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AMBARZUMIAN’S THEOREM FOR TREES

ROBERT CARLSON, VYACHESLAV PIVOVARCHIK

Abstract. The classical Ambarzumian’s Theorem for Schrödinger operators

−D2 + q on an interval, with Neumann conditions at the endpoints, says that
if the spectrum of (−D2 + q) is the same as the spectrum of (−D2) then

q = 0. This theorem is generalized to Schrödinger operators on metric trees
with Neumann conditions at the boundary vertices.

1. Introduction

In 1929, Ambarzumian [1] published the following foundational result in inverse
spectral theory.

Theorem 1.1 (Ambarzumian). If q(x) is real-valued and continuous function, and
the spectrum of the boundary problem

−y′′ + q(x)y = λy,

y′(0) = y′(1) = 0,

is k2π2, for k = 0, 1, 2, . . . , then q(x) = 0.

As Borg [2, 3] established, the case q = 0 turns out to be exceptional. In general
the spectra of two Sturm-Liouville problems are needed to determine the potential.
However, some generalizations of Ambarzumian’s theorem were obtained in [6, 7,
8, 9]. In particular, it is known [9] that one may relax the original hypotheses,
assuming that q ∈ L1[0, 1], and

lim
k→∞

(λk − k2π2) = 0.

This work establishes an extension of Ambarzumian’s theorem to trees, where
each (directed) graph edge e1, . . . , en is identified with the interval [0, 1]. Functions
on the graph may then be identified with an ordered n-tuple of functions on [0, 1],
With these identifications, the eigenvalue equation −Y ′′+Q(x)Y = λY for the tree
with the real integrable diagonal matrix potential Q = diag[q1, . . . , qn] is a system
of n scalar equations

−y′′j + qj(x)yj = λyj , qj ∈ L1[0, 1]. (1.1)

Eigenfunctions for −Y ′′ + Q(x)Y = λY on a graph are (nonzero) solutions of
(1.1) which satisfy vertex (boundary) conditions. For trees, the Neumann condition
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y′(v) = 0 is assumed to hold at the boundary vertices, which have one incident edge.
At interior vertices, with more than one incident edge, solutions of (1.1) are required
to be continuous and satisfy the Kirchhoff condition, that the derivatives sum to
zero in outward pointing local coordinates. For a star shaped graph a version of
Ambarzumian’s theorem was obtained in [14]. Our generalization is as follows.

Theorem 1.2. Suppose T is a finite tree with all edges of length 1. For r = 1, 2, . . . ,
let {mr} be a sequence of integers with limr→∞mr = ∞. If the set of eigenvalues for
(1.1) satisfying the tree vertex conditions is nonnegative, and contains a subsequence
{λr} with

lim
r→∞

(
λr − (πmr)2

)
= 0, (1.2)

then qj(x) = 0 a.e., for each j = 1, 2, . . . , n.

The following observations may provide motivation for the subsequent argu-
ments. Consider the equation −Y ′′ = λY on a tree T whose edges have length 1. If
v is a boundary vertex, and x is the distance in T to v, then for m = 0, 1, 2, . . . the
function cos(mπx) will be continuous with derivative 0 at all the vertices. Thus for
the case Q(x) = 0 the spectrum contains a subsequence (mπ)2, and these eigenval-
ues are easily seen to be simple.

If Q 6= 0, a number of arguments [9], [15, p. 33-35] suggest that one should
expect a spectral shift given by

∫
T

Q. The hypothesized behavior (1.2) suggests that∫
T

Q = 0. A previously known argument [9, 12] would then show that positivity of
all eigenvalues forces Q to be 0.

The proof of Theorem 1.2 uses an analysis of the asymptotic behavior of eigen-
functions for (1.1) when the eigenvalues are close to (πmr)2. This material, along
with a review of differential equations on graphs, is provided in Section 2. Section
3 contains three results, which together comprise the proof of Theorem 1.2. The
expected result

∫
T

Q = 0 is first established. Second, a version of an argument
of [12] is used to complete the proof, except for a technical issue about the form
domain for −D2 + Q when some qj is integrable, but not square integrable. The
third result is included to resolve this technical issue.

2. Background Material

Let T be a metric tree with n edges, all of length 1, and an interior vertex chosen
as the root. Local coordinates for the edges identify each edge with [0, 1] so that
the local coordinate increases as the distance to the root decreases. This means
that each boundary vertex has local coordinate 0, the root has local coordinate 1 on
each of its incident edges, and all other interior vertices v have one outgoing edge,
with local coordinate 0 for v, while the local coordinate for v is 1 on the remaining
incoming incident edges.

The given choice of local coordinates for T provides a convenient form for the
vertex conditions. For an edge ej incident on a boundary vertex, the Neumann
condition is

y′j(0) = 0.

For the root we impose the continuity conditions

yj(1) = yk(1)
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for all incident edges ej and ek and the Kirchhoff condition∑
j

y′j(1) = 0,

the sum taken over all edges ej incident on the root. For all other interior vertices
v with incoming edges ej and outgoing edge ek the continuity conditions are

yj(1) = yk(0),

and the Kirchhoff condition is

y′k(0) =
∑

j

y′j(1).

Denote by cj(x, λ) the solution of (1.1) which satisfies the conditions cj(0, λ)−
1 = c′j(0, λ) = 0 and by sj(x, λ) the solution of (1.1) which satisfies the conditions
sj(0, λ) = s′j(0, λ) − 1 = 0. These solutions and their x derivatives satisfy the
integral equations

c(x, λ) = cos(
√

λx) +
∫ x

0

sin(
√

λ(x− t))√
λ

q(t)c(t, λ) dt,

c′(x, λ) = −
√

λ sin(
√

λx) +
∫ x

0

cos(
√

λ(x− t))q(t)c(t, λ) dt,

s(x, λ) =
sin(

√
λx)√
λ

+
∫ x

0

sin(
√

λ(x− t))√
λ

q(t)s(t, λ) dt,

s′(x, λ) = cos(
√

λx) +
∫ x

0

cos(
√

λ(x− t))q(t)s(t, λ) dt.

As a consequence, for λ > 0 one obtains the well know estimates

c(x, λ) = cos(
√

λx) + O(1/
√

λ), s(x, λ) =
sin(

√
λx)√
λ

+ O(1/λ). (2.1)

These results are established in [15, p. 13] for q ∈ L2[0, 1], but the same ideas work
for q ∈ L1[0, 1].

Suppose that Y (x, λ) is a vector function whose components yj satisfy (1.1), and
which is given the graph L2 norm,

‖Y (x, λ)‖2 =
n∑

j=1

∫ 1

0

|yj(x, λ)|2 dx.

Each yj(x, λ) may be written as a linear combination

yj(x, λ) = Aj(λ)cj(x, λ) + Bj(λ)sj(x, λ).

Lemma 2.1. Suppose qj ∈ L1[0, 1] and ‖Y (x, λ)‖ = 1. Then there is a λ0 > 0 and
a constant C such that

|Aj(λ)| ≤ C, |Bj(λ)/
√

λ| ≤ C, λ ≥ λ0.

Proof. The bound on ‖Y (x, λ)‖ gives a bound for each yj(x, λ), so∫ 1

0

|Aj(λ)cj(x, λ) + Bj(λ)sj(x, λ)|2 dx

=
∫ 1

0

|Aj |2c2
j +

|Bj |2

λ
λs2

j + (Aj
Bj√

λ
+ Aj

Bj√
λ

)cj

√
λsj ≤ 1.
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Simple trigonometric integrals and (2.1) give∫ 1

0

c2
j =

1
2

+ O(λ−1/2),
∫ 1

0

λs2
j =

1
2

+ O(λ−1/2),
∫ 1

0

√
λsjcj = O(λ−1/2).

Since

2|Aj
Bj√

λ
| ≤ |Aj |2 +

|Bj |2

λ
,

we have

|Aj |2[
1
2
−O(λ−1/2)] +

|Bj |2

λ
[
1
2
−O(λ−1/2)] ≤ 1,

which provides the desired estimate. �

Some refinements of the estimates (2.1) are available if x = 1 and λ is close to
m2π2. A recent reference is [5], but the ideas have a long history, [2, p. 11]. Define

[qj ] =
∫ 1

0

qj(t) dt, and ωj =
√

λ− [qj ].

Lemma 2.2. Suppose that for positive integers m we have λ = m2π2 + O(1). For
edge indices j = 1, . . . , n, the following estimates hold uniformly if

∫ 1

0
|qj(t)| dt is

bounded:

cj(1, λ) = cos(ωj)− (−1)m2−1m−1

∫ 1

0

sin(2mπt)qj(t) dt + O(m−2),

c′j(1, λ) = −ωj sin(ωj) + (−1)m2−1

∫ 1

0

cos(2mπt)qj(t) dt + O(m−1),

sj(1, λ) = ω−1
j sin(ωj) + (−1)m2−1m−2

∫ 1

0

cos(2mπt)qj(t) dt + O(m−3),

s′j(1, λ) = cos(ωj) + (−1)m2−1m−1

∫ 1

0

sin(2mπt)qj(t) dt + O(m−2).

(2.2)

Suppose λ has the form λ = m2π2 + O(1), and m → ∞. Using (2.2), the
Riemann-Lebesgue lemma and elementary trigonometric identities give

cj((1, λ) = (−1)m + o(1),

c′j(1, λ) = (−1)m 1
2

∫ 1

0

qj(x) dx + o(1),

sj(1, λ) = o(m−1),

s′j(1, λ) = (−1)m + o(1).

(2.3)

At the end of the proof we will use some Hilbert space operator theory, so it
will be helpful to recall [11] that on finite graphs the formal Schrödinger operators
−D2 + Q with real-valued edge potentials qj(x) in L1[0, 1], together with the in-
terior and boundary vertex conditions described above, are associated with a self
adjoint operator L, with compact resolvent, acting componentwise on the Hilbert
space ⊕jL

2(ej) of square integrable functions on the edges. These facts may be
established by using the variation of parameters formula to construct the resolvent.
The assumption that all eigenvalues are nonnegative in Theorem 1.2 then implies
that L is a nonnegative operator.
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3. Proof of Theorem 1.2

This proof will be split into several parts.

Lemma 3.1. With the hypotheses of Theorem 1.2,∑
j

[qj ] =
∑

j

∫ 1

0

qj(t) dt = 0. (3.1)

Proof. The sequence {mr} has either an infinite subsequence of even integers, or
an infinite subsequence of odd integers. We will assume the first case holds, and
use this subsequence instead of the original sequence with no change of notation.
If an odd subsequence were used instead, the leading terms in (2.3) would change
sign, but this has no significant impact on the proof.

Suppose that {Y (x, λr)} is a sequence of eigenfunctions for (1.1) with norm 1.
Write the components yj(x, λr) as a linear combination

yj(x, λr) = Aj(λr)cj(x, λr) + Bj(λr)sj(x, λr).

Recall that the coefficients Aj(λr) and Bj(λr)/
√

λr are bounded sequences by
Lemma 2.1. The proof now proceeds in three steps.

First, consider the value of yj for edges incident on a vertex v. If j is the index
of an outgoing edge, then

yj(0, λr) = Aj(λr).
If j is the index of an incoming edge, then by (2.3)

yj(1, λr) = Aj(λr)cj(1, λr) + Bj(λr)sj(1, λr) = Aj(λr) + o(1).

The continuity of Y at the vertex v thus implies

Aj(λr) = Ak(λr) + o(1), r →∞, (3.2)

for all edges j, k incident on v. Since the tree T is connected, (3.2) extends to all
edges j, k.

Second, considering the root vertex to be at the top of the tree T , say that an
edge ej is below an edge ek 6= ej if a path from ej to the root passes through ek.
Label each vertex v with the combinatorial distance from the root, and label the
edges with the larger of the vertex labels on the edge. Let M be the maximum
label. If the vertex v has label M − 1, then all its incoming edges ek join v to a
boundary vertex. If ej is the outgoing edge for v, then the derivative condition at
v gives

Bj(λr) =
∑

k

Ak(λr)c′k(1, λr) =
1
2

∑
k

Ak(λr)[qk] + o(1).

For vertices v with label M − 2, and outgoing edge ej , the derivative condition at
v and (2.3) give

Bj(λr) =
∑

k

[Ak(λr)c′k(1, λr) + Bks′k(1, λr)] =
1
2

∑
l

Al(λr)[ql] + o(1), (3.3)

where the last sum is over edges el which are below ej . This pattern continues as
we reduce the vertex label until we reach the root. The derivative condition at the
root now gives

0 =
∑

j

Al(λr)[qj ] + o(1) = A1(λr)
∑

j

[qj ] + o(1),
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the sum taken over all edges ej .
Third, from (3.3) and the extension of (3.2) to all edges j, k, we conclude that

lim infr→∞ |Aj(λr)| > 0 for all j, since otherwise we would have

lim inf
r→∞

|yj(x, λr)| = 0

uniformly in x, and the condition ‖Y (λr)‖ = 1 would be violated. In particular,
A1(λr) is bounded away from zero as r →∞, so we obtain

∑
j [qj ] = 0. �

The next step in the proof of Theorem 1.2 uses an argument from [12], which
is extended in [9]. Recall [10, pp. 318] that the nonnegative operator L has an
associated nonnegative form

t[f, g] = 〈Lf, g〉 =
∑

j

∫ 1

0

(Lfj)gj =
∑

j

∫ 1

0

(f ′jg′j + qjfjgj),

defined for f, g in the domain of L. The closure of this form is

t[f, g] = 〈L1/2f,L1/2g〉,
with the form domain equal to the domain of L1/2, the nonnegative square root of
L.

Lemma 3.2. With the hypotheses of Theorem 1.2, if the function 1 is in the domain
of L1/2, then qj(x) = 0 almost everywhere for all edges ej.

Proof. Recalling that the lowest eigenvalue λ0 of L is nonnegative, we apply the
minimax principle for our differential operator L. For Y in the domain of L1/2 we
have

0 ≤ λ0 = min
||Y ||=1

〈L1/2Y,L1/2Y 〉

= min
||Y ||=1

( n∑
j=1

∫ 1

0

y′jy
′
jdx +

n∑
j=1

∫ 1

0

qj(x)|yj |2dx
)
.

(3.4)

The constant function Y0 = (1, 1, . . . , 1)t is in the domain of L1/2, and the combi-
nation of (3.4) and (3.1) shows that 0 is an eigenvalue of L with eigenfunction Y0.
The proof is completed by noticing that the equation LY0 = 0 gives qj(x) = 0 a.e.,
for all edges ej . �

Let D0 denote the domain of the self adjoint operator L0 = −D2 associated
with the continuity and Kirchhoff boundary conditions described above. That is
[4], D0 consists of those vector functions G = (g1, . . . , gn) with gj , g′j absolutely
continuous, with g′′j ∈ L2[0, 1], and which satisfy the continuity and Kirchhoff
boundary conditions. The function 1 is in the domain of L0. Since the domain of
L1/2 includes the domain of L, the function 1 will be in the domain of L1/2, thus
yielding the conclusion of Theorem 1.2, if the domain of L is D0, which will hold
under the stronger hypothesis qj ∈ L2[0, 1].

A more elaborate argument is required for qj ∈ L1[0, 1]. Define the symmetric
form t1 with domain D0,

t1[F,G] =
n∑

j=1

∫ 1

0

(
f ′jg

′
j + qjfjgj

)
.

The proof of Theorem 1.2 will be completed with the next result, whose proof closely
follows the argument in [10, pp. 345-346], where additional details are provided.
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Theorem 3.3. The symmetric form t1 is closable. The self adjoint operator asso-
ciated with the closure of t1 is L = −D2 +Q, with a domain D consisting of vector
functions F : [0, 1] → Cn whose components fj satisfy the following conditions:

(i) fj and f ′j are absolutely continuous, and −f ′′j + qj(x)fj ∈ L2[0, 1],
(ii) fj satisfies the Neumann boundary conditions f ′j(v) = 0 at boundary ver-

tices, and the continuity conditions and Kirchhoff conditions at interior
vertices.

Proof. In addition to t1, define a second symmetric form with domain D0,

t0[F,G] =
n∑

j=1

∫ 1

0

f ′j(x)g′j(x) dx.

The form t0 is nonnegative, and so closable. For any ε > 0 there is a δ > 0 such
that

|fj(x)|2 ≤ ε

∫ 1

0

|f ′j(x)|2 dx + δ

∫ 1

0

|fj(x)|2 dx.

This implies that t1 is the sum of t0 and a form with t0 bound 0, so that [10, p.
320] t1 is bounded below and closable, and the closures of t0 and t1 have the same
domain D1.

Let x and y lie on edges incident on the vertex v. Integrating from x to v and
then from v to y on the respective edges, the continuity of F ∈ D0 at v gives

F (y)− F (x) =
∫ y

x

F ′(t) dt.

This formula, and the implied continuity at v, extends to functions F ∈ D1.
The closure of t1 has [10, p. 331] an associated self adjoint operator L, with

domain D. If F ∈ D and LF = H, then

t1[F,G] = 〈LF,G〉 = 〈H,G〉, G ∈ D1.

For functions zj such that

z′j(x) = hj(x)− qj(x)fj(x),

a rearrangement of terms from t1[F,G] = 〈H,G〉 gives
n∑

j=1

∫ 1

0

f ′j(x)g′j(x) dx =
n∑

j=1

∫ 1

0

z′j(x)gj(x) dx

=
n∑

j=1

(
zj(1)gj(1)− zj(0)gj(0)

)
−

n∑
j=1

∫ 1

0

zj(x)g′j(x) dx.

(3.5)
If the components of G satisfy gj(0) = gj(1) = 0, then

gj(x) =
∫ x

0

g′j(t) dt,

∫ 1

0

g′j(t) dt = 0.

The functions g′j have dense span in the orthogonal complement of the constants
in L2[0, 1], so (3.5) gives

f ′j + zj = cj . (3.6)
This equation shows that f ′j is absolutely continuous, and

−f ′′j + qjfj = hj .
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Since D ⊂ D1, functions F ∈ D are continuous at all vertices v, as noted above.
Relaxing the constraints on functions G ∈ D1, equation (3.5) gives

n∑
j=1

[cj − zj(1)]gj(1)−
n∑

j=1

[cj − zj(0)]gj(0) = 0,

or from (3.6)
n∑

j=1

f ′j(1)gj(1)−
n∑

j=1

f ′j(0)gj(0) = 0,

If G vanishes at each vertex except v, the continuity of G at v gives the desired
derivative conditions. For instance, if v has one outgoing edge ek and incoming
edges ej , we get

f ′k(0) =
∑

j

f ′j(1).

This shows that every function in D has the desired properties, and one may show
as in [10, p. 328] that these properties characterize D. �
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