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GENERAL SOLUTION OF OVERDAMPED JOSEPHSON
JUNCTION EQUATION IN THE CASE OF PHASE-LOCK

SERGEY I. TERTYCHNIY

Abstract. The first order nonlinear ordinary differential equation ϕ̇(t) +

sin ϕ(t) = B + A cos ωt, which is commonly used as a simple model of an
overdamped Josephson junction in superconductors is investigated. Its gen-

eral solution is obtained in the case known as phase-lock where all but one

solution converge to a common ‘essentially periodic’ attractor. The general
solution is represented in explicit form in terms of the Floquet solution of a

double confluent Heun equation. In turn, the latter solution is represented

through the Laurent series which defines an analytic function on the Riemann
sphere with punctured poles. The series coefficients are given in terms of in-

finite products of 2 × 2 matrices with a single zero element. The closed form
of the phase-lock condition is obtained and represented as the condition for

existence of a real root of a transcendental function. The efficient phase-lock

criterion is conjectured, and its plausibility is confirmed in numerical tests.

1. Introduction

The nonlinear first order ordinary differential equation

ϕ̇(t) + sinϕ(t) = q(t), (1.1)

is commonly used in applied physics as the simple mathematical model describing
the basic electric properties of Josephson junction (JJ) in superconductors [1, 2].
Here the right-hand side function q(t), assumed to be known, specifies the external
impact representing the appropriately normalized bias current (or simply bias)
supplied by an external current source. The unknown real valued function ϕ(t)
called the phase describes the macroscopic quantum state of JJ. In particular, it is
connected with the instantaneous voltage V applied across JJ in accord with the
equation V = (~/2e)dϕ/dτ , where ~ is the Plank constant, e is the electron charge,
τ is the (dimensional) current time. The dimensionless variable t entering (1.1) is
defined as t = ωcτ , where ωc is a constant parameter depending on the junction
properties and named JJ characteristic frequency. See [5] for more details of JJ
physics.
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Equation (1.1) arises as the limiting case of the second order ODE utilized in
more general Resistively Shunted Junction (RSJ) model [3, 4]. The reduction is
legitimate if the role of the junction capacitance proves negligible. In practice,
if JJ can be described by (1.1) it is named overdamped. Summarizing the afore-
mentioned relationships, we shall name (1.1), for brevity, overdamped Josephson
junction equation ((1.1)–(1.2)).

Under concordant conditions, the theoretical modelling applying (1.1)–(1.2) is
in excellent agreement with experiments. It is also worth noting that nowadays
electronic devices based on the Josephson effect play the important role in vari-
ous branches of measurement technology. In particular, JJ arrays serve the heart
element of the modern DC voltage standards [6]. The development of JJ-based
synthesizers of AC voltage waveforms is currently in progress [7, 8, 9]. These and
other successful applications stimulate the growing interest to the theoretical study
and the modelling of JJ properties including investigation of capabilities of RSJ
model and its limiting cases and the predictions they lead to.

To be more specific, the case most important from viewpoint of applications and
simultaneously distinguished by the wealthiness of the underlaid mathematics is
definitely the one of the bias function representing harmonic oscillations. Without
loss of generality, it can be represented in the form

q(t) = B +A cosωt, (1.2)

where A,B, ω > 0 are some real constant parameters. Hereinafter, the abbreviation
(1.1)–(1.2) introduced above will refer to the couple (1.1), (1.2).

In spite of apparent simplicity of (1.1)–(1.2), few facts of its specific analytic
theory had been available until recently. Some preliminary results concerning the
problem of derivation of analytic solutions of (1.1)–(1.2) in the general setting had
been obtained in [12]. The approach put forward therein is elaborated in the present
work. The focus is made on the case of manifestation by (1.1) of the phase-lock
property which is one of its most important features from viewpoint of applications.
The phase-lock property is formalized as follows: in the case of phase-lock any
solution ϕ = ϕ(t) of (1.1) either yields a periodic exponent eiϕ, exactly two such
distinguished solutions existing, or, as the time parameter grows, the exponent eiϕ

exponentially converges to the similar exponent for the one (common for all ϕ’s) of
the periodic functions just noted (another one plays the role of repeller). (Here and
in what follows we shall not distinguish phase functions which differ by a constant
equal to 2π times an integer.) The corresponding period coincides with one of q(t);
i.e., in the case (1.2), 2πω−1. This behavior is stable with respect to weak parameter
perturbations; i.e., the subset of parameter values leading to phase-lock is open. It
is worth noting for completeness that in the opposite (no phase-lock) case no stable
periodicity in the behavior of eiϕ is observed. There is also a third, intermediate,
type of the phase behavior, where the asymptotic attracting and repelling solutions
are, in a sense, merged [11]. It is realized on the lower-dimensional subset of the
space of parameter values.

In the present work, the complete analytic solution of (1.1)–(1.2) is obtained
under assumption of the parameter choice ensuring phase-lock. The closed form
of the phase-lock criterion in the form of the constraint imposed on the problem
parameters is conjectured.
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2. Overdamped Josephson junction equation against reduced double
confluent Heun equation

The analytic theory of (1.1)–(1.2) can be based on its reduction to the following
system of two linear first order ODEs, [12],

4iωz2 x′(z) = 2zx(z) +
[
2Bz +A

(
z2 + 1

)]
y(z),

−4iωz2 y′(z) =
[
2Bz +A

(
z2 + 1

)]
x(z) + 2zy(z),

(2.1)

where z is the free complex variable. Indeed, on the universal covering Ω1 ' R 3 t
of the unit circle S1 in C; i.e., for z = exp(iωt), any non-trivial solution of (2.1)
determines a solution of (1.1)–(1.2) in accordance with the equation

exp(iϕ) =
<x− i<y
<x+ i<y

(2.2)

(< means the real part) supplemented with the continuity requirement. [The fulfill-
ment of (1.1)–(1.2) follows from a straightforward computation taking into account
the equality z = z−1 holding true on Ω1 which is utilized for the demonstration
that, for real A,B, ω, the functions <x,<y also verify (2.1) on Ω1.] Conversely, any
real valued solution ϕ(t) of (1.1)–(1.2) induces through (2.2) some ‘initial data’
x(0), y(0) (with arbitrary norm (x2(0)+ y2(0))1/2 > 0) for (2.1). Having solved the
latter on Ω1 for x, y, one obtains, applying (2.2), another phase function obeying
(1.1)–(1.2). It however must coincide, due to the identical initial value assumed
at t = 0, with the original ϕ(t). Finally, since these x, y defined on Ω1 simulta-
neously obey the linear ODEs (2.1) with meromorphic coefficients which have the
only singular points z = 0 and z−1 = 0, they can be extended, integrating (2.1),
say, along radial directions, to analytic functions defined on the whole Ω = Ω1×R+,
the universal covering of the Riemann sphere with the punctured poles z = 0 and
z−1 = 0.

It is worth noting that on Ω1 the real valued functions x̃ = x̃(t) = <x(eiωt), ỹ =
ỹ(t) = <y(eiωt) satisfy the equations

2dx̃/dt = x̃+ qỹ, −2dỹ/dt = qx̃+ ỹ, (2.3)

leading, together with (2.2), to the equation (d/dt) log(x̃2 + ỹ2) = cosϕ which
implies

const1 e−t ≤ |x̃+ iỹ|2 ≤ const2 et for t > 0. (2.4)

Note that if x, y 6≡ 0 then const1, const2 may be assumed to be strictly positive.
We shall refer to these bounds later on.

The key observation enabling one to radically simplify the problem of description
of the space of solutions of (2.1) is as follows [12]. Let us introduce the analytic
function v(z) which satisfies the equation[

z2 d2

d2z
+
(
µ(z2 + 1)− nz

) d
dz

+ (2ω)−2
]
v = 0, (2.5)

where

n = −
(B
ω

+ 1
)
, µ =

A

2ω
, (2.6)

are the constants replacing original A,B which will be used below whenever it
proves convenient. Then a straightforward calculation shows that the functions
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x, y determined by the equations

v = iz
n+1

2 exp
(1

2
µ
(
−z + z−1

) )
(x− iy), (2.7)

v′ = (2ωz)−1z
n+1

2 exp
(1

2
µ
(
−z + z−1

) )
(x+ iy) (2.8)

verify (2.1). Conversely, defining the function v(z) through the solution x, y of
(2.1) in accordance with (2.7), a straightforward computation proves satisfaction
of (2.8) and, then, (2.5) follows. Thus, (2.1) are equivalent to (2.5) and (2.7), (2.8)
represent the corresponding one-to-one transformation.

Equation (2.5) coincides, after appropriate identification of the constant param-
eters, with [15, Eq. 1.4.40]. It represents therefore a particular instance of the
double confluent Heun equation which can be shown to be non-degenerated in all
cases where (1.1)–(1.2) is non-trivial.

It is also worth reproducing here the canonical form of the “generic” double
confluent Heun equation as it is given in [15, Eq. 4.5.1]. It reads

z2 d2y

dz2
+ (−z2 + cz + t)

dy
dz

+ (−az + λ)y = 0 (2.9)

where a, c, t, λ are some constants. To adjust it to our case, a single term has to
be eliminated setting a = 0. For brevity, we shall name this subclass of double
confluent Heun equation’s reduced. Besides, some obvious rescaling of the free
variable z is to be carried out. After these, the three residuary constant parameters
exactly correspond to our constant parameters n, µ, ω (we shall not need and so
omit the reproducing of the concrete form of this transformation).

The general analytic theory of double confluent Heun equation is given in the
chapter 8 of the treatise [14]. Its solutions are there represented, up to nonzero
factors given in explicit form, through the Laurent series whose coefficients are
assumed to be computable through the ‘endless’ chain of 3-term linear homogeneous
equations (‘recurrence relations’). In the present work, we derive the solution of
reduced double confluent Heun equation in a cognate but more explicit form.

As a technical limitation, we also stipulate in the present work for the additional
condition to be imposed on the free constant problem parameters claiming of them
the ensuring of the phase-lock property. On the base of practice of numerical
computations, it can be conjectured that such parameter values fill up a non-empty
open subset (phase-lock area) in the whole parameter space (see also the Conjecture
5.2 below). The case where the parameters belong to its complement is left beyond
the scope of the present work.

3. Formal solution of reduced double confluent Heun equation

Let us introduce yet another unknown function E(z) replacing v(z) by means of
the transformation

v(z) = z
n+ε
2 −iκe−µzE(z), (3.1)

where the discrete parity parameter ε may assume one of the two values, either
ε = 0 or ε = 1 (i.e. obeys the equation ε2 = ε), and κ is some real positive constant
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which will be determined latter. For v obeying (2.5), E(z) verifies the equation

0 = z3E′′ + z
[
(ε− 2iκ) z − µ

(
z2 − 1

)]
E′

+
[
µ
(n− ε

2
+ iκ

)
z2 +

(
(1− ε)

(1
4

+ iκ
)
− κ2 −

(n+ 1
2
)2 + λ

)
z

+ µ
(n+ ε

2
− iκ

)]
E,

(3.2)

where λ = (2ω)−2 − µ2. Conversely, (3.1),(3.2) imply the fulfillment of (2.5).
At first glance, (3.2) seems ‘much worse’ than the original double confluent Heun

equation representation. Nevertheless, it is this equation which we shall attempt
to solve searching for its solution in the form of Laurent series

E =
∞∑

k=−∞

akz
k (3.3)

‘centered’ in the points z = 0 and z−1 = 0 (which are the only singular points for
(3.2)) with unknown z-independent coefficients ak. Then, carrying out straight-
forward substitution, one gets a sequence of 3-term recurrence relations binding
triplets of neighboring a’s which can be written down either as

0 = −µ
(
k − 1− n− ε

2
− iκ

)
ak−1

+ (Zk + λ)ak + µ

(
k + 1 +

n+ ε

2
− iκ

)
ak+1,

(3.4)

where

Zk =
(
k +

ε− 1
2

− iκ
)2

−
(
n+ 1

2

)2

, (3.5)

or as

0 = −µ
(
k − 1− n+ ε

2
+ iκ

)
a−(k−1)

+ (Z̃k + λ)a−k + µ

(
k + 1 +

n− ε

2
+ iκ

)
a−(k+1),

(3.6)

where

Z̃k =
(
k +

1− ε

2
+ iκ

)2

−
(
n+ 1

2

)2

(3.7)

and k = 0,±1,±2 . . . . The sets of (3.4)) and (3.6) are exactly equivalent and each
of them separately covers the whole set of equations the coefficients ak have to obey.
However, in the approach utilized in the present work, we shall consider them both
in conjunction, employing (3.4) for coefficients ak with indices k ≥ −1 and (3.6) for
ak with indices k ≤ 1. Thus, (3.4) and (3.6) will be considered separately but on
the common index variation ‘half-interval’ k ≥ 0 (remaining legitimate, in principle,
for arbitrary integer k). Obviously, these two equation sets cover the complete set
of conditions imposed to the coefficients ak and are ‘almost disjoined’ coupling in
their ‘boundary’ k = ±0-members alone.

Let us further consider for k ≥ 0 the following formal infinite products

Rk =
∞∏

j=k

Mj , R̃k =
∞∏

j=k

M̃j (3.8)
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of the 2× 2 matrices

Mj =
(

1 + λ/Zj µ2/Zj

1 0

)
, (3.9)

M̃j =
(

1 + λ/Z̃j µ2/Z̃j

Z̃j−1/Z̃j 0

)
. (3.10)

It is assumed throughout that the matricesMj , M̃j with larger indices j are situated
in products to the right with respect to ones labelled with lesser index values.

Notice that in the case κ = 0 and integer n, zero may appear in denominators of
M -factors, making the above definitions meaningless. This apparent fault admits
a simple resolution (see (5.2) and the discussion following it). For a while, we
temporary leave out consideration of such specific parameter choices.

It is also worth noting that the above definitions of Rk, R̃k may be understood
as a concise form of representation of the ‘descending’ recurrence relations

Rk = MkRk+1, (3.11)

R̃k = M̃kR̃k+1, k = 0, 1, . . . (3.12)

among the neighboring R’s. These are the only dependencies which will be actually
used below in derivations involving Rk, R̃k.

The formulas (3.8) are ‘formal’ since neither the issue of the convergence of such
sequences nor how one should understand the ‘initial values’ R∞, R̃∞ necessary
for the actual determination of the ‘finite index value’ R-matrices by means of
(3.11)–(3.12) are here addressed.

Now a straightforward calculation applying (3.11)–(3.12) allows one to show that
the following formulas

ãk = µk Γ
(
1 + n+ε

2 − iκ
)

Γ
(
k + 1 + n+ε

2 − iκ
) (0, 1) ·Rk ·

(
1
0

)
(3.13)

ã−k =
µk

Z̃k−1

Γ
(
1 + n−ε

2 + iκ
)

Γ
(
k + 1 + n−ε

2 + iκ
) (0, 1) · R̃k ·

(
1
0

)
(3.14)

(where Γ is the Euler gamma-function) yield the formal solutions to (3.4) and (3.6),
respectively.

4. Validation of the formal solution

In this section we show that the formal solution of (3.2) presented in the form
of expansion (3.3) with coefficients given by (3.13),(3.14) represents a well defined
analytic function of z.

This means, first of all, that the infinite matrix products Rk, R̃k it involves
converge. Moreover, the convergence takes place for any constant parameter values.

The key auxiliary result which may be utilized for the proof of this assertion is
as follows.

Theorem 4.1. Let us consider the sequences of complex numbers αj , βj , γj , δj sat-
isfying the following ‘ascending’ matrix recurrence relation(

αj βj

γj δj

)
=
(
αj−1 βj−1

γj−1 δj−1

)(
1 + λ/Zj µ2/Zj

σj 0

)
, (4.1)
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where
either σj = 1 or σj = Zj−1/Zj. (4.2)

Then all they converge as j → ∞. Moreover, limβj = 0 = lim δj whereas for
α, γ-sequences there exist positive quantities Nα, Nγ and positive integer j0, all
depending at most on n, µ, λ, κ, ε, such that for all j > j0

|αj − lim
j′→∞

αj′ | < Nα max
j′>j0

(|αj′ |)j−1,

|γj − limj′→∞γj′ | < Nγ max
j′>j0

(|γj′ |)j−1,
(4.3)

where the maxima are finite.

The outline of the proof can be found in Appendix.

Remark: Formally, we need not include in the theorem stipulation the requirement
that either κ 6= 0 or n is non-integer (which would a priori evade possibility arising
of contribution with vanishing Z∗ in the denominator) because with fixed constant
parameters and sufficiently large j0 no zero Z∗ may appear.

Let us return to (3.8) and consider the four double-indexed sets of complex
numbers {α, β, γ, δ}(j0)j defined as follows:(

α
(j0)
j β

(j0)
j

γ
(j0)
j δ

(j0)
j

)
= R

(j)
j0

=
j∏

k=j0

Mk. (4.4)

It is straightforward to verify that the sequences obtained by the picking out the
elements with common value of the upper index j0 obey the recurrence relations
(4.1) for the first choice in (4.2). Hence it follows from the theorem that all they
converge. We denote the corresponding limits as α(j0) etc. We have therefore the
consistent definition for the infinite matrix products (3.8),

Rj0 =
(
α(j0) β(j0)

γ(j0) δ(j0)

)
. (4.5)

Let us further note that, increasing j0, the ‘starting’ sequence elements (α(j0)
j0

, α
(j0)
j0+1

for α etc) tend to the corresponding elements of the idempotent matrix

M∞ =
(

1 0
1 0

)
, M2

∞ = M∞, (4.6)

the discrepancy decreasing like O(j−2
0 ). On the other hand, in accordance with

(4.3) the elements of R(j)
j0

differ from their j-limits constituting Rj0 by O(j−1
0 )-

order quantities. This means that Rj0 tends to M∞ as j0 goes to infinity with the
difference going to zero as O(j−1

0 ). In other words, we have the following result.

Corollary 4.2. 1. Rj0 −M∞ = O(j−1
0 ). Furthermore, in view of the convergence,

2. The modules of the elements of all the matrices Rj0 are bounded from above in
total — provided ‘no-zeroes-in denominators’ condition for the parameter choice is
respected, of course.

In according with the above relations, decomposing Rj into the product of the
two factors, Rj = Rj0

j · Rj0 , and approximating Rj0 by M∞, one obtains a simple
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but important algorithm of computation of the products (3.8)

Rj ≈
j0∏

k=j

Mk ·M∞. (4.7)

The approximation is the better, the larger j0 > j is selected. In the limit, one gets

Rj =
(
α(j) 0
γ(j) 0

)
. (4.8)

This interpretation resolves (in a quite obvious way, though) the aforementioned
uncertainty in specification of the ‘initial value’ for the sequence Rj treated through
the ‘descending’ recurrence relation ‘[R∞] · · · → Rj → Rj−1 → . . . ’ implied by
(3.11).

After introducing a consistent representation of the matrices (3.8), it is straight-
forward to do the same for the matrices R̃j (3.9). The above speculation applies
to them with minor modifications as well. The only distinction is the making use
of the second choice in (4.2) and the operating with complex conjugated quantities
(equivalent in our case to the replacing κ by −κ) throughout. We shall mark the
elements of R̃j obtained in this way with tildes over the corresponding α’s and γ’s.

Now, with well defined Rj and R̃j (3.8) in hand, one is able to calculate the
coefficients ak, a−k for k = 0, 1, 2 . . . in accordance with (3.13) (3.14). The triple
matrix products reduce to separate elements of R’s (or R̃’s) denoted above as
γ(k) (for (3.13)), and γ̃(k)(for (3.14), respectively) which are the functions of the
parameters n, µ, λ, κ, ε. Therefore, the sequences

ãk = µkγ(k) Γ
(
1 + n+ε

2 − iκ
)

Γ
(
k + 1 + n+ε

2 − iκ
) (4.9)

ã−k =
µkγ̃(k)

Z̃k−1

Γ
(
1 + n−ε

2 + iκ
)

Γ
(
k + 1 + n−ε

2 + iκ
) , k = 0, 1, 2, . . . (4.10)

are well defined and solve (3.4), (3.6), respectively, for k = 1, 2, . . . The important
feature of the expressions (4.9), (4.10) which is used below is their asymptotic
behavior for large values of the index k which is easy to derive in explicit form.
Specifically, in accordance with inequalities (4.3), the set of modules of γ- and γ̃-
factors involved in (4.9)–(4.10) is bounded in total from above and each of these
sequences converge to a finite limit. These imply in particular the validity of the
estimates

|ãk| ∝
ζk
1

k!
, |ã−k| ∝

ζk
2

k2k!
, (4.11)

asymptotically, in the leading order, for some k-independent ζ1, ζ2.

5. Matching condition and phase-lock criterion

By construction, the ã-coefficients defined by (3.13) and (3.14) obey the linear ho-
mogeneous equations (3.4) and (3.6), respectively, which are ‘the same’, essentially,
differing only in the associated intervals of the variation of the index, consisting
of the positive integers for the former and negative ones for the latter. However,
these two sequences cannot be joined, automatically, since they are ‘differently
normalized’. This means, in particular, that their ‘edge elements’ indexed with
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zeroes, generally speaking, differ. We will denote them as ã0 and ã−0, respectively,
distinguishing here, in notations, the index ‘0’ from the index ‘−0’.

Now, referring to (4.9),(4.10), one notes that in view of the factors of Γ-functions
present in denominators and leading to asymptotic behaviors (4.11), the following
power series in z

E+(z) = 1 +
∞∑

k=1

ãk

ã0
zk, E−(z) = 1 +

∞∑
k=1

ã−k

ã−0
z−k, (5.1)

admit absolutely converging majorants. (We assumed above ã±0 6= 0. Otherwise,
i.e. if ã±0 = 0, ã±1 may not vanish and the series with the coefficients ã±k/ã±1

can be utilized instead.) Indeed, the Maclaurin series for the exponent function
can play this role. Therefore, the series E+(z) and E−(z−1) define some entire
functions of z. As a consequence, the expression

E(z) =
4

π2 sin
(

π
2 (n+ ε− 2iκ)

)
sin
(

π
2 (n+ ε+ 2iκ)

)
(n+ ε− 2iκ)(n+ 2− ε+ 2iκ)

(E+(z) + E−(z)− 1) (5.2)

represents a single-valued function of z analytic everywhere on the Riemann sphere
except the poles z = 0, z−1 = 0. They are the essential singular points for E.

It has to be noted that the additional z-independent fractional factor in (5.2)
may be regarded as a specific common ‘normalization’ of the (5.1)-type series which
may be, in principle, arbitrary. However, its given form is, essentially, unique being
fixed (up to an insignificant nonzero numerical factor) in view of the following
reasons.

The two sine-factors in the numerator regarded as holomorphic functions of
n+ε±2iκ are introduced for the cancelling out zeroes in denominators arising due to
the poles in the factors Z−1

j and Z̃−1
j involved in the products (3.11) and regarded

as the functions of the same parameters. The set of these (vicious, essentially)
singularities constitute a homogeneous grid which is just covered by the grid of roots
of the sine-factors in (5.2) — with the two exceptions. These two ‘superfluous’ sine-
factor roots are, in turn, ‘neutralized’ by the two linear factors in the denominator
in (5.2) which are therefore also uniquely determined. As the result, in vicinity of
any zero in denominators in coefficients of the power series defining E(z) considered
as the function of n + ε ± 2iκ (a root of some Z∗ or Z̃∗), the resulting expression
takes the form of the ratio sinx/x (x ' 0) and is not now associated with any
irregular behavior. Thus, as a matter of fact, the fractional factor involved in (5.2)
is distinguished (up to a numerical factor) by the claims (i) to cancel out the poles in
the original expressions of the ã-coefficients (4.9), (4.10) considered as the functions
of n+ ε± 2iκ and (ii) to introduce neither more zeroes nor more poles as a result
of such a ‘renormalization’.

Now, when plugging the function (5.2) in (3.2) in order to verify its fulfillment,
we may provisionally drop out, sparing the space, z-independent fractional factor
(restoring it afterwards).

It is important to emphasize that the expressions (4.9), (4.10) verify, by construc-
tion, all the 3-term recurrence relations (3.4),(3.6) which bind the a-coefficients with
indices of a common sign, either non-negative or non-positive. The only equation
which does not fall into these categories, and, accordingly, has not been automati-
cally fulfilled, is the ‘central’ one binding the coefficients a−1, a0 = 1 = a−0, a1; i.e.,
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the equation

µ

(
1 +

n− ε

2
+ iκ

)
a−1 + (Z0 + λ)a0 + µ

(
1 +

n+ ε

2
− iκ

)
a1 = 0. (5.3)

With normalization adopted in (5.1), one has a0 = 1, a1 = ã1/ã0, a−1 = ã−1/ã−0.
Further, in accordance with (4.9),(4.10):

ã0 = γ(0), ã1 =
µ

1 + n+ε
2 − iκ

γ(1)

ã−0 =
γ̃(0)

Z̃−1

, ã−1 =
µ

1 + n−ε
2 + iκ

γ̃(1)

Z̃0

Besides, one has γ(0) = α(1), γ̃(0) = α̃(1)Z̃−1/Z̃0. Combining these dependencies,
the following representation of (5.3) arises

0 = µ2 γ
(1)

α(1)
+ (Z0 + λ) + µ2 γ̃

(1)

α̃(1)
. (5.4)

Accordingly, it is convenient to introduce the following function of the parameters
κ and n, λ, µ, ε

Ξ =
4

π2 sin
(

π
2 (n+ ε− 2iκ)

)
sin
(

π
2 (n+ ε+ 2iκ)

)
(n+ ε− 2iκ)(n+ 2− ε+ 2iκ)

×
(
µ2γ(1)α̃(1) + (Z0 + λ)α̃(1)α(1) + µ2γ̃(1)α(1)

) (5.5)

where Z0 = ((ε− 1)/2− iκ)2 − ((n+ 1)/2)2 (see (3.5)) and α’s, γ’s are defined as
the elements of the convergent matrix products as follows(

α(1) 0
γ(1) 0

)
=

∞∏
j=1

Mj ,

(
α̃(1) 0
γ̃(1) 0

)
=

∞∏
j=1

M̃j (5.6)

(see (3.8)-(3.10)). The fractional multiplier in the first line of (5.5) coincides
with the one entering (5.2) and plays the identical role: It eliminates the vi-
cious singularities arising for specific values of the parameters n, κ. We shall name
Ξ = Ξ(κ, n, µ, λ, ε) ≡ Ξ(κ; . . . ) the discriminant function for brevity. The following
statement holds true.

Proposition 5.1. Restricting κ to real values, the vanishing of the discriminant
function is necessary and sufficient for the single valued analytic function (5.2) to
verify (3.2) everywhere on the Riemann sphere except its poles z = 0, z−1 = 0.

Indeed, the vanishing of Ξ implies the fulfillment of (5.3) (where a’s are expressed
through ã’s), the last equation among those binding coefficients of the expansion
(3.3) which has not been fulfilled as the result of the very coefficients definition.
Now all the 3-term recurrence relations for a-coefficients, which (3.2) is equivalent
to, are satisfied and the analytic function (5.2) verifies (3.2) everywhere except of
its own singular points z = 0 and z−1 = 0.

The equation
Ξ(κ; . . . ) = 0 (5.7)

referred to in the above proposition can be named the matching condition since
it enforces the sequences of the coefficients ak, a−k, separately obeying the corre-
sponding ‘halves’ of the equation chain (3.4) (equivalently, (3.6)) to be ‘matched’
in their ‘edge’ elements a±0 = 1, a±1. It is worth emphasizing that, up to this
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point, the parameter κ (absent in (2.5)) has not been restricted in any way (apart
of the claim to be real). Now and in what follows we regard the condition (5.7) as κ
definition eliminating this odd ‘degree of freedom’. Hereinafter, it is a well defined
function of the other parameters.

It seems interesting enough that the addition of unspecified constant κ to the
transformation (3.1) and its subsequent ‘fine tuning’ by means of the claim of
fulfillment of (5.7)) is necessary for the representation of solution of double confluent
Heun equation (2.5) in terms of convergent Laurent series. More precisely, it is
clear that (3.5) can be solved for any (including trivial zero) choice of κ, choosing
loosely aj0 , aj0+1 for arbitrary j0 and then calculating, term by term, all the other
coefficients aj , advancing in parallel in both directions of j-index variation ‘off j0
towards ±∞’. Then (3.3) immediately yields a (κ-dependent!) formal solution to
(3.2) and hence, through transformation (3.1), to (2.5). However, it can be only
formal and will necessarily diverge for any z unless the matching condition (5.7)
is fulfilled – just in view of the uniqueness of solution with the analytic properties
presupposed. On the other hand, considering separately the ‘halves’ of the set
of (3.5) and resolving them ‘in index variation directions’ opposite to the ones
assumed above (in a sense, ‘off ±∞ towards ±0’), we obtain the always converging
series (5.1). However, as we have seen, we again have no solution, in this case even
formal, unless the matching condition fixing κ is fulfilled. Obviously, the uniqueness
property implies that the introduction of the ‘branching’ power function factor, as
in (3.1), is the only way to obtain a solution to (2.5) admitting representation in
terms of convergent power series.

Now, tracking back the relationship connecting (3.2) with the primary (1.1)
and invoking the general theory of the latter applicable in the case of arbitrary
continuous periodic q(t) [11], one can infer the following statements which however,
in the present context, are only of the status of conjectures in view of the lack
of their proof ‘from the first principles’; i.e., on the base of the properties of the
discriminant function Ξ following from its explicit definition.

Conjecture 5.2. 1. There exists an open non-empty subset of the space of the
problem parameters n, µ, ω, ε where (5.7) admits a real valued positive solution.

2. If real κ solves (5.7), −κ is the solution as well. No more real roots exist.
3. Real roots of (5.7) obey the condition |κ| ≤ (2ω)−1.

Remark: The last statement which is very important from viewpoint of appli-
cations, is nothing else but the form of the limitation on the rate of growth or
decreasing of the functions x̃, ỹ = x, y|z=eiωt of the real variable t implied by the
inequalities (2.4) and the equation

x− iy = −iz
ε−1
2 −iκe−

µ
2 (z+ 1

z )E,

following from definitions. Notice that the latter clarifies the role of the parity
parameter ε (= 0 or 1) which determines the multiplicity of the inverse to the map
S1 3 z → (x + iy)/|x + iy| ∈ S1 induced by the solution (5.2). If ε = 0, the
revolution along the circle |z| = 1 leads to the reversing of the direction of the
vector with components (x, y) whereas in the case ε = 1 its direction is preserved.
The above inverse map is double-valued in the former case and one-to-one in the
latter one.

More properties of the discriminant function can be inferred from the numerical
experiments although, as opposed to the assertions of the Conjecture 5.2, they have,
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to date, no analytic arguments in their favor yet, even indirect. Nevertheless, the
first item below is important enough from viewpoint of applications (seeming also
plausible enough) to be explicitly formulated here.

Conjecture 5.3. 1. Phase-lock criterion. Equation (5.7) admits a real non-zero
solution if and only if

Ξ(0; . . . ) > 0. (5.8)

This means in particular that Ξ(0; . . . ) is real. Moreover, the numerical study makes
evidence that

2. Ξ(κ; . . . ) is real for real κ (assuming the other parameters to be also real, of
course).

6. Floquet solutions of double confluent Heun equation and
involutive solution maps

Let us assume now that there exists a real positive solution κ of (5.7). With this
κ, the function E(z) defined by (5.2) verifies (3.2). Let us consider the function
E#(z) defined through E(z) as follows

E#(z) = z2iκ−ε
[
E′
(1
z

)
+
((n+ ε

2
− iκ

)
z − µ

)
E
(1
z

)]
. (6.1)

Then a straightforward computation shows that it verifies (3.2), provided E(z)
does.

It is worthwhile to note that the repetition of the transformation (6.1) yields
no more solutions to (3.2). As a matter of fact, one has #◦# = (2ω)−2Id. Thus
(2ω)−1

# is the involutive map on the space of its solutions.
Next, the functions E(z) and E#(z) are linearly independent for nonzero κ.

Indeed, utilizing (3.2), one finds

E′#(z) = z2iκ−ε−1
[(
− n+ ε

2
+ iκ+ µz

)
E′(

1
z
)

+
(
µ
(n+ ε

2
− iκ

)
(z2 + 1) +

(
− (

n+ ε

2
− iκ)2 + λ

)
z
)
E(

1
z
)
]
.

(6.2)

This reduction allows one to calculate the determinant of the linear transformation
binding the pairs of functions E#, E

′
#(z) and E,E′(1/z) which proves equal to

(2ω)−2z2(−ε+2iκ) and is therefore nonzero. Hence E#(z) is not zero, identically,
(and may vanish at isolated points, at most, as well as E(z)). Finally, E(z) is
periodic on the unit circle centered at zero whereas E#(z), for real κ 6= 0, is
not. Hence they are linear independent. The functions E(z) and E#(z) constitute
therefore the fundamental system for (3.2) and any its solution can be expanded
in this basis with constant expansion coefficients. Consequently, for κ 6= 0, the
domain of general solution to (3.2) is Ω, the universal covering of Riemann sphere
with punctured poles.

The analytic properties of E,E# identify these solutions as (the unique pair
of) the Floquet solutions of the reduced double confluent Heun equation under
consideration. See [14, section 2.4].

The function E(z) obeys the important functional equation which can be derived
as follows. A straightforward calculation shows that the right-hand side expression
of (6.1) with the ‘branched’ factor z2iκ removed (i.e., z−2iκE#(z)) satisfies the ODE
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which coincides with (3.2) up to the opposite sign of the parameter κ. This means
that, for real κ, n, µ, ω, the analytic function

Ê(z) = z−ε
[
Ē′
(1
z

)
+
((n+ ε

2
+ iκ

)
z − µ

)
Ē
(1
z

)]
, (6.3)

where Ē(z) = E(z), is the solution of (3.2) itself.
As opposed to E#, this ‘yet another’ solution has the same analytic properties

as E(z) and hence must coincide with it up to some numerical factor CC ; i.e.,

CCE(z) = z−ε
[
Ē′
(1
z

)
+
((n+ ε

2
+ iκ

)
z − µ

)
Ē
(1
z

)]
. (6.4)

(CC may not vanish since otherwise E# would also be identical zero.) This is the
generalization of the similar property of the so called ‘Heun polynomials’ established
in Ref. [12].

The complex valued constant CC actually reduces to a single real constant. To
show that, let us notice at first that if E(z) verifies (3.2), it follows from the latter
and (6.4),

CCE
′(z) = z−ε−1

[(
− n+ ε

2
− iκ+ µz

)
Ē′(

1
z
)

+
(
µ
ε+ n

2
(z2 + 1)− iµκ(z2 − 1)

+
(
− (n+ ε)2

4
− κ2 + λ

)
z
)
Ē(

1
z
)
]
.

(6.5)

Evaluating (6.4)–(6.5) together with their complex conjugated versions at the point
z = z−1 = 1, one obtains four linear homogeneous equations binding the quantities
E(1), E′(1), Ē(1), Ē′(1) which may not vanish simultaneously. The corresponding
consistency condition reads |CC |2 = (2ω)−2 implying

CC = (2ω)−1eiCc , (6.6)

where Cc is some real constant (actually, the function of the parameters n, µ, ω, ε).
It encodes all the monodromy data for (3.2), essentially.

It is straightforward to show that the transformation (6.4) is also involutive. It
manifests the specific symmetry in the behaviors of the function E(z) in vicinities
of the essentially singular points z = 0 and z−1 = 0. Remarkably, the possessing of
this symmetry suffices itself for the fulfillment of (3.2). Indeed, differentiating (6.4)
and taking into account (6.6), one arrives at (3.2). In a sense, (6.4) together with
stipulation for the analyticity of E(z) can be considered as the equivalent to (3.2).
Additionally, (6.4) implies anti-linear (involving complex conjugation) dependencies
among the ‘distant’ Laurent series coefficients a−k and ak, ak+1 (whereas (3.4) (or
(3.6)) binds ‘nearby’ ak, ak±1). In particular, it suffices to find all ak for k > 0
and then a−k can be computed from the latter by means of a simple (anti-)linear
transformation.

7. Essentially periodic and general solutions of overdamped
Josephson junction equations

The connection between the functions E(z), E#(z), Ê(z) pointed out above is
important for the consistent projecting the results concerning solutions of (3.2) to
the level of original (1.1)–(1.2). This procedure applying equations (2.2), (2.7),
(2.8), (3.1) is straightforward and leads to the following conclusions.
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At first, the representation of the two special (and the most important) solutions
to (1.1)–(1.2) for which the exponents exp(iϕ) are periodic (for brevity, we shall
call such phase functions essentially periodic) follows. It reads

exp(−iϕ) = 2iω
(
z
E′(z)
E(z)

+
n+ ε

2
− iκ− µz

)
, (7.1)

exp(iϕ) = −2iω
(
z−1E

′(z−1)
E(z−1)

+
n+ ε

2
− iκ− µz−1

)
, (7.2)

where

z = exp(iωt). (7.3)

For κ > 0, the first of these formulas determines the asymptotic limit (the attractor)
of a generic solution to (1.1)–(1.2) whereas the second solution is unstable (the re-
peller). It is important to emphasize that the functions ϕ(t) defined by (7.1), (7.2),
and (7.3) are real and (6.4), (6.6) are the crucial ones utilized in the calculation
establishing this fact.

At second, it is straightforward to carry out the ‘nonlinear superposition’ of
solutions (7.1), (7.2) operating with linear problem -related counterparts. The
result is represented by the formula

exp(iϕ)

= − i
2

{
cosψ · E(z) + sinψ · z−ε+2iκ

[
E′(z−1) +

((n+ ε

2
− iκ

)
z − µ

)
E(z−1)

]}
×
{
ω cosψ ·

[
zE′(z) +

(n+ ε

2
− iκ− µz

)
E(z)

]
+

1
4ω

sinψ · z−ε+1+2iκE(z−1)
}−1

,

(7.4)
where ψ is an arbitrary real constant. More exactly, the set of all functions ϕ
described by (7.4) is parameterized by points of S1. As opposed to (7.1) and (7.2)
defined on the Riemann sphere with punctured poles, the function (6.5) is defined
on its universal covering, Ω. Continuous (and then real analytic) function ϕ(t)
determined by this equation on Ω1 ∈ Ω, where z is understood as eiωt, is just the
general solution of (1.1)–(1.2) in the case of phase-lock.

In particular, (7.1), (7.2) represent the special instances of (7.4) arising for ψ = 0
and ψ = π/2, respectively. As a consequence, asymptotic properties of the general
solution mentioned above immediately follow. Indeed, as t increases, the exponent
(7.4) is converging to (7.1) and is taking off (7.2) (unless it coincides with the
latter). The two solutions described by (7.1),(7.2) are the only ones which are not
affected by the translations t → t + 2πω−1 (in the sense the exponents (7.1),(7.2)
are kept unchanged) and preserve their functional form in asymptotics.

Finally, at third, considering ϕ defined by (7.1) as analytic function of z and
taking in account (3.2), one obtains

dϕ
dz

= −iz−2
{
z3
(E′(z)
E(z)

)2

+ z
(
(1− z2)µ+ z

(
(ε− 1)− 2iκ

))E′(z)
E(z)

−
(
z + z

(n− ε

2
+ iκ

)
− µ

)((n+ ε

2
− iκ

)
− µz

)
+

z

4ω2

}
×
{
z
E′(z)
E(z)

+
(n+ ε

2
− iκ

)
− µz

}−1

(7.5)



EJDE-2007/133 GENERAL SOLUTION 15

On the unit circle, this ϕ verifies (1.1)–(1.2). It is therefore smooth (even real
analytic) therein. Hence (7.5) is continuous on S1. Finally, since exp iϕ|z=exp iωt is
periodic, the following proposition holds.

Proposition 7.1. The quantity

k = (2π)−1

∮
dϕ
dz

dz, (7.6)

where dϕ/d z denotes the right-hand side in (7.5) and the integration is carried out
over the circle |z| = 1, is well defined and amounts to an integer.

This integer is the degree of the map S1 ⇒ S1 induced by the function (7.1).
In physical applications, it is called the phase-lock order and is considered as the
integer-valued function of the parameters which is obviously continuous and, thus,
locally constant. Phase-lock order is involved in the formula representing the prop-
erty of being ‘essentially periodic’ for the phase function defined by (7.1) (and
asymptotically for a generic phase function) which reads

ϕ(t+ 2πω−1) = ϕ(t) + 2πk ∀t.
In a phase-lock state of JJ, the uniformly distributed discrete levels of averaged
voltage equal to k · (~ω/2e) for some k = 0,±1,±2 . . . are observed.

Conjecture 7.2. Any integer map degree (7.6) is realized on some non-empty open
subset of the space of the problem parameters n, µ, ω, ε (or, equivalently, A,B, ω, ε).

This assertion is closely cognate to the item 1 of the above Conjecture 5.2.

8. Summary

It the present work, the general solution of the overdamped Josephson junction
equation (1.1) was obtained for the (co)sinusoidal right-hand side function (1.2)
in the case of one of three possible asymptotic behaviors known as the phase-lock
mode. The solution is represented in explicit form in terms of the Floquet solution
of the particular instance (arising in case of the vanishing of one of the four free
constant parameters) of the double confluent Heun equation. The Floquet solution
of double confluent Heun equation is represented in terms of the Laurent series
whose coefficients are determined by explicit formulas involving convergent infinite
products of 2 × 2 matrices with a single zero element tending to the idempotent
matrix (4.6). The derivation presupposes the existence of a real solution of the
transcendental equation (5.7) which is equivalent to the claim of realization of the
phase-lock mode for the given parameter values. The plausible criterion of its
existence (i.e., the phase-lock criterion) is conjectured.

The derivation of general solution of (1.1)–(1.2) consists of a number of steps.
In a concise form they can be described as follows.

• The investigation of the basic properties of (1.1) for arbitrary periodic (suf-
ficiently regular) q(t) allows one to establish the division of the space of the
problem parameters into the two open subsets of which one corresponds to
the phase-lock property of the (1.1)–(1.2) solutions whereas another corre-
sponds to their pseudo-chaotic behavior revealing no stable periodicity. In
the (lower-dimensional) complement to these areas the intermediate behav-
ior is observed. The corresponding results are discussed in sufficient details
in Ref. [11].
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• The next important point is the intimate connection (first mentioned by
Buchstaber; see, e.g., Ref. [13]) between (1.1) and a simple linear system
of the two first order ODEs (2.3). For the (co)sinusoidal right-hand side
function (1.2), the latter takes the form (2.1).

• At the next step, the transformation (2.7) was found which converts the
linear system (2.1) to a particular instance of the double confluent Heun
equation (2.9).

Generally speaking, it could be solved by means of the expansion of the (modified)
unknown function in Laurent series [14],[12] centered at the singular points z =
0, z−1 = 0 but preliminarily the additional simple but important transformation
has to be carried out:

• the ‘branched’ power factor involving unspecified constant (κ-dependent
contribution in (3.1)) is introduced.

• Additionally, the discrete ‘parity’ parameter ε, assuming either the value
0 or the value 1 (also absent in the equation to be solved), is introduced
in the aforementioned power factor. This modification proves necessary for
the subsequent exhaustive ‘indexing’ of the solution space.

• After that, the standard technique of the power expansion leads to the
‘endless’ sequence of the 3-term constraints (3.4) (or, which is the same,
(3.6)) imposed on the unknown series coefficients.

• The next step is the devision of the set of power series coefficients into the
two subsets. The non-negative-index-value coefficients and non-positive-
index-value ones are treated separately, solving the separate subsets of the
equations (3.4) and (3.6), respectively, for k ≥ 1. Analyzing them, the
application of the continued fraction technique leads, after some transfor-
mations, to the ‘explicit’ formulas (3.13),(3.14) for the series coefficients
involving infinite products of 2× 2 matrices converging for large index val-
ues to the idempotent matrix (4.6). This convergence is sufficiently fast to
imply the convergence of the matrix products and, accordingly, the finite-
ness of the series coefficients. Moreover, the associated estimates make
evident the existence of the absolutely converging majorants for the result-
ing Laurent series. Therefore, they actually determine an analytic function
serving the Floquet solution of double confluent Heun equation. It proves
representable as the sum of the two entire functions of the arguments z and
z−1, respectively.

• The procedure producing Laurent series coefficients noted above proves
however suffering from the improper introduction of a kind of vicious sin-
gularities arising as zeroes in denominator which appear for some special
parameter values. They are eliminated my means of multiplication of the
‘raw’ coefficient expressions by some z-independent (but parameter depen-
dent) factors given in explicit form.

One more remark is here in order. The case where the above ‘regularizing’ factor
actually enters the play exactly corresponds to the situation where the problem
solution can be built in terms of polynomials (it was discovered in Ref. [12]). In brief,
the ‘vanishing’ factors ‘neutralizing’ diverging terms with vanishing denominators,
eliminate, in pass, the terms which do not diverge. Ultimately, only finite number of
‘originally diverging’ terms survive which lead to the reduction of the transcendental
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function describing generic solution to a polynomial. (The details of the realization
of this reduction have not been properly elaborated yet.)

• Now the ‘solution candidate’ for (3.2) can be represented as the analytic
function (5.2) which is well-defined for any parameter values. However, at
the price of automatic convergence of the power series it has been built
upon, generally speaking, it does not verify (3.2). The equation is fulfilled
if and only if the fulfillment of (5.7), which is the transcendental equation
for the still unspecified parameter κ, is stipulated.

At this stage, having solved (5.7), a single solution (the Floquet solution) of double
confluent Heun equation can be regarded as been explicitly constructed.

• The invariance of the space of solutions of double confluent Heun equation
under consideration with respect to the transformation (6.1) allows one to
immediately obtain the fundamental system of its solutions in terms of the
single Floquet solution noted above.

• The existence of automorphism represented by (6.4) expresses the impor-
tant intrinsic property of the Floquet solution of double confluent Heun
equation. It is used for the derivation of the explicit representation of the
exponent exp(iϕ) specifying the real valued phase function ϕ. It is ob-
tained by means of the restriction of the analytic function (see (7.4)) from
the universal covering of the Riemann sphere with punctured poles to the
embedded universal covering of S1. This trick yields the general solution
of (1.1), (1.2) in the case of phase-lock.

• Finally, employing the analytic properties and the periodicity (on S1) of
exp(iϕ)(z), the formula (7.6) involving Floquet solution of double confluent
Heun equation follows which gives the degree of the map S1 ⇒ S1 it induces
(the winding number) also known in application fields as the phase-lock
order.

It is worth noting in conclusion that all the major constructions derived above
admit a straightforward algorithmic implementation which have been used for the
numeric verification of the relevant relationships.

9. Appendix: Outline of the proof of Theorem 4.1

Equation (4.1) implies βj = µ2αj−1Z
−1
j , δj = µ2γj−1Z

−1
j and hence the asserted

properties of the sequences βj , δj follow from the existence of finite limits for the
sequences αj , γj . As to the sequences αj and γj , their elements have to obey the
identical decoupled 3-term recurrence relations which, for α’s, read

αj = (1 + λZ−1
j+(ε−1)/2)αj−1 + µ2Z−1

j−ε̃+(ε−1)/2αj−2, (9.1)

where ε̃ = 1 for the upper choice of σ in (4.2) and ε̃ = 0 for the lower σ choice
therein. It suffices to consider the α-sequence case.

Evidently, for every integer j0 > 0 and l > 0 any solution of equations (9.1) can
be represented in terms of the decomposition

αj0+l = (1 + pj0,l)αj0−1 + qj0,lαj0−2, (9.2)

for some coefficients pj,l, qj,l independent on the ‘starting’ terms αj0−1, αj0−2. Ap-
plying (9.1), it is straightforward to derive the reduction

qj0,l+1 = (1 + pj0+1,l)µ2Z−1
j0−ε̃, (9.3)
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whereas for p∗,∗ one gets the following recurrence relation:

pj0,l+1 = pj0+1,l + λ(1 + pj0+1,l)Z−1
j + µ2(1 + pj0+2,l−1)Z−1

j+1−ε̃. (9.4)

Equation (9.4) is equivalent to (9.1), essentially, but it possesses the advantage of
being endowed with the standard ‘initial conditions’

pj0,−1 = 0, pj0,−2 = −1 (9.5)

independent of the specific ‘starting’ values αj0−1, αj0−2. Furthermore, one gets

qj0,−1 = 0, qj0,−2 = 1. (9.6)

It proves convenient to carry out one more rearrangement of unknowns intro-
ducing the differences

∆pj0,l = pj0,l+1 − pj0,l. (9.7)

which obey the own ‘initial conditions’

∆pj0,−2 = 1, (9.8)

∆pj0,−1 = λZ−1
j0
, (9.9)

and analogous recurrence relations

∆pj0,l+1 = ∆pj0+1,l + λ∆pj0+1,lZ
−1
j0

+ µ2∆pj0+2,l−1Z
−1
j0+1−ε̃. (9.10)

Now, summing up the subset of all the equations (9.10) distinguished by the com-
mon sum of indices at the left and taking into account (9.9), all but two ‘free’
∆p-terms cancel out and one obtains

∆pj0,l+1 = λZ−1
j0+2+l + λ

l+1∑
m=0

∆pj0+1+m,l−mZ
−1
j0+m

+ µ2
l+1∑
m=0

∆pj0+2+m,l−1−mZ
−1
j0+m+1−ε̃.

(9.11)

In the sums, the second index of ∆p∗,∗ is everywhere less than the same index at the
left that allows to apply the method of mathematical induction. For the ‘starting’
values −1, 0 of the second index one has

Zj0∆pj0,−1 = λ,

Zj0+1∆pj0,0 = λ(1 + λZ−1
j0

) + µ2Zj0+1Z
−1
j0+2−ε̃.

Therefore, for l = −1, 0 there exist the finite limits limj0→∞ |Zj0+l+1∆pj0,l|. As a
consequence, for these l’s,

|∆pj0,l| < Ñ |Zj0+l+1|−1 (9.12)

for appropriate constant Ñ which is convenient to choose > 1. Let us consider
this fact as the starting point of mathematical induction and assume that for some
integer l0 ≥ 0 and any integer l from the interval [−1, l0] (9.12) holds true. We
may apply it for the estimating from above of the quantity |∆pj0,l0+1|. This can
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be realized making use of the ‘decomposition’ (9.11) and the following elementary
inequalities

L+j0+1∑
m=j0

|Zm|−1 <
1 + |n+ 1|−1

j0 − |n+ 1|/2 + (ε− 1)/2
, (9.13)

L+j0+2−ε̃∑
m=j0+1−ε̃

|Zm|−1 <
1 + |n+ 1|−1

j0 − |n+ 1|/2 + (ε− 1)/2
, (9.14)

where L > 0 (and n 6= −1) . These imply the inequalities

|∆pj0,l0+1| ≤ |λ||Zj0+l0+2|−1

+ Ñ |Zj0+l0+1|−1
(
|λ|

l0+1∑
m=0

|Zj0+m|−1 + |µ2|
l0+1∑
m=0

|Zj0+m+1−ε̃|−1
)

< |Zj0+l0+2|−1
(
1 + Ñ

|Zj0+l0+2|
|Zj0+l0+1|

(|λ|+ |µ2|)(1 + |n+ 1|−1)
(j0 − |n+ 1|/2 + (ε− 1)/2)

)
.

Since we assumed Ñ > 1, there exists the bound of lower index values such that
for any j0 exceeding it the factor in brackets is less than Ñ , and then the above
inequalities imply |∆pj0,l0+1| < Ñ |Zj0+l0+2|−1. The induction step is accomplished.
(9.12) is therefore established for sufficiently large j0 and arbitrary l ≥ 0. Increasing
Ñ if necessary, (9.12) proves valid for arbitrary j0.

In view of this property, one sees that the sum
∑∞

l=0 ∆pj0,l has the majorant
const×

∑
l |Zj0+l+1|−1 and thus converges itself. The sequence of its partial sums∑l

m=0 ∆pj0,m = pj0,l+1 − pj0,−1 = pj0,l+1 also converges as l → ∞. Moreover, in
view of (9.5), (9.7), (9.13), (9.12) one has the l-uniform bound

|pj0,l+1| < Ñ
l∑

m=0

|Zj0+m+2|−1 <
Ñ(1 + |n+ 1|−1)
j0 + 1 + (ε− 1)/2

. (9.15)

It follows from (9.2), (9.3)

αj = αj0+l = (1 + pj0,l)αj0−1 + (1 + pj0+1,l−1)µ2Z−1
j0−ε̃αj0−2 (9.16)

and the convergence of α-sequence follows from the convergence of p∗,l. Moreover,
one has

limαj − αj0−1 = lim
l
pj0,l · αj0−1 + (1 + lim

l
pj0+1,l)µ2Z−1

j0−ε̃ · αj0−2. (9.17)

The factors in front of the first and the second terms to the right scales as j−1
0 and

j−2
0 , respectively. We may therefore write down the inequality

| limαj − αj0−1| = N max(|αj0−1|, |αj0−2|)j−1
0 ,

where N may depend on the parameters n, λ, µ, κ, ε but not on the specific specimen
of α-sequence. This obviously implies the inequality (4.3).

It has also to be noted in conclusion that the case n = −1 formally falling off
the above speculation does not actually correspond to an exceptional situation.
Although inequalities (9.13) formally fail, similar ones differing from (9.13) in the
values of ‘constant’ (j0-independent) terms alone can be derived. The further rea-
soning holds true and leads to the same conclusions.
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