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EFFECT ON PERSISTENCE OF INTRA-SPECIFIC
COMPETITION IN COMPETITION MODELS

CLAUDE LOBRY, FRÉDÉRIC MAZENC

Abstract. An ecological model describing the competition for a single sub-

strate of an arbitrary number of species is considered. The mortality rates of

the species are not supposed to have all the same value and the growth func-
tion of the substrate is not supposed to be linear or decreasing. Intra-specific

competition is taken into account. Under additional technical assumptions,

we establish that the model admits a globally asymptotically stable positive
equilibrium point. This ensures persistence of the species. Our proof relies on

a Lyapunov function.

1. Introduction

Current research efforts focus on the analysis of the solutions of models of
chemostats with several species competing for one growth-limiting nutrient and
undergoing an extra competition, which results from the difficulty of access to the
substrate encountered by the micro-organisms. These models belong to a general
class of systems of the form

ṡ = f(s)−
n∑

i=1

hi(s, x)
Yi

xi,

ẋ1 = [h1(s, x)− d1]x1,

. . .

ẋn = [hn(s, x)− dn]xn,

(1.1)

evolving on E = (0,+∞)n+1. In these systems, s is the concentration of the
nutrient, the xi’s are the concentrations of species of organisms, x = (x1, . . . , xn)>

and the Yi’s are positive constants called yield coefficients. The functions hi satisfy
hi(0, x) = 0 for all x because, no growth of the species is possible in the absence
of substrate. In addition, the functions hi are increasing with respect to s and
decreasing with respect to each component xj of the vector x to take into account
the fact that the more there are micro-organisms, the more difficult is their access
to the nutrient.

Recent works [7, 11, 14, 12] are devoted to stability analysis problems for (1.1) in
the particular case where the functions hi depend only on s and xi. This property
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expresses the so-called intra-specific competition: the strongest the concentration of
a species is, the smallest is its growth. In other words, the access of a micro-organism
to the nutrient is supposed be hampered only by the presence of micro-organisms
of its own species. The phenomenon of intra-specific competition can be explained
by the flocculation process, which is of major importance in wastewater treatment
plants: the presence of flocks limits the access of the biomass to the substrate. In
[3] an effective way to include flocculation in existing models of chemostats, is pro-
posed. It is shown that under certain conditions, this leads to density-dependent
growth functions of the form hi(s, xi). This establishes the link between the lim-
ited access to the substrate inside the flocks, and the growth characteristics of the
biomass on the level of the bioreactor.

The works [7] and [11] present a study of the systems (1.1) in the particular
case where only intra-specific competition occurs, where f is a linear function of
the form f(s) = D(sin − s) and where the mortality can be neglected, which
corresponds to the case where d1 = · · · = dn = D. The main message conveyed
by these works is that intra-specific competition may lead to the existence of a
globally asymptotically stable positive equilibrium point and therefore can explain
coexistence of the species. Hence, these works complement the literature (see for
instance [2], [5], [4], [6]) devoted to the problem of explaining why coexistence is
observed in real-world applications, in spite of the prediction of the Competitive
Exclusion Principle, which, generally speaking, claims that when there is a single
nutrient, asymptotically only one species survives and the others tend to extinction.

However, in more complex ecological contexts, the growth of the substrate is
not linear, not necessarily decreasing, and the mortality terms cannot be neglected.
First attempts to cope with the corresponding models are made in [9] and [14].
In [9], for a general model of chemostat with two species which takes into account
intra-specific effects, the persitence of the two species is established. The technique
of proof is based on a comparison principle. In [14], it is shown that a general
system (1.1) with different removal rates di admits a globally asymptotically stable
positive equilibrium point, provided that only intra-specific competition occurs and
f is decreasing and its decay is sufficiently fast. The main advantage of this result
is that it applies to systems (1.1) for which no explicit expression for the growth
functions f and hi is available. However, numerical simulations suggest that the
stability property holds even when f is not decreasing.

The objective of the present paper is to show that when f belongs to a family
of functions which contains functions which have a positive, but small, first deriv-
ative and when the growth functions hi(s, xi) admit a decomposition of the form
hi(s, xi) = µi(s)θi(xi) where the functions θi are decreasing and where the func-
tions µi belong to a family slightly larger than the family of the Michaelis-Menten
functions, then global asymptotic stability of a positive equilibrium point can be
established. Our technique of proof relies on a Lyapunov approach which is signif-
icantly different from the one used in [14] but is reminiscent of the one presented
first in [8] and is incorporated in [16, Chapter 2]. This Lyapunov function allows to
prove the Competitive Exclusion Principle in the particular case where the growth
functions are f(s) = D(sin−s) and hi(s, xi) = µi(s) = Kis

Li+s and there are different
removal rates di. The fact that the functions µi are of the Michaelis-Menten (or
Monod) type is crucial in this Lyapunov approach. For general growth functions
and distinct removal rates di, the Lyapunov function approach of [8] does not apply
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and the problem of proving the Competitive Exclusion Principle in that case is still
open. To understand the difficulty of this problem, it is worth reading for instance
the papers [17], [10], [18] where, through elegant and sophisticated proofs, partial
solutions to this problem are established, in more general context.

Observe that, in contrast to the Lyapunov function proposed in [8], the Lya-
punov function we exhibit is a strict Lyapunov function i.e. its derivative along
the trajectories of the system is a negative definite function of the state variables.
This property makes it possible to quantify the effect of disturbances or error of
modeling (as illustrated for instance by [1], [15], [13]). In particular, it follows that
the stability result we will establish still holds when, instead of being Michaelis-
Menten functions, the growth functions are “almost” Michaelis-Menten functions,
in a sense which can be made precise by means of the Lyapunov function. Finally,
we wish to point out that we conjecture that the global stability result we will
establish can be extended to systems with general growth functions, but we also
presume that proving this extension is as difficult as proving the general version of
the Competitive Exclusion Principle.

The paper is organized as follows. In Section 2, we introduce the family of sys-
tems we study as long as basic assumptions, accompanied with preliminary results.
The main result is stated and proved in Section 3. Section 4 is dedicated to simple
particular cases.

2. System description, preliminary results and comments

Preliminaries.
• Throughout the paper, the functions are supposed to be of class C1.
• The arguments of the functions will be omitted or simplified whenever no confu-
sion can arise from the context.
• Consider a differential equation

ẋ = F (x) (2.1)

with x ∈ Rp where F is continuously differentiable on Rp. An equilibrium point of
this system is called positive equilibrium point if all its components are positive.

Let Gc be closed and positively invariant for (2.1) and let us assume that the
origin is an equilibrium point of (2.1). A function V is called a Lyapunov function
for (2.1) on an open set G ⊂ Gc if

(i) V is continuously differentiable on G,
(ii) For each x ∈ G, the closure of G, the limit limx→x, x∈G V (x) exists as either

a real number or +∞,
(iii) ∂V

∂x (x)F (x) ≤ 0 on G.
(iv) A function V is called a strict Lyapunov function for (2.1) if ∂V

∂x (x)F (x) < 0
for all x ∈ G, x 6= 0.

(v) A function V is said to be proper if for each xb ∈ G\G, the boundary of G,
limx→xb, x∈G V (x) = +∞.
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The Model and the Basic assumptions. We consider the system

ṡ = f(s)−
n∑

i=1

µi(s)θi(xi)xi,

ẋ1 = [µ1(s)θ1(x1)− d1]x1,

. . .

ẋn = [µn(s)θn(xn)− dn]xn,

(2.2)

evolving on the state domain Df = [0,+∞)× [0,+∞)× · · · × [0,+∞) where the di

are positive constants.
We introduce the assumptions:
(H1) The function f is such that f(0) ≥ 0.
(H2) The functions θi(xi) are positive, decreasing and θi(0) = 1. The functions

θi(xi)xi are increasing.
(H3) There exists (s∗, x1∗, . . . , xn∗) ∈ (0, sin)×(0,+∞)×· · ·×(0,+∞) such that

f(s∗) =
n∑

j=1

djxj∗ (2.3)

and, for all i ∈ {1, . . . , n},
µi(s∗)θi(xi∗) = di . (2.4)

(H4) The functions µi are bounded, zero at zero, increasing and µ′i(0) > 0.
There is a positive function Ω and positive constants ci such that, for all
i ∈ {1, . . . , n},

ci
µi(s∗)
µ′i(0)s∗

= Ω(0) (2.5)

and, for all s > 0, s 6= s∗,

ci
s

µi(s)
µi(s)− µi(s∗)

s− s∗
= Ω(s) . (2.6)

Discussion of the assumptions
• Assumption (H1) ensures that the domain Df is positively invariant.
• In the system (2.2) the yield coefficients are equal to 1. Without loss of generality,
this assumption can be made because these parameters can be eliminated by a
simple linear change of coordinates.
• The function f(s) = D(sin−s) (which is present in models of chemostats) satisfies
Assumption (H1).
• Observe that the requirement (2.6) is equivalent to

µi(s) =
ciµi(s∗)s

cis + (s∗ − s)Ω(s)
. (2.7)

We shall see in Section 4 that this requirement is satisfied in the particular case
where the functions µi are of Monod type. Moreover, observe that the function Ω
is continuous on [0,+∞).
• The functions θi express the intra-specific competition: the growth of a species
is inhibited by its own concentration. Assuming that the functions θi(xi)xi are
increasing is relevant from a biological point of view.
• Assumption (H3) is not restrictive: if a positive equilibrium point exists, then
necessarily this assumption is satisfied.
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Equilibrium point. Under the assumptions we have introduced, we can easily
establish the existence and unicity of a positive equilibrium point for the system
(2.2):

Lemma 2.1. Assume that the system (2.2) satisfies Assumptions (H1)–(H4). Then
the point E = (s∗, x1∗, . . . , xn∗) is a positive equilibrium point.

Proof. From Assumption (H3), it follows that E is a positive equilibrium point of
the system (2.2). �

Lemma 2.1 allows us to introduce the assumption:

(H5) The function

Γ(s) = −
f(s)− f(s∗) +

∑n
i=1[µi(s∗)− µi(s)]θi(xi∗)xi∗

s− s∗
(2.8)

is positive.

Remark. One can check that Assumption (H5), in combination with Assumption
(H2) and the fact that the functions µi are increasing ensures that the system (2.2)
admits only one positive equilibrium point.

3. Main result

In this section, we state and prove the main result of the work.

Theorem 3.1. Assume that the system (2.2) satisfies Assumptions (H1)–(H5).
Then the positive equilibrium E = (s∗, x1∗, . . . , xn∗) is a globally asymptotically
and a locally exponentially stable equilibrium point of the system (2.2) on Do =
(0,+∞)× (0,+∞)× · · · × (0,+∞).

Proof of Theorem 3.1.

Attractive invariant domain.

Lemma 3.2. The domains Df and Do are a positively invariant domains.

Proof. The sign properties of the function f and the fact that each function µi is
zero at zero imply that Df and Do are a positively invariant domains. �

Lyapunov construction. Let us use the variables s̃ = s − s∗, x̃i = xi − x∗i . Then
from Lemma 2.1, we deduce that

˙̃s = f(s)− f(s∗)−
n∑

i=1

µi(s)θi(xi)xi +
n∑

i=1

µi(s∗)θi(xi∗)xi∗,

˙̃x1 = [µ1(s)θ1(x1)− µ1(s∗)θ1(x1∗)]x1,

. . .

˙̃xn = [µn(s)θn(xn∗)− µn(s∗)θn(xn∗)]xn.

(3.1)

From the definition of Γ in (2.8) and the equality

µi(s)θi(xi)− µi(s∗)θi(xi∗) = µi(s∗)[θi(xi)− θi(xi∗)] + [µi(s)− µi(s∗)]θi(xi) (3.2)
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it follows that
˙̃s
s

=
−Γ(s)s̃

s
+

n∑
i=1

µi(s)
s

[θi(xi∗)xi∗ − θi(xi)xi],

˙̃x1

x1
= µ1(s∗)[θ1(x1)− θ1(x1∗)] + [µ1(s)− µ1(s∗)]θ1(x1),

. . .

˙̃xn

xn
= µn(s∗)[θn(xn)− θn(xn∗)] + [µn(s)− µn(s∗)]θn(xn).

(3.3)

Let us introduce the simplifying notation:

αi(xi) = −µi(s∗)
θi(xi)− θi(xi∗)

xi − xi∗
, βi(xi) =

θi(xi)xi − θi(xi∗)xi∗

xi − xi∗
. (3.4)

Assumption (H2) ensures that the functions αi and βi are positive. The system
(3.3) rewrites

˙̃s
s

=
−Γ(s)s̃

s
−

n∑
i=1

µi(s)
s

βi(xi)x̃i,

˙̃x1

x1
= −α1(x1)x̃1 + [µ1(s)− µ1(s∗)]θ1(x1),

. . .

˙̃xn

xn
= −αn(xn)x̃n + [µn(s)− µn(s∗)]θn(xn).

(3.5)

From Assumption (H4), we deduce that

Ω(s)s̃
˙̃s
s

= −Ω(s)Γ(s)s̃2

s
−

n∑
i=1

ci[µi(s)− µi(s∗)]βi(xi)x̃i,

c1
β1(x1)

θ1(x1)x1
x̃1

˙̃x1 = −c1
α1(x1)β1(x1)

θ1(x1)
x̃2

1 + c1[µ1(s)− µ1(s∗)]β1(x1)x̃1,

. . .

cn
βn(xn)

θn(xn)xn
x̃n

˙̃xn = −cn
αn(xn)βn(xn)

θn(xn)
x̃2

n + cn[µn(s)− µn(s∗)]βn(xn)x̃n.

(3.6)

These equalities lead us to consider the function

U(s̃, x̃1, . . . , x̃n) =
∫ s̃

0

Ω(l + s∗)
l

l + s∗
dl +

n∑
i=1

ci

∫ x̃i

0

βi(xi∗ + l)
θi(xi∗ + l)(xi∗ + l)

ldl (3.7)

which is positive definite on Dt = (−s∗,+∞) × (−x1∗,+∞) × · · · × (−xn∗,+∞)
because the constants ci and the functions Ω, βi, θi are positive. From (3.6), we
deduce that its derivative along the trajectories of (3.1) satisfies

U̇ = −W (s̃, x̃1, . . . , x̃n) (3.8)

with

W (s̃, x̃1, . . . , x̃n) =
Ω(s)Γ(s)s̃2

s
+

n∑
i=1

ci
αi(xi)βi(xi)

θi(xi)
x̃2

i . (3.9)
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Stability analysis. Let us first prove the following result.

Lemma 3.3. The function U defined in (3.7) is positive definite and proper on Dt.

Proof. We have already shown that U is positive definite. Next, observe that

Ω(s) = c1
s

µ1(s)
µ1(s)− µ1(s∗)

s− s∗
= c1

s

s− s∗

(
1− µ1(s∗)

µ1(s)

)
. (3.10)

Therefore, since µ1 is increasing, for all s ≥ 2s∗,

Ω(s) ≥ c1

(
1− µ1(s∗)

µ1(2s∗)

)
> 0 . (3.11)

We deduce easily that

lim
s̃→+∞

∫ s̃

0

Ω(l + s∗)
l

l + s∗
dl = +∞ . (3.12)

Since the function Ω is positive and continuous on [0,+∞), we deduce that

lim
s̃→−s∗

∫ s̃

0

Ω(l + s∗)
l

l + s∗
dl = +∞ . (3.13)

Next, observe that

βi(xi)
θi(xi)

=
θi(xi)xi − θi(xi∗)xi∗

θi(xi)(xi − xi∗)
=

1− θi(xi∗)xi∗
θi(xi)xi

1− xi∗
xi

. (3.14)

According to Assumption (H2), θi is decreasing and θi(xi)xi is increasing. We
deduce that, for all xi ≥ 2xi∗,

βi(xi)
θi(xi)

≥ 1− θi(xi∗)xi∗

θi(2xi∗)2xi∗
> 0 . (3.15)

It follows that

lim
x̃i→+∞

∫ x̃i

0

βi(xi∗ + l)
θi(xi∗ + l)(xi∗ + l)

ldl = +∞ . (3.16)

Since the functions βi and θi are positive and continuous on [0,+∞), we deduce
that

lim
x̃i→−xi∗

∫ x̃i

0

βi(xi∗ + l)
θi(xi∗ + l)(xi∗ + l)

ldl = +∞ . (3.17)

At last, from (3.13), (3.16), (3.17) we deduce that U is proper.
Next, by taking advantage of Assumption (H5), one can easily prove that the

function W is positive definite on Dt. This property and the result of Lemma 3.3
ensure that the Lyapunov theorem applies and therefore

lim
t→+∞

s̃(t) = 0 , lim
t→+∞

x̃i(t) = 0 , ∀i = 1, . . . , n . (3.18)

Moreover, the local exponential stability of the origin of the system (3.1) can be
proved by verifying that both U and W are, on a neighborhood of the origin, lower
bounded by a positive definite quadratic function.

By returning to the original coordinates, we deduce that E is a globally asymp-
totically and a locally exponentially stable equilibrium point of the system (2.2) on
Do. �
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4. Particular cases, example

Families of functions µi satisfying Assumption (H4). In this section, we
exhibit families of functions which fullfill Assumption (H4).

Lemma 4.1. Let us consider n linear functions:

µi(s) = Kis (4.1)

with Ki > 0. These functions satisfy Assumption (H4) with Ω(s) = 1 and, for
i = 1, . . . , n, ci = 1.

The proof of the above lemma is trivial and is omitted.

Lemma 4.2. Let us consider n functions

µi(s) =
KiA(s)

LiB(s) + A(s)
(4.2)

with Ki > 0, Li > 0 and where A is increasing and satisfies A(0) = 0, A′(0) > 0
and B is positive and nondecreasing. These functions satisfy Assumption (H4) with

Ω(s) =
s

A(s)
A(s)B(s∗)−A(s∗)B(s)

s− s∗

and, for i = 1, . . . , n, ci = LiB(s∗)+A(s∗)
Li

.

We remark that when A(s) = s and B(s) = 1, the functions (4.2) belong to the
family of the Michaelis-Menten functions and the corresponding function Ω and
constants ci are Ω(s) = 1, ci = Li+s∗

Li
.

Proof of Lemma 4.2. The result is a consequence of the simple calculations:
s

µi(s)
µi(s)− µi(s∗)

s− s∗

= s
LiB(s) + A(s)

KiA(s)
1

s− s∗

[ KiA(s)
LiB(s) + A(s)

− KiA(s∗)
LiB(s∗) + A(s∗)

]
=

s

A(s)
1

s− s∗

[A(s)(LiB(s∗) + A(s∗))
LiB(s∗) + A(s∗)

− A(s∗)(LiB(s) + A(s))
LiB(s∗) + A(s∗)

]
=

s

A(s)
1

s− s∗

[A(s)(LiB(s∗) + A(s∗))−A(s∗)(LiB(s) + A(s))
LiB(s∗) + A(s∗)

]
=

Li

LiB(s∗) + A(s∗)
s

A(s)
A(s)B(s∗)−A(s∗)B(s)

s− s∗
.

(4.3)

Since A is increasing, satisfies A(0) = 0, A′(0) > 0 and B is positive and nonde-
creasing, it follows that the function Ω(s) = s

A(s)
A(s)B(s∗)−A(s∗)B(s)

s−s∗
is well-defined

and positive on [0,+∞). �

Families of functions θi satisfying Assumption (H2). In this section, we
exhibit families of functions which fulfill Assumption (H2).

Lemma 4.3. Consider a function

θ(x) =
a

(a + x)ν
(4.4)

with a > 0 and ν ∈ (0, 1]. Then this function is positive, decreasing and xθ(x) is
increasing.
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Proof. One can check easily that θ is positive with a negative first derivative. More-
over,

d[θ(x)x]
dx

= a
(a + x)ν − νx(a + x)ν−1

(a + x)2ν
= a

a + (1− ν)x
(a + x)ν+1

> 0 (4.5)

and therefore xθ(x) is increasing. �

Example. We illustrate Theorem 3.1 by applying it to the system

ṡ =
7
6
− s

1 + s

x1

1 + x1
− 4s

2 + s

x2

1 + x2
,

ẋ1 =
[ s

1 + s

1
1 + x1

− 1
2
]
x1,

ẋ2 =
[ 4s

2 + s

1
1 + x2

− 1
]
x2.

(4.6)

With our general notation, we have f(s) = 7
6 , µ1(s) = s

1+s , µ2(s) = 4s
2+s , θ1(x1) =

1
1+x1

, θ2(x2) = 1
1+x2

. Observe that the growth function of the substrate f(s) = 7
6

is a constant. Therefore the results of [11], [7] or [14] cannot be used to establish
the global asymptotic stability of an equilibrium point of (4.6). Let us verify that
the system (4.6) satisfies the assumptions (H1)–(H5).

(1) Since f(0) = 7
6 > 0, Assumption (H1) is satisfied.

(2) We deduce from Lemma 4.3 that Assumption (H2) is satisfied.
(3) Assumption (H3) is satisfied: the positive point E = (2, 1

3 , 1) is an equilib-
rium point of (4.6).

(4) We deduce from Lemma 4.2 that Assumption (H4) is satisfied. Since µ1

and µ2 are Monod functions, one can choose Ω(s) = 1, c1 = 3, c2 = 2.
(5) Simple calculations yield

Γ(s) = −
7
6 −

7
6 +

[
2
3 −

s
1+s

] 1
3

1+ 1
3

+
[
2− 4s

2+s

]
1
2

s− 2
=

1
12(1 + s)

+
1

2 + s
.

Therefore, the function Γ is positive and Assumption (H5) is satisfied.
We conclude that Theorem 3.1 applies. It follows that E is a globally asymptot-
ically and a locally exponentially stable equilibrium point of (4.6). Moreover, the
derivative of the Lyapunov function

U(s̃, x̃1, x̃2)

=
∫ s̃

0

l

l + s∗
dl + c1

∫ x̃1

0

β1(x1∗ + l)
θ1(x1∗ + l)(x1∗ + l)

ldl + c2

∫ x̃2

0

β2(x2∗ + l)
θ2(x2∗ + l)(x2∗ + l)

ldl

= s̃− s∗ ln
(

1 +
s̃

s∗

)
+

c1

1 + x1∗

∫ x̃1

0

l

x1∗ + l
dl +

c2

1 + x2∗

∫ x̃2

0

l

x2∗ + l
dl

= s̃− s∗ ln
(

1 +
s̃

s∗

)
+

9
4

[
x̃1 − x1∗ ln

(
1 +

x̃1

x1∗

)]
+ x̃2 − x2∗ ln

(
1 +

x̃2

x2∗

)
(4.7)

along the trajectories of (4.6) satisfies

U̇ = −W (s̃, x̃1, x̃2) (4.8)

with

W (s̃, x̃1, x̃2) =
( 1

12(1 + s)
+

1
2 + s

) s̃2

s
+

9
8(1 + x1)

x̃2
1 +

1
(1 + x2)

x̃2
2 . (4.9)
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