(t) = 2〈x(t), x′(t)〉, t ∈ [a, c],

= 2〈x(t), λf(t, x(t))〉.
(2.15)

Multiplying both sides of (2.8) by λ ∈ [0, 1], with q = x(t), we obtain

‖λf(t, q)‖ ≤ 2α〈q, λf(t, q)〉+ λK (2.16)

≤ 2α〈q, λf(t, q)〉+ K (2.17)

= αr′(t) + K. (2.18)

Also, (2.9) implies

r(c) ≤ r(a) (2.19)

since (2.14) gives

‖x(c)‖ ≤ |M/R| ‖x(a)‖ ≤ ‖x(a)‖.



4 C. C. TISDELL EJDE-2006/80

Let H := 1 + |(M + R)−1R|. All solutions to x = λTx must satisfy:

‖x(t)‖ = ‖λTx(t)‖

= ‖ − (M + R)−1R

∫ c

a

λf(s, x(s)) ds +
∫ t

a

λf(s, x(s)) ds‖

≤ H

∫ c

a

‖λf(s, x(s))‖ ds

≤ H

∫ c

a

(2α〈x(s), λf(s, x(s))〉+ K) ds, by (2.17)

≤ H

∫ c

a

[αr′(s) + K] ds, from (2.18)

= H [α(r(c)− r(a)) + K(c− a)]

≤ H [K(c− a)] , from (2.19)
< P.

Thus, (2.12) holds.
The operator T : BP → C([a, c]; Rn) is compact by the Arzela-Ascoli theorem

(because it is a completely continuous map restricted to a closed ball).
The Nonlinear Alternative ensures the existence of at least one solution in BP

to (2.2) and hence (1.1), (1.2) admits at least once solution. By an elementary
compactness argument involving a suitable sequence of solutions, this solution is
also in C1([a, c]; Rn). �

Theorem 2.3. Suppose (2.1) holds and f ∈ C([a, c] × Rn; Rn). If there exist
non-negative constants α and K such that

‖f(t, q)‖ ≤ −2α〈q, f(t, q)〉+ K, for all (t, q) ∈ [a, c]× Rn, (2.20)

and |R/M | ≤ 1, (2.21)

then the BVP (1.1), (1.2) has at least one solution.

Proof. The proof follows similar steps to that of Theorem 2.2 and so only the
essential points are mentioned. Follow the proof of Theorem 2.2, just replace “α”
with “−α” and use (2.21) to show −α(r(c)− r(a)) ≤ 0. �

Although (2.8) and (2.20) appear to be similar, the significant difference between
Theorems 2.2 and 2.3 lie in their varied applicability to BVPs. Theorem 2.2 may
apply to certain BVPs where Theorem 2.3 may not, and vice-versa. For example,
it is not difficult to show that

f(t, p) = −p3 − te−p, t ∈ [0, 1], (2.22)

satisfies (2.20) (the choices α = 1/2 and K = 10 will suffice), but no non-negative
α and K can be found such that (2.22) satisfies (2.8).

If M = 1 = N , then the boundary conditions (1.2) become the so-called anti-
periodic boundary conditions

x(a) = −x(c) (2.23)

and the following corollaries to Theorems 2.2 and 2.3 follow.
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Corollary 2.4. Let f ∈ C([a, c]×Rn; Rn). If there exist non-negative constants α
and K such that (2.8) holds then the anti-periodic BVP (1.1), (2.23) has at least
one solution.

Proof. It is easy to see that for M = 1 = R, all of the conditions of Theorem 2.2
hold. Thus the result follows from Theorem 2.2. �

Corollary 2.5. Let f ∈ C([a, c]×Rn; Rn). If there exist non-negative constants α
and K such that (2.20) holds then the anti-periodic BVP (1.1), (2.23) has at least
one solution.

Proof. The result follows from Theorem 2.3. �

Now consider (1.1), (1.2) with n = 1. For this case, the following new corollaries
to Theorem 2.2 and 2.3 are obtained.

Corollary 2.6. Let M+R 6= 0, let f ∈ C([a, c]×R; R) and let α, K be non-negative
constants such that

|f(t, q)| ≤ 2αqf(t, q) + K, for all (t, q) ∈ [a, c]× R, (2.24)

and |M/R| ≤ 1. (2.25)

Then, for n = 1, the BVP (1.1), (1.2) has at least one solution.

Proof. It is easy to see that for n = 1: (2.8) becomes (2.24); and the result follows
from Theorem 2.2. �

Corollary 2.7. Let M+R 6= 0, let f ∈ C([a, c]×R; R) and let α, K be non-negative
constants such that

|f(t, q)| ≤ −2αqf(t, q) + K, for all (t, q) ∈ [a, c]× R, (2.26)

and |R/M | ≤ 1. (2.27)

Then, for n = 1, the BVP (1.1), (1.2) has at least one solution.

Proof. The result follows from Theorem 2.3. �

Some examples are now presented to highlight the newly established theory.

Example 2.8. Consider the scalar BVP (n = 1) given by

x′ = t
(
[x(t)]3 + 1

)
, t ∈ [0, 1], (2.28)

x(0) + x(1) = 0. (2.29)

Let f(t, q) = t[q3 + 1]. For α and K to be chosen below, see that

2αqf(t, q) + K = 2αt(q4 + q) + K

= t(q4 + q) + 3, for the choice α = 1/2,K = 3

≥ t|q3 + 1| = |f(t, q)|, for all (t, q) ∈ [0, 1]× R

and thus (2.24) holds for the choices α = 1/2 and K = 3. Since M = 1 = R,
it is easy to see that M + R 6= 0 and (2.25) holds. Thus, all of the conditions of
Corollary 2.6 hold and so the BVP (2.28), (2.29) has at least one solution.

Attention now turns to systems in the following example.
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Example 2.9. Consider (1.1), (1.2) with n = 2 and f given by

f(t, p) = (h(t, y, z), j(t, y, z)), t ∈ [0, 1],

= ((t + 1)y3 + ye−z2
+ 1, (t + 1)z3 + ze−y2

).
(2.30)

The above function f satisfies the conditions of Theorem 2.2. Note that for all
(t, p) ∈ [0, 1]× R2 we have

‖f(t, p)‖ ≤ |h(t, y, z)|+ |j(t, y, z)|

≤ 2|y|3 + |y|e−z2
+ 2|z|3 + |z|e−y2

+ 1.

Below, we will need the following simple inequalities:

w4 ≥ |w|3 − 1, w4 + w ≥ |w|3 − 10, for all w ∈ R;

b2e−a2
≥ |b|e−a2

− 1, for all (a, b) ∈ R2.

For α ≥ 0 and K ≥ 0 to be chosen below, consider for (t, p) ∈ [0, 1]× R2,

2α〈p, f(t, p)〉+ K ≥ 2α
[
y4 + y + y2e−z2

+ z4 + z2e−y2
]

+ K

≥ 2α
[
|y|3 − 10 + |y|e−z2

− 1 + |z|3 − 1 + |z|e−y2
− 1

]
+ K

≥ 2|y|3 + |y|e−z2
+ 2|z|3 + |z|e−y2

+ 1

≥ ‖f(t, p)‖

choosing α = 1, K = 27. Thus f satisfies the conditions of Theorem 2.2 for the
choices α = 1 and K = 27 and the solvability of the BVP associated with this
example may be obtained.

The conditions of Theorems 2.2 and 2.3 are suitably generalised in the following
new theorems. For differentiable functions V : Rn → R, let

gradV (x) := (∂V/∂x1, . . . , ∂V/∂xn).

Theorem 2.10. Suppose (2.1) holds and f ∈ C([a, c] × Rn; Rn). If there exists a
C1 function V : Rn → [0,∞) and non-negative constants α, K such that

‖f(t, q)‖ ≤ α〈gradV (q), f(t, q)〉+ K, for all (t, q) ∈ [a, c]× Rn, (2.31)

and the boundary conditions (1.2) are such that

V (x(a)) ≥ V (x(c)) (2.32)

then the BVP (1.1), (1.2) has at least one solution.

Proof. The proof is similar to that of Theorem 2.2 and so is only briefly discussed.
Consider the family of BVPs (2.13), (2.14). Let x be a solution and consider

r1(t) := V (x(t)) for all t ∈ [a, c]. Multiplying both sides of (2.31) by λ ∈ [0, 1]
obtain

‖λf(t, q)‖ ≤ α〈gradV (q), λf(t, q)〉+ λK

≤ α〈gradV (q), λf(t, q)〉+ K

= αr′1(t) + K.

(2.33)
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Let the ball BP , operator T and constant H all be defined as in the proof of
Theorem 2.2. If x is a solution to x = λTx then for all t ∈ [a, c] we have:

‖x(t)‖ = ‖λTx(t)‖

≤ H

∫ c

a

‖λf(s, x(s))‖ ds

≤ H

∫ c

a

[αr′1(s) + K] ds, by (2.33)

= H [α(V (x(c))− V (x(a))) + K(c− a)]

≤ H [K(c− a)] , from (2.32)
< P.

and thus (2.12) holds. The Nonlinear Alternative applies to (2.10), yielding the
existence of a least one solution to (1.1), (1.2). �

Theorem 2.11. Suppose (2.1) holds and f ∈ C([a, c] × Rn; Rn). If there exists a
C1 function V : Rn → [0,∞) and non-negative constants α, K such that

‖f(t, q)‖ ≤ −α〈gradV (q), f(t, q)〉+ K, for all (t, q) ∈ [a, c]× Rn, (2.34)

and the boundary conditions (1.2) are such that

V (x(a)) ≤ V (x(c)) (2.35)

then the BVP (1.1), (1.2) has at least one solution.

Proof. The steps of the proof are very similar to those of the proof of Theorem 2.10
and so are omitted. �

Remark 2.12. For V (q) = ‖q‖2, conditions (2.31) and (2.32) in Theorem 2.10
reduce to (2.8) and (2.9), respectively, in Theorem 2.2. Theorem 2.2 may be viewed
as more concrete than Theorem 2.10 as (2.8) and (2.9) are easily verifiable in
practice. On the other hand, Theorem 2.10 is certainly more general, in a abstract
sense, than Theorem 2.2. A possible candidate for V in Theorem 2.10 is V (q) = eq,
which leads to new differential inequalities and existence results for scalar BVPs.

Remark 2.13. It is noted that the theorems of this paper easily generalize to the
case where M and R are n×n constant matrices, rather than real-valued constants
in (1.2). Simply replace (2.1) throughout with “det(M + R) 6= 0” and replace,
respectively, (2.9) and (2.21) with “‖R−1M‖ ≤ 1” and “‖M−1R‖ ≤ 1” where we
have imposed the natural norm of a matrix, rather than absolute values.
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