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EXISTENCE OF ψ-BOUNDED SOLUTIONS FOR
NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

Abstract. In this article we present a necessary and sufficient condition for
the existence of ψ-bounded solution on R of the nonhomogeneous linear dif-

ferential equation x′ = A(t)x + f(t). We associate that with the condition of

the concept ψ-dichotomy on R of the homogeneous linear differential equation
x′ = A(t)x.

1. Introduction

The existence of ψ-bounded and ψ-stable solutions on R+ for systems of or-
dinary differential equations has been studied by many authors; see for exam-
ple Akinyele [1], Avramescu [2], Constantin [4], Diamandescu [5, 6, 7]. Denote
by Rd the d-dimensional Euclidean space. Elements in this space are denoted
by x = (x1, x2, . . . , xd)T and their norm by ‖x‖ = max{|x1|, |x2|, . . . , |xd|}. For
real d × d matrices, we define norm |A| = sup‖x‖61 ‖Ax‖. Let R+ = [0,∞),
R− = (−∞, 0], J = R−,R+ or R and ψi : J → (0,∞), i = 1, 2, . . . , d be con-
tinuous functions. Set

ψ = diag[ψ1, ψ2, . . . , ψd].

Definition 1.1. A function f : J → Rd is said to be
• ψ-bounded on J if ψ(t)f(t) is bounded on J .
• ψ-integrable on J if f(t) is measurable and ψ(t)f(t) is Lebesgue integrable

on J .
• ψ-integrally bounded on J if f(t) is measurable and the Lebesgue integrals∫ t+1

t
‖ψ(u)f(u)‖du are uniformly bounded for any t, t+ 1 ∈ J .

In Rd, consider the following equations

x′ = A(t)x+ f(t), (1.1)

x′ = A(t)x. (1.2)

where A(t) is continuous matrix on J , f(t) is a continuous function on J . Let Y (t)
be fundamental matrix of (1.2) with Y (0) = Id, the identity d × d matrix. The
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d × d matrices P1, P2 is said to be the pair of the supplementary projections if
P 2

1 = P1, P
2
2 = P2, P1 + P2 = Id.

Definition 1.2. The equation (1.2) is said to have a ψ-exponential dichotomy
on J if there exist positive constants K,L, α, β and a pair of the supplementary
projections P1, P2 such that

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)| 6 Ke−α(t−s) for s 6 t, s, t ∈ J, (1.3)

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)| 6 Leβ(t−s) for t 6 s, s, t ∈ J. (1.4)

The equation (1.2) is said to have a ψ-ordinary dichotomy on J if (1.3), (1.4) hold
with α = β = 0.

We say that (1.2) has a ψ-bounded grow if for some fixed h > 0 there exists a
constant C > 1 such that every solution x(t) of (1.2) is satisfied

‖ψ(t)x(t)‖ 6 C‖ψ(s)x(s)‖ for s 6 t 6 s+ h, s, t ∈ J. (1.5)

Remark 1.3. It is easy to see that if (1.2) has a ψ-exponential dichotomy on
R+ and on R− with a pair of the supplementary projections P1, P2 then (1.2) has
a ψ-exponential dichotomy on R with the pair of the supplementary projections
P1, P2.

Theorem 1.4 ([3, 5, 7]). (a) The equation (1.1) has at least one ψ-bounded solution
on R+ for every ψ-integrable function f on R+ if and only if (1.2) has a ψ-ordinary
dichotomy on R+.
(b) The equation (1.1) has at least one ψ-bounded solution on R+ for every ψ- inte-
grally bounded function f on R+ if and only if (1.2) has a ψ-exponential dichotomy
on R+.
(c) Suppose that (1.2) has a ψ-bounded grow on R+. Then, (1.1) has at least one
ψ-bounded solution on R+ for every ψ-bounded function f on R+ if and only if
(1.2) has a ψ-exponential dichotomy on R+.

Theorem 1.5 ([7]). Suppose that (1.1) has a ψ-exponential dichotomy on R+ and,
P1 6= 0, P2 6= 0. If limt→∞‖ψ(t)f(t)‖ = 0 then every ψ-bounded solution x(t) of
(1.1) is such that limt→∞‖ψ(t)x(t)‖ = 0.

2. Preliminaries

Lemma 2.1. (a) Let (1.2) has a ψ-exponential dichotomy on R+ with a pair of
the supplementary projections P1, P2. If Q1, Q2 is a pair of the supplementary
projections such that ImP1 = ImQ1, then (1.2) also has a ψ-exponential dichotomy
on R+ with the pair of the supplementary projections Q1, Q2.
(b) Let (1.2) have a ψ-exponential dichotomy on R− with a pair of the supplemen-
tary projections P1, P2. If Q1, Q2 is a pair of supplementary projections such that
ImP2 = ImQ2, then (1.2) also has a ψ-exponential dichotomy on R− with the pair
of the supplementary projections Q1, Q2.

Proof. First, we prove in the case of J = R+. Note that (1.2) has a ψ-exponential
dichotomy on R+ with the pair of the supplementary projections P1, P2 if only if
following statements are satisfied:

‖ψ(t)Y (t)P1ξ‖ 6 K ′e−α(t−s)‖ψ(s)Y (s)ξ‖ for all ξ ∈ Rd and t > s > 0, (2.1)

‖ψ(t)Y (t)P2ξ‖ 6 L′eβ(t−s)‖ψ(s)Y (s)ξ‖ for all ξ ∈ Rd and s > t > 0. (2.2)
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In fact, if (1.3) and (1.4) are true, we have for any vector y ∈ Rd

‖ψ(t)Y (t)P1Y
−1(s)ψ−1(s)y‖ 6 Ke−α(t−s)‖y‖ for t > s > 0,

‖ψ(t)Y (t)P2Y
−1(s)ψ−1(s)y‖ 6 Leβ(t−s)‖y‖ for s > t > 0.

Choose y = ψ(s)Y (s)ξ, we obtain (2.1), (2.2). Conversely, suppose that inequalities
(2.1), (2.2) are true. For any vector y ∈ Rd, putting ξ = Y −1(s)ψ−1(s)y we get
(1.3), (1.4).

Now prove the lemma. It follows from KerP2 = ImP1 = ImQ1 = KerQ2 that
P2Q1 = 0. Hence P1Q1 = P1Q1 + P2Q1 = Q1. Similarly Q1P1 = P1. Then

P1 −Q1 = P 2
1 − P1Q1 = P1(P2 −Q2), (2.3)

P1 −Q1 = −Q1P2 = P1P2 −Q1P2 = (P1 −Q1)P2. (2.4)

For each u ∈ Rd, put ξ = (P1 − Q1)u. The relation (2.3) implies that ξ ∈ ImP1,
then P1ξ = ξ. Result from (2.1), for s = 0 that

‖ψ(t)Y (t)[P1 −Q1]u‖ 6 K ′e−αt‖ψ(0)[P1 −Q1]u‖, t > 0. (2.5)

By (2.4) we conclude

K ′e−αt‖ψ(0)[P1 −Q1]u‖ = K ′e−αt‖ψ(0)[P1 −Q1]P2u‖
6 K ′|ψ(0)||P1 −Q1|e−αt‖P2u‖, t > 0.

(2.6)

Applying (2.2), for t = 0, we get

‖P2u‖ = ‖ψ−1(0)ψ(0)P2u‖
6 |ψ−1(0)|‖ψ(0)P2u‖

6 L′e−βs|ψ−1(0)|‖ψ(s)Y (s)u‖, fors > 0.

(2.7)

The relations (2.5)–(2.7) imply

‖ψ(t)Y (t)[P1 −Q1]u‖ 6 K ′L′|ψ(0)||ψ−1(0)||P1 −Q1|e−αte−βt‖ψ(s)Y (s)u‖

6 K1e
β(t−s)‖ψ(s)Y (s)u‖, for t, s > 0.

(2.8)

On the other hand, by (2.2) we get

‖ψ(t)Y (t)P2u‖ 6 L′eβ(t−s)‖ψ(sY (s))u‖, for 0 6 t 6 s. (2.9)

It follows from Q2 = P2 + P1 −Q1, (2.8) and (2.9) that

‖ψ(t)Y (t)Q2u‖ 6 ‖ψ(t)Y (t)P2u‖+ ‖ψ(t)Y (t)[P1 −Q1]u‖

6 (L′ +K1)eβ(t−s)‖ψ(s)Y (s)u‖

6 L2e
β(t−s)‖ψ(s)Y (s)u‖, for 0 6 t 6 s.

(2.10)

Similarly, for u ∈ Rd, we have

‖ψ(t)Y (t)Q1u‖ 6 K2e
−α(t−s)‖ψ(s)Y (s)u‖, for 0 6 s 6 t. (2.11)

Then from this inequality, (2.10) and the preceding note it follows that (1.2) has
a ψ-exponential dichotomy on R+ with the pair of the supplementary projections
Q1, Q2. In the case of J = R−, the proof is similar. �
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Remark 2.2. (a) Suppose that (1.2) has a ψ-exponential dichotomy on R+ with
a pair of supplementary projections P1, P2. The set P1Rd is the subspace of Rd
consisting of the values x(0) of all ψ-bounded solutions x(t) on R+ of (1.2). In fact,
denote by X1 this subspace, if v ∈ P1Rd then v ∈ X1 by virtue of (2.1). Conversely
if u ∈ X1, we have to show that P2u = 0. Suppose otherwise that P2u 6= 0,
by (2.1), (2.2) we have ‖ψ(t)Y (t)P1u‖ is bounded and the limit of ‖ψ(t)Y (t)P2u‖
is ∞, as t tend to ∞. Denote y the solution of (1.2), y(0) = u. The relation
ψ(t)y(t) − ψ(t)Y (t)P1u = ψ(t)Y (t)P2u follows that y is nonψ-bounded on R+,
which is a contradiction.
(b) Similarly if (1.2) has a ψ-exponential dichotomy on R− with a pair of supple-
mentary projections P1, P2 then the set P2Rd is the subspace of Rd consisting of
the values x(0) of all ψ-bounded solutions x(t) on R− of (1.2).

(c) Suppose that (1.2) has a ψ-exponential dichotomy on R, then (1.2) has no
nontrivial ψ-bounded solution on R. In fact if x(t) is the ψ-bounded solution of
(1.2) on R then it is ψ-bounded on R+ and on R−. Because equation (1.2) has a ψ-
exponential dichotomy on R+, and on R− with a pair of supplementary projections
P1, P2, by preceding notice we have P2x(0) = 0 and P1x(0) = 0. Hence x(0) = 0,
then x(t) is the trivial solution of (1.2).

Lemma 2.3 ([8]). Let h(t) be a non-negative, locally integrable such that∫ t+1

t

h(s)ds 6 c, for all t ∈ R

If θ > 0 then, for all t ∈ R,∫ ∞

t

e−θ(s−t)h(s)ds 6 c[1− e−θ]−1, (2.12)∫ t

−∞
e−θ(t−s)h(s)ds 6 c[1− e−θ]−1. (2.13)

Proof. We prove (2.12), the proof of (2.13) is similar.∫ t+m+1

t+m

e−θ(s−t)h(s)ds 6
∫ t+m+1

t+m

e−θ(t+m)eθth(s)ds

=
∫ t+m+1

t+m

e−θmh(s)ds 6 ce−θm

implies that∫ ∞

t

e−θ(s−t)h(s)ds =
∞∑
m=0

∫ t+m+1

t+m

e−θ(s−t)h(s)ds 6 c
∞∑
m=0

e−θm = c[1− e−θ]−1

�

Lemma 2.4. Equation (1.1) has at least one ψ-bounded solution on R for every
ψ-integrally bounded function f on R if and only if the following three conditions
are satisfied:

(1) Equation (1.1) has at least one solution on R, ψ-bounded on R+ for every
ψ- integrally bounded function f on R+

(2) Equation (1.1) has at least one solution on R, ψ-bounded on R− for every
ψ-integrally bounded function f on R−.
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(3) Every solution of (1.2) is the sum of two solution of (1.2), one of that is
ψ-bounded on R+, another is ψ− bounded on R−.

Proof. Suppose the three conditions are satisfied we have to prove that (1.1) has
at least one ψ-bounded solution on R for every ψ-integrally bounded function f on
R. Every ψ-integrally bounded function f on R is ψ-integrally bounded function f
on R+ and on R−. Then for each ψ-integrally bounded function f on R exists the
solution y1 and y2 of (1.1), which is defined on R and corresponding ψ-bounded on
R+ and on R−. Denote by x(t) the solution of (1.2) such that x(0) = y2(0)−y1(0).
By 3, we get x(t) = x1(t) + x2(t), here x1, x2 are two solutions of (1.2), that are
corresponding ψ-bounded solution on R+ and R−. Set z1 = y1 + x1, z2 = y2 − x2.

Hence z1 and z2 are the solutions of (1.1) corresponding ψ-bounded solution
on R+ and on R−. Further, z2(0) = y2(0) − x2(0) = y1(0) + x1(0) = z1(0), then
z1 = z2. Consequently z1 is a ψ-bounded solution on R of (1.1).

Conversely, now if (1.1) has at least one ψ-bounded solution on R for every ψ-
integrally bounded function f on R we have to prove three condition are satisfied.
The conditions 1, 2 are satisfied since every ψ-integrally bounded function f on R+

, or R− is the restriction of a ψ- integrally bounded function f on R. We prove
that the condition 3 is satisfied. Set

h(t) =


0 for |t| > 1
1 for t = 0
linear for t ∈ [−1, 0], t ∈ [0, 1]

Fix a solution x(t) of (1.2) . Then h(t)x(t) is a ψ-integrally bounded function on
R. Set y(t) = x(t)

∫ t
0
h(s)ds , we have

y′(t) = A(t)x(t)
∫ t

0

h(s)ds+ h(t)x(t) = A(t)y(t) + h(t)x(t).

By hypothesis, the equation

y′(t) = A(t)y(t) + h(t)x(t)

has a solution ỹ(t), which is ψ-bounded on R. Set x1(t) = ỹ(t) − y(t) + 1
2x(t)

and x2(t) = ỹ(t) + y(t) + 1
2x(t). It follows from

∫ 0

−1
h(t)dt =

∫ 1

0
h(t)dt = 1

2 that
x1(t) = ỹ(t) for t > 1; x2(t) = ỹ(t) for t 6 −1. Then x1, x2 are the corresponding
ψ-bounded solutions on R+, R− of (1.2). Consequently the solution x(t) of (1.2)
is the sum of two solutions x1(t) and x2(t) of (1.2), those solutions satisfy the
condition 3. The lemma is proved. �

3. Main results

Theorem 3.1. Equation (1.1) has at least one ψ-bounded solution on R− for every
ψ-integrally bounded function f on R− if and only if (1.2) has a ψ-exponential
dichotomy on R−.

Proof. This Theorem can be shown as in [3, Theorem 3.3]. We give the main steps
of the proof as follows. In the proof of “if part”: Suppose that

∫ t
t−1

‖ψ(s)f(s)‖ds 6 c
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for t 6 0. By using Lemma 2.3 we get

‖
∫ t

−∞
ψ(t)Y (t)P1Y

−1(s)ds‖ 6
∫ t

−∞
|ψ(t)Y (t)P1Y

−1(s)ψ−1(s)|‖ψ(s)f(s)‖ds

6
∫ t

−∞
e−α(t−s)‖ψ(s)f(s)‖ds 6 c(1− e−α)−1

and

‖
∫ 0

t

ψ(t)Y (t)P2Y
−1(s)f(s)ds‖ 6

∫ 0

t

e−β(s−t)‖ψ(s)f(s)‖ds

6
∫ ∞

t

e−β(s−t)‖ψ(s)f(s)‖ds 6 c(1− e−β)−1.

It follows that the function

x̃(t) =
∫ t

−∞
ψ(t)Y (t)P1Y

−1(s)f(s)ds−
∫ 0

t

ψ(t)Y (t)P2Y
−1(s)f(s)ds

is bounded on R−. Hence the function

x(t) = ψ−1(t)x̃(t)

=
∫ t

−∞
ψ(t)Y (t)P1Y

−1(s)f(s)ds−
∫ 0

t

ψ(t)Y (t)P2Y
−1(s)f(s)ds

is ψ-bounded on R−. On the other hand

x′(t) = A(t)(
∫ t

−∞
Y (t)P1Y

−1(s)f(s)ds−
∫ 0

t

Y (t)P2Y
−1(s)f(s)ds)

+ Y (t)P1Y
−1(t)f(t) + Y (t)P2Y

−1(t)f(t)

= A(t)x(t) + f(t),

it implies that x(t) is a solution of (1.1).
In the proof of “only if part”: The set

C̃ψ = {x : R− → Rd : x

is ψ-bounded and continuous on R−}. It is a Banach space with the norm ‖x‖ eCψ =
supt60‖ψ(t)x(t)‖. The first step: we show that (1.1) has a unique ψ-bounded
solution x(t) with x(0) ∈ X̃1 = P1Rd for each f ∈ C̃ψ and ‖x‖ eCψ 6 r‖f‖ eCψ , here r
is a positive constant independent of f .

The next steps of the proof are similar to the proof of [3, Theorem 3.3], with the
corresponding replacement (for example replace t > t0 > 0 by 0 > t0 > t, P1 by
−P2, P2 by −P1, ∞ by −∞, −∞ by ∞, . . . ). �

Theorem 3.2. The equation (1.1) has a unique ψ-bounded solution on R for ev-
ery ψ-integrally bounded function f on R if and only if (1.2) has a ψ-exponential
dichotomy on R.

Proof. First, we prove the “if” part. By Lemma 2.3 and in the same way as in the
proof of Theorem 3.1, the function

x(t) =
∫ t

−∞
Y (t)P1Y

−1(s)f(s)ds−
∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds
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is ψ-bounded and continuous on R. Moreover,

x′(t) = A(t)(
∫ t

−∞
Y (t)P1Y

−1(s)f(s)ds−
∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds)

+ Y (t)P1Y
−1(t)f(t)− Y (t)P2Y

−1(t)f(t)

= A(t)x(t) + f(t),

it follows that x(t) is a solution of (1.1).
The uniqueness of the solution x(t) result from (1.2) having no nontrivial ψ-

bounded solution on R (Remark 2.2). Suppose that y is a ψ-bounded solution of
(1.1) then x − y is a ψ-bounded solution of (1.2) on R. We conclude x = y since
x− y is the trivial solution of (1.2).

We prove the “only if ”part. Suppose that (1.1) has unique ψ-bounded solution
on R for every ψ-integrally bounded function f on R, we have to prove that (1.1)
has a ψ-exponential dichotomy on R. By Lemma 2.4, Theorem 1.4 and Theorem 3.1
we get (1.2) has a ψ-exponential dichotomy on R+ with a pair of the supplementary
projections P1, P2 and has a ψ-exponential dichotomy on R−. with a pair of the
supplementary projections Q1, Q2. Remark 2.2 follows that P1Rd is the subspace of
Rd consisting of the values x(0) of all ψ-bounded solutions x(t) on R+ of (1.2) and
Q2Rd is the subspace of Rd consisting of the values x(0) of all ψ-bounded solutions
x(t) on R− of (1.2). We are going to prove that

Rd = P1Rd ⊕Q2Rd. (3.1)

For each u ∈ Rd, denote by x = x(t) the solution of (1.2), x(0) = u. By Lemma 2.4
we get x = x1+x2, where x1, x2 are the solutions of (1.2) corresponding ψ-bounded
on R+,R−. It follows from Remark 2.2 that x1(0) ∈ P1Rd and x2(0) ∈ Q2Rd. It
follows from u = x1(0) + x2(0), that

Rd = P1Rd +Q2Rd. (3.2)

By hypothesis (1.1) with f = 0 has unique ψ-bounded solution on R i.e. (1.2) have
no nontrivial ψ-bounded solution on R. For any v ∈ P1Rd ∩Q2Rd, denote by x(t)
the solution of (1.2) such that x(0) = v. Then x(t) is the ψ-bounded solution of
(1.2), it implies that x(t) is the trivial solution. Hence v = 0. Consequently

P1Rd ∩Q2Rd = 0. (3.3)

The relations (3.2) and (3.3) imply (3.1). Now, we prove the existence of a pair
supplementary projections, for which (1.1) has a ψ-exponential dichotomy on R.
Choose the projection P of Rd such that ImP = P1Rd , kerP = Q2Rd. By
Lemma 2.1, (1.2) has a ψ-exponential dichotomy on R+, and have a ψ-exponential
dichotomy on R− with the pair of the supplementary projections P, Id − P . From
Remark 1.3 it follows that (1.2) has a ψ-exponential dichotomy on R with the pair
of the supplementary projections P, Id − P . The proof is complete. �

Theorem 3.3. Suppose that (1.2) has a ψ-exponential dichotomy on R. If

lim
t→±∞

∫ t+1

t

‖ψ(s)f(s)‖ds = 0 (3.4)

then the ψ-bounded solution of (1.1) is such that

lim
t→±∞

‖ψ(t)x(t)‖ = 0. (3.5)
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Proof. By Theorem 3.2, the unique solution of (1.1) is

x(t) =
∫ t

−∞
Y (t)P1Y

−1(s)f(s)ds−
∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds.

‖ψ(t)x(t)‖ 6
∫ t

−∞
‖ψ(t)Y (t)P1Y

−1(s)f(s)‖ds+
∫ ∞

t

‖ψ(t)Y (t)P2Y
−1(s)f(s)‖ds

6 K

∫ t

−∞
e−α(t−s)‖ψ(s)f(s)‖ds+ L

∫ ∞

t

e−β(s−t)‖ψ(s)f(s)‖ds

6 K1{
∫ t

−∞
e−α(t−s)‖ψ(s)f(s)‖ds+

∫ ∞

t

e−β(s−t)‖ψ(s)f(s)‖ds},

(3.6)
where K1 = max{K,L}. Denote by γ = min{α, β}. Under the hypothesis (3.4),
for a given ε > 0, there exists T > 0 such that∫ t+1

t

‖ψ(s)f(s)‖ds < ε

2K1
(1− e−γ) for |t| > T.

Then from Lemma 2.3 and inequality (3.6) it follow that

‖ψ(t)x(t)‖ 6 K1
ε

2K1
(1− e−γ)[(1− e−α)−1 + (1− e−β)−1]

6 K1
ε

2K1
(1− e−γ)2(1− e−γ)−1 = ε for all |t| > T,

this implies (3.5). The proof is complete. �

Corollary 3.4. Suppose that (1.2) has a ψ-exponential dichotomy on R. If

lim
t→±∞

‖ψ(t)f(t)‖ = 0 (3.7)

then the ψ-bounded solution of (1.1) is such that

lim
t→±∞

‖ψ(t)x(t)‖ = 0. (3.8)

Proof. It is easy to see that (3.7) implies (3.4) �

Now, we consider the perturbed equation

x′(t) = [A(t) +B(t)]x(t) (3.9)

where B(t) is a d × d continuous matrix function on R. We have the following
result.

Theorem 3.5. Suppose that (1.2) has a ψ-exponential dichotomy on R. If δ =
supt∈R

∫ t+1

t
|ψ(s)B(s)ψ−1(s)|ds is sufficiently small, then (3.9) has a ψ-exponential

dichotomy on R.

Proof. By Theorem 3.2 it suffices to show that the equation

x′(t) = [A(t) +B(t)]x(t) + f(t) (3.10)

has a unique ψ-bounded solution on R for every ψ-integrally bounded f function
on R. Denote by Gψ the set

Gψ = {x : R → Rd : x is ψ-bounded and continuous on R}.
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It is well-known that Gψ is a real Banach space with the norm

‖x‖Gψ = sup
t∈R

‖ψ(t)x(t)‖.

Consider the mapping T : Gψ → Gψ which is defined by

Tz(t) =
∫ t

−∞
Y (t)P1Y

−1(s)[B(s)z(s) + f(s)]ds

−
∫ ∞

t

Y (t)P2Y
−1(s)[B(s)z(s) + f(s)]ds.

It is easy verified that Tz ∈ Gψ. More ever if z1, z2 ∈ Gψ then

‖Tz1 − Tz2‖Gψ

6
∫ t

−∞
|ψ(t)Y (t)P1Y

−1(s)ψ−1(s)||ψ(s)B(s)ψ−1(s)|‖ψ(s)z1(s)− ψ(s)z2(s)‖ds

+
∫ ∞

t

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)||ψ(s)B(s)ψ−1(s)|‖ψ(s)z1(s)− ψ(s)z2(s)‖ds

By Lemma 2.3, we have

‖Tz1 − Tz2‖Gψ 6 K‖z1 − z2‖Gψ
∫ t

−∞
e−α(t−s)|ψ(s)B(s)ψ−1(s)|ds

+ L‖z1 − z2‖Gψ
∫ ∞

t

eβ(t−s)|ψ(s)B(s)ψ−1(s)|ds

6 δ[K(1− e−α)−1 + L(1− e−β)−1]‖z1 − z2‖Gψ
Hence, by the contraction principle, if δ[K(1 − e−α)−1 + L(1 − e−β)−1] < 1, then
the mapping T has a unique fixed point. Denoting this fixed point by z, we have

z(t) =
∫ t

−∞
Y (t)P1Y

−1(s)[B(s)z(s) + f(s)]ds

−
∫ ∞

t

Y (t)P2Y
−1(s)[B(s)z(s) + f(s)]ds.

It follows that z(t) is a solution on R of (3.10).
Now, we prove the uniqueness of this solution. Suppose that x(t) is a arbitrary

ψ-bounded solution on R of (3.10). Consider the function

y(t) = x(t)−
∫ t

−∞
Y (t)P1Y

−1(s)[B(s)x(s) + f(s)]ds

+
∫ ∞

t

Y (t)P2Y
−1(s)[B(s)x(s) + f(s)]ds.

It is easy to see that y(t) is a ψ-bounded solution on R of (1.2). Then from Theorem
3.2 follows that y(t) is the trivial solution. Then

x(t) =
∫ t

−∞
Y (t)P1Y

−1(s)[B(s)x(s) + f(s)]ds

−
∫ ∞

t

Y (t)P2Y
−1(s)[B(s)x(s) + f(s)]ds.
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Hence x(t) is the fixed point of mapping T . From the uniqueness of this point, it
follows that x = z. The proof is complete. �

Corollary 3.6. Suppose that (1.2) has a ψ-exponential dichotomy on R. If δ =
supt∈R |ψ(t)B(t)ψ−1(t)| is sufficiently small, then (3.9) has a ψ-exponential di-
chotomy on R.

References

[1] O. Akinyele; On partial stability and boundedness of degree k, Atti. Acad. Naz. Lincei Rend.
Cl. Sei. Fis. Mat. Natur., (8), 65 (1978), 259-264.
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