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SUFFICIENT CONDITIONS FOR NONEXISTENCE OF
GRADIENT BLOW-UP FOR NONLINEAR PARABOLIC

EQUATIONS

ARIS S. TERSENOV

Abstract. In this paper we study the initial-boundary value problems for

nonlinear parabolic equations without Bernstein-Nagumo condition. Sufficient

conditions guaranteeing the nonexistence of gradient blow-up are formulated.
In particular, we show that for a wide class of nonlinearities the Lipschitz

continuity in the space variable together with the strict monotonicity with

respect to the solution guarantee that gradient blow-up cannot occur at the
boundary or in the interior of the domain.

1. Introduction

In the present paper we consider the nonlinear equation

ut = F (t, x, u, ux, uxx) in QT = (−l, l)× (0, T ), (1.1)

coupled with one of the boundary conditions

ux(t,−l) = ux(t, l) = 0, (1.2)

ux + σ1(t, x, u)
∣∣
x=−l

= ux + σ2(t, x, u)
∣∣
x=l

= 0, (1.3)

u(t,−l) = u(t, l) = 0 (1.4)

and the initial condition
u(0, x) = u0(x). (1.5)

We assume that F (t, x, u, p, r) is continuously differentiable with respect to r and
satisfies the parabolicity condition, i.e.

Fr(t, x, u, p, r) > 0 for (t, x, u, p, r) ∈ QT × [−M,M ]× R2. (1.6)

Write equation (1.1) in the form

ut = Fr(t, x, u, ux, λuxx)uxx + F (t, x, u, ux, 0), λ ∈ [0, 1], (1.7)

using the mean value theorem. The well known Bernstein-Nagumo condition [4, 5,
19] (see also [6, 13, 15, 17, 18, 20]) in the case of equation (1.7) appears as

|F (t, x, u, p, 0)|
Fr(t, x, u, p, r)

≤ φ(|p|) for (t, x, u, p, r) ∈ QT × [−M,M ]× R2, (1.8)
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where φ(ρ) is a nondecreasing positive function such that∫ +∞ ρdρ

φ(ρ)
= +∞.

Condition (1.8) guarantees global a priori estimate for the gradient of bounded
solutions. There are examples showing that a violation of the Bernstein-Nagumo
condition can imply the gradient blow-up on the boundary as well as at interior
points of the domain (see [1, 2, 9, 12, 16, 21, 23]), while the solution itself remains
bounded. Recently, in [22], condition (1.8) was substituted by a less restrictive one
that allows an arbitrary growth of F (t, x, u, p, 0) with respect to p (see also [3]).

Let us recall some of the main results that were established in [22]. Suppose that
the right hand side of equation (1.7) can be represented as follows

F (t, x, u, p, 0) = f1(t, x, u, p) + f2(t, x, u, p), (1.9)

where f2 satisfies the restrictions

f2(t, y, u1, p)− f2(t, x, u2, p) ≥ 0, (1.10)

f2(t, x, u1,−p)− f2(t, y, u2,−p) ≥ 0 (1.11)

for t ∈ [0, T ], −l ≤ y < x ≤ l, −M ≤ u1 < u2 ≤ M , p ∈ [q0, q1]. For the Dirichlet
boundary value problem we additionally suppose that

uf2(t, x, u, p) ≤ 0, for x ∈ [−l,−l +min{τ0, 2l}]
⋃

[l −min{τ0, 2l}, l], (1.12)

for t ∈ [0, T ], |u| ≤ M and p ∈ [−q1, q0] ∪ [q0, q1], where τ0, q0, q1 are specified
below.

Concerning the function f1 we assume that

|f1(t, x, u, p)| ≤ Fr(t, x, u, p, r)ψ(|p|) (1.13)

for (t, x) ∈ QT , |u| ≤ M and arbitrary (p, r), where ψ(ρ) ∈ C1(0,+∞) is a nonde-
creasing nonnegative function that satisfies the following condition: there exist q0
and q1 such that 0 < K ≤ q0 < q1 < +∞ and∫ q1

q0

ρdρ

ψ(ρ)
≥ osc(u) ≡ maxu−minu. (1.14)

Here K is a Lipschitz constant of the initial function which satisfies the assumption

|u0(x)− u0(y)| ≤ K|x− y|. (1.15)
Introduce h(τ) as a solution of the following problem

h′′ + ψ(|h′|) = 0, h(0) = 0, h(τ0) = osc(u).

Represent the solution of h′′+ψ(|h′|) = 0 in parametrical form (using the standard
substitution h′(τ) = q(h), dq

dτ = q dq
dh ):

h(q) =
∫ q1

q

ρdρ

ψ(ρ)
, τ(q) =

∫ q1

q

dρ

ψ(ρ)
.

The parameter q varies in the interval [q0, q1] and we select q0, q1 such that 0 <
K ≤ q0 < q1 < +∞, h(q0) = osc(u) (this is possible due to (1.14)). Put τ0 ≡ τ(q0).

If conditions (1.13)-(1.15) as well as conditions (1.10), (1.11) are fulfilled, then
the gradient of a bounded solution of problem (1.1), (1.2), (1.5) is bounded by a
constant depending only on K, ψ, osc(u). In the case of problem (1.1), (1.3), (1.5)
we need additional assumption on q0 in terms of functions σi (see [22, Lemma 2]).
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For problem (1.1), (1.4), (1.5) assumptions (1.10)-(1.15) guarantee the gradient
estimate of a bounded solution depending only on K, ψ and osc(u).

Note that if f1 satisfies (1.8), then for an arbitrary Lipschitz continuous function
u0(x) condition (1.14) is automatically fulfilled for any K (taking q1 large enough
and using the divergence of the integral in (1.14) in this case).

Consider conditions (1.10), (1.11). These conditions guarantee that the gradient
of a bounded solution of equation (1.1) cannot blow-up in the interior of QT for
any T > 0 in the case of problems (1.1), (1.2), (1.5) and (1.1), (1.3), (1.5) (see also
Remark 2.3). When f2 is independent of x, one can easily see that (1.10), (1.11)
mean that f2(t, u, p) is a nonincreasing function with respect to u. Unfortunately
if f2 depends also on x and satisfies (1.10), (1.11), its behavior becomes rather
complicated.

The goal of this paper is to show that under some additional assumptions the
strict monotonicity of f2(t, x, u, p) in u is sufficient for nonexistence of the gradient
blow-up of a bounded solution. In order to motivate these additional assumptions
we will recall some facts from the theory of viscosity solutions. One can easily see
that in the case where f2 is independent of x, conditions (1.10), (1.11) reminds
us one of the main assumptions (the properness, see [7]) under which the notion
of viscosity solution is introduced. For example, if we assume in (1.7) that Fr is
independent of u and F (t, x, u, p, 0) = f2(t, u, p) satisfies (1.10), (1.11), then

ut − Fr(t, x, ux, λuxx)uxx − f2(t, u, ux) = 0, λ ∈ [0, 1], (1.16)

is proper. Moreover in [8], in particular, it was shown that if Fr = Fr(p, r) is locally
strictly elliptic and F (t, x, u, p, 0) = f2(u, p) satisfies (1.10), (1.11), then there exists
a unique continuous viscosity solution to the Dirichlet problem

ut − Fr(ux, λuxx)uxx − f2(u, ux) = 0, λ ∈ [0, 1],

u(t,−l) = u(t, l) = 0, u(0, x) = u0(x),
(1.17)

provided (1.17) has a sub- and supersolution satisfying initial-boundary data. Com-
paring this result with the results of [22], we conclude that a viscosity solution of
the mentioned above problem becomes classical, if additionally f2 satisfies (1.12)
and the coefficients have sufficient smoothness. The situation becomes more com-
plicated, when Fr and f2 depends also on t and x. First of all we have to assume
that the elliptic operator is uniformly proper. It means that f2 is strictly decreasing
in u

f2(t, x, u1, p)− f2(t, x, u2, p) ≥ γ0(u2 − u1) (1.18)
for u2 ≥ u1, x ∈ [−l, l], p ∈ R, for fixed t ∈ [0, T ], where γ0 is a positive constant.
The second assumption is a structure condition on the continuity of the elliptic
operator in x (see [7]). Assumptions that we use in order to improve (1.10), (1.11)
were inspired by these two assumptions under which the existence of a viscosity
solution can be proved.

We proceed now to the statement of main results of the paper. Assume that
F (t, x, u, p, r) is defined for (t, x) ∈ QT , u ∈ [−M,M ] and arbitrary (p, r) and is
bounded on every compact set in QT × [−M,M ]×R2. Suppose that

|f2(t, x, u, p)− f2(t, y, u, p)| ≤ K1(t, x, y, u, p)|x− y| (1.19)

for t ∈ [0, T ], x, y ∈ [−l, l], 0 < x− y < τ0, |u| ≤M , p ∈ [−q1,−q0] ∪ [q0, q1], where
K1 ≥ 0,

f2(t, x, u1, p)− f2(t, x, u2, p) ≥ γ(t, x, u1, u2, p)(u2 − u1) (1.20)
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for t ∈ [0, T ], x ∈ [−l, l], |u1|, |u2| ≤ M , u2 ≥ u1, p ∈ [−q1,−q0] ∪ [q0, q1], where
γ(t, x, u1, u2, p) ≥ γ0 > 0. Denote by V the following set

V = {(t, x, y) ∈ QT , 0 < x−y < τ0, |u1|, |u2| ≤M,u2 ≥ u1, p ∈ [−q1,−q0]∪[q0, q1]}.
Assume that

max
V

K1(t, x, y, u1, p)
γ(t, x, u1, u2, p)

≤ C|p|α, (1.21)

where α < 1 and C is a positive constant.
Consider problem (1.1), (1.2), (1.5).

Theorem 1.1. Let u(t, x) be a classical solution of problem (1.1), (1.2), (1.5).
Suppose that conditions (1.6), (1.9), (1.13)-(1.15), (1.19)-(1.21) are fulfilled. Then
in QT the inequality

|ux(t, x)| ≤ C1

holds, where the constant C1 depends on osc(u), ψ, C and α.

From this theorem it follows that the gradient of a bounded solution of (1.7)
cannot blow-up in the interior of QT for any T > 0 for problem (1.1), (1.2), (1.5).
Analogous results we obtain for problem (1.1), (1.3), (1.5) (see Corollary 2.1). In
the case of problem (1.1), (1.4), (1.5) we also need assumption (1.12) to obtain
the nonexistence of the gradient blow-up on the boundary as well as in the interior
of QT (see Corollary 2.2). Note (see Remark 2.3) that if f2(t, x, 0, p) = 0, then
condition (1.12) is a simple consequence of the strict monotonicity of f2 in u (see
condition (1.20)).

Consider now the case when f2(t, x, u, p) = X(t, x)U(u)H(p) (special case). Sup-
pose that

|f2(t, x, u, p)− f2(t, y, u, p)| ≤ K2|U(u)||H(p)||x− y| (1.22)
for t ∈ [0, T ], x, y ∈ [−l, l], 0 < x− y < τ0, |u| ≤M , p ∈ [−q1,−q0] ∪ [q0, q1], where
K2 is a Lipschitz constant of X(t, x) with respect to x,

f2(t, x, u1, p)− f2(t, x, u2, p) = X(t, x)H(p)(U(u1)− U(u2)) ≥ (1.23)

γ1X(t, x)H(p)(u2 − u1) ≥ γ0(u2 − u1)
for t ∈ [0, T ], x ∈ [−l, l], |u1|, |u2| ≤ M , u2 > u1, p ∈ [−q1,−q0] ∪ [q0, q1], where
γ1, γ0 > 0 and without loss of generality we assume that U(u(t, x)) is a strictly
decreasing function. Put γ2 = mint,x∈[0,T ]×[−l,l] |X(t, x)| > 0.

Consider problem (1.1), (1.2), (1.5).

Theorem 1.2. . Let u(t, x) be a classical solution of problem (1.1), (1.2), (1.5).
Suppose that conditions (1.6), (1.9), (1.13) - (1.15), (1.22), (1.23) are fulfilled. Then
in QT the inequality

|ux(t, x)| ≤ C4

holds, where the constant C4 depends on osc(u), M , ψ, K2, γ1 and γ2.

From Theorem 1.2 it follows that the gradient of a bounded solution of (1.7)
cannot blow-up in the interior of QT for any T > 0 if f2 = X(t, x)U(u)H(p) is
Lipschitz continuous in x and strictly decreasing in u. Concerning the special case
see also Remark 3.1.

Comparing Theorem 1.1 with Theorem 1.2 one can easily see that in the case
where f2 is an arbitrary function of variables t, x, u, p, besides the Lipschitz
continuity in x and strict monotonicity in u, we need to impose some additional
structure conditions regarding the behavior of f2 in p (see also Remark 2.5) .
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In Section 1 we obtain the a priori estimate of the gradient of a bounded solution
in the general case f2 = f2(t, x, u, p). In Section 2 we obtain the a priori estimate
of the gradient of a bounded solution in the case where f2 = X(t, x)U(u)H(p).

We remark that based on these a priori estimates one can prove the existence
theorems for the initial-boundary value problems for (1.1), using the well-known
fixed point theorem (see [18]). The proofs are exactly the same as in [22].

2. Gradient estimates in the general case

In this section we obtain global a priori estimates of the gradient of classical
solutions for boundary value problems for (1.1), in the case where f2(t, x, u, p) is an
arbitrary bounded function of variables t, x, u, p. Recall that a classical solution
is a function belonging to C1,2

t,x (QT ) ∩C0,1
t,x (Q̄T ) in the case of problem (1.1), (1.2),

(1.5) or (1.1), (1.3), (1.5) and to C1,2
t,x (QT )∩C0(Q̄T ) for problem (1.1), (1.4), (1.5).

We use here Kruzhkov’s idea of introducing a new spatial variable [13, 14] and the
technique developed in [22].

Proof of Theorem 1.1. Consider equation (1.1) in the form (1.7) at two different
points (t, x) and (t, y):

ut = Fr(t, x, u, ux, λuxx)uxx + F (t, x, u, ux, 0), λ ∈ [0, 1], u = u(t, x), (2.1)

ut = Fr(t, y, u, uy, µuyy)uyy + F (t, y, u, uy, 0), µ ∈ [0, 1], u = u(t, y). (2.2)

Introduce the function v(t, x, y) = u(t, x)−u(t, y). In Ω = {(t, x, y) : 0 < t < T, 0 <
x− y, |x| < l, |y| < l} the function v(t, x, y) satisfies the equation

− vt + Fr(t, x, u(t, x), ux(t, x), λuxx(t, x))vxx

+ Fr(t, y, u(t, y), uy(t, y), µuyy(t, y))vyy

= F (t, y, u(t, y), uy(t, y), 0)− F (t, x, u(t, x), ux(t, x), 0).
(2.3)

Put

F (x)
r = Fr(t, x, u(t, x), ux(t, x), λuxx(t, x)), F (y)

r = Fr(t, y, u(t, y), uy(t, y), µuyy(t, y)).

Define the operator

L(v) ≡ −vt + F (x)
r [vxx + ψ(|vx|)] + F (y)

r [vyy + ψ(|vy|)].
From (1.9), (1.13) it follows that

L(v) ≥ f2(t, y, u(t, y), uy(t, y))− f2(t, x, u(t, x), ux(t, x)). (2.4)

Let the function h(τ) be a solution of the ordinary differential equation

h′′(τ) + ψ(|h′(τ)|) = 0 (2.5)

on the interval [0, τ0] and satisfies conditions:

h(0) = 0, h(τ0) = osc(u), h′ > 0 for τ ∈ [0, τ0]. (2.6)

Represent the solution of (2.5), (2.6) in parametrical form

h(q) =
∫ q1

q

ρdρ

ψ(ρ)
, τ(q) =

∫ q1

q

dρ

ψ(ρ)
.

The parameter q varies in the interval [q0, q1], where K∗ < q0 < q1 < +∞, K∗ =
max

{
K,C

1
1−α

}
and

h(q0) =
∫ q1

q0

ρdρ

ψ(ρ)
= osc(u). (2.7)
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Put

τ0 ≡ τ(q0) =
∫ q1

q0

dρ

ψ(ρ)
.

Consider the function w(t, x, y) = v(t, x, y) − h(x − y) in P = {(t, x, y) : 0 < t <
T, 0 < x− y < τ0, |x| < l, |y| < l}. Due to the fact that h(τ) satisfies (2.5) we have
L(h(x− y)) = 0. Hence, using (2.4) we obtain

L̃(w) ≡ L(v)− L(h) ≡ −wt + F (x)
r [wxx + α1wx] + F (y)

r [wyy + α2wy]

≥ f2(t, y, u(t, y), uy(t, y))− f2(t, x, u(t, x), ux(t, x)).

Where |αi| < +∞, i = 1, 2, by virtue of the mean value theorem and of the fact
that ψ is a smooth function and u is a classical solution of (1.1), (1.2), (1.5). Let
w̃ = we−t, then

L̃1(w̃) ≡ −w̃t + F (x)
r [w̃xx + α1w̃x] + F (y)

r [w̃yy + α2w̃y]− w̃

≥ e−t[f2(t, y, u(t, y), uy(t, y))− f2(t, x, u(t, x), ux(t, x))].
(2.8)

Denote by Γ the parabolic boundary of P (i.e. Γ = ∂P \{(t, x, y) : t = T, 0 < x−y <
τ0, |x| < l, |y| < l}). Suppose that the function w̃ attains its positive maximum at
some point (t1, x1, y1) ∈ P \ Γ. Obviously it should be L̃1(w̃)

∣∣
(t1,x1,y1)

< 0. On the
other hand, at this point we have

−w̃ < 0, w̃x = w̃y = 0, w̃xx ≤ 0, w̃yy ≤ 0, −w̃t ≤ 0;

i.e.,

w̃(t1, x1, y1) = e−t[u(t1, x1)− u(t1, y1)− h(x1 − y1)] > 0,

w̃x(t1, x1, y1) = e−t[ux(t1, x1)− h′(x1 − y1)] = 0,

w̃y(t1, x1, y1) = e−t[−uy(t1, y1) + h′(x1 − y1)] = 0

and as a consequence

u(t1, x1) > u(t1, y1), ux(t1, x1) = uy(t1, y1) = h′(x1 − y1) > 0. (2.9)

Represent the right-hand side of inequality (2.8) in the following way

e−t[f2(t, y, u(t, y), uy(t, y))− f2(t, x, u(t, x), ux(t, x))]

= e−t[f2(t, y, u(t, y), uy(t, y))− f2(t, x, u(t, y), uy(t, y))

+ f2(t, x, u(t, y), uy(t, y))− f2(t, x, u(t, x), ux(t, x))],

(2.10)

where we subtract and add the term f2(t, x, u(t, y), uy(t, y)). So at the maximum
point (t1, x1, y1), using (1.19), (1.20), (2.9), we obtain

L̃1(w̃)

≥ e−t1 [f2(t1, y1, u(t1, y1), uy(t1, y1))− f2(t1, x1, u(t1, y1), uy(t1, y1))

+ f2(t1, x1, u(t1, y1), uy(t1, y1))− f2(t1, x1, u(t1, x1), ux(t1, x1))]

≥ e−t1
[
−K1

(
t1, x1, y1, u(t1, y1), h′(x1 − y1)

)
(x1 − y1)

+ γ
(
t1, x1, y1, u(t1, x1), u(t1, y1), h′(x1 − y1)

)
(u(t1, x1)− u(t1, y1))

]
.

(2.11)

Consider now the difference u(t1, x1)− u(t1, y1). Due to the fact that

w̃(t1, x1, y1) = e−t[u(t1, x1)− u(t1, y1)− h(x1 − y1)] > 0,
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we have

u(t1, x1)− u(t1, y1) > h(x1 − y1) = h(x1 − y1)− h(0) = h′(ξ)(x1 − y1)

for some ξ ∈ [0, τ0]. Thus one can rewrite the inequality (2.11) in the following way

L̃1(w̃) ≥ e−t1
[
−K1

(
t1, x1, y1, u(t1, y1), h′(x1 − y1)

)
+ γ

(
t1, x1, y1, u(t1, x1), u(t1, y1), h′(x1 − y1)

)
h′(ξ)

]
(x1 − y1).

(2.12)

Using now (1.21) we conclude that

L̃1(w̃) ≥ e−t1
[
− Ch′α(x1 − y1) + h′(ξ)

]
γ0(x1 − y1). (2.13)

To obtain the contradiction with L̃1(w̃)
∣∣
(t1,x1,y1)

< 0 we have to show that (recall
that x1 > y1)

−Ch′α(x1 − y1) + h′(ξ) ≥ 0.
Using the fact that q0 ≤ h′ ≤ q1, we arrive to the inequality

−Cqα
1 + q0 ≥ 0.

Thus if
q0 ≥ Cqα

1 , (2.14)

then L̃1(w̃)
∣∣
(t1,x1,y1)

≥ 0. Obviously, when α < 1, there exist q0 and q1 > q0 such
that inequality (2.14) takes place. Solving the system

q0 ≥ Cqα
1 , q1 > q0,

one can easily obtain that for q0 > C
1

1−α inequality (2.14) takes place for q0 < q1 ≤(
1
C

) 1
α q

1
α
0 . Consequently it follows that w̃ cannot attain its positive maximum in

P̄ \ Γ. Note that if α ≤ 0 then the validity of (2.14) does not depend on q1.
Now let us show that w̃

∣∣
Γ
≤ 0. Consider two possible cases: τ0 < 2l and τ0 ≥ 2l.

First let τ0 < 2l. For t = 0:

w̃(0, x, y) = e−t(u0(x)− u0(y)− h(x− y)) ≤ e−t(K(x− y)− h′(τ∗)(x− y)) ≤ 0,

where τ∗ ∈ [0, τ0], due to the fact that h′ ≥ q0 ≥ K. Obviously w̃(t, x, y)
∣∣
x=y

= 0
and when x − y = τ0 we have w̃ = e−t(u(t, x) − u(t, y) − h(τ0)) ≤ 0 due to (2.6).
Denote by Q1 = {(t, x) : 0 < t ≤ T,−l < x < −l + τ0, y = −l}, Q2 = {(t, y) : 0 <
t ≤ T, l − τ0 < y < l, x = l}. Estimate the normal derivative of w̃ on Q1 and Q2

using boundary conditions (1.2) and the fact that h′ ≥ q0 > 0

−w̃y(t, x,−l) = e−t(uy(t,−l)− h′(x+ l)) = −e−th′(x+ l) < 0,

w̃x(t, l, y) = e−t(ux(t, l)− h′(l − y)) = −e−th′(l − y) < 0.

Thus the function w̃(t, x, y) cannot attain its positive maximum neither on Q1 nor
on Q2 since −∂/∂y and ∂/∂x are here outward normal derivatives with respect to
P . Consequently, w̃

∣∣
Γ
≤ 0 and hence w̃(t, x, y) ≤ 0 in P .

The case when τ0 ≥ 2l can be treated similarly. The only difference is the absence
of the boundary x− y = τ0. We put Q̃1 = {(t, x) : 0 < t ≤ T,−l < x ≤ l, y = −l},
Q̃2 = {(t, y) : 0 < t ≤ T,−l < y < l, x = l} (note that the line x = l, y = −l belongs
to Q̃1). Consequently, w̃

∣∣
Γ
≤ 0 and hence w̃(t, x, y) ≤ 0 in P . It means that

u(t, x)− u(t, y) ≤ h(x− y) in P . (2.15)
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Treating similarly the function ṽ(t, x, y) = u(t, y) − u(t, x) one can easily see that
for w̃1(t, x, y) = e−t(ṽ(t, x, y)− h(x− y)) we have

L̃1(w̃1) ≥ e−t[f2(t, x, u(t, x), ux(t, x))− f2(t, y, u(t, y), uy(t, y))] in P.

Suppose that w̃1 attains its positive maximum at (t̃1, x̃1, ỹ1) ∈ P \Γ. Consequently
it should be L̃1(w̃1)

∣∣
(t̃1,x̃1,ỹ1)

< 0. On the other hand, we have

u(t̃1, ỹ1) > u(t̃1, x̃1), ux(t̃1, x̃1) = uy(t̃1, ỹ1) = −h′(x̃1 − ỹ1) < 0.

Using inequalities (1.19) - (1.21) we obtain in the same way that L̃1(w̃1) ≥ 0. From
this contradiction it follows that w̃1 cannot attain its positive maximum in P \ Γ.

Consider w̃1 on Γ. One can easily see that all considerations concerning the
estimate of the function w̃ on the boundary Γ can be done without any changes in
estimate of w̃1. Thus we have that

u(t, y)− u(t, x) ≤ h(x− y) in P . (2.16)

Combining (2.16) with (2.15) we get

|u(t, x)− u(t, y)| ≤ h(x− y) in P .

In view of the symmetry of the variables x, y in the same manner we examine the
case y > x. As a result we have that for

0 ≤ t ≤ T, |x| ≤ l, |y| ≤ l, 0 < |x− y| ≤ τ0

the inequality ∣∣u(t, x)− u(t, y)
x− y

∣∣ ≤ h(|x− y|)− h(0)
|x− y|

holds and as a consequence we have

|ux(t, x)| ≤ h′(0) = q1 = C1.

Theorem 1.1 is proved. �

Let us pass to problem (1.1), (1.3), (1.5).

Corollary 2.1. Let u(t, x) be a classical solution of (1.1), (1.3), (1.5) and all
conditions of Theorem 1.1 are fulfilled. Then in QT the inequality

|ux(t, x)| ≤ C2

holds, where the constant C2 depends only on osc(u), N1, N2, ψ, C, α, where
Ni = sup |σi| (the supremum is taken over the set [0, T ]× [−M,M ]).

Proof. The proof of this corollary differs from the proof of Theorem 1.1 only in the
selection of q0 and in analyzing of the behavior of w̃(t, x, y) on bounds Q1 (Q̃1) and
Q2 (Q̃2). We select the quantity q0 so that

q0 > max
{
C

1
1−α ,K,N1, N2

}
. (2.17)

and follow the proof of [22, Lemma 2, and Corollary 1.2]. Corollary 2.1 is proved.
�

Consider now problem (1.1), (1.4), (1.5).
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Corollary 2.2. . Let u(t, x) be a classical solution of (1.1), (1.4), (1.5) and all
conditions of Theorem 1.1 are fulfilled. Suppose in addition that condition (1.12)
is fulfilled and u0(±l) = 0. Then in QT the following inequality

|ux(t, x)| ≤ C3

holds, where the constant C3 depends only on osc(u) and ψ, C, α.

Proof. The proof of this corollary differs from the proof of Theorem 1.1 only in
analyzing of the behavior of w(t, x, y) on Q1 (Q̃1) and Q2 (Q̃2) (see the proof of
[22, Lemma 3 and Corollary 1.3]). Corollary 2.2 is proved. �

Remark 2.3. One can easily see that from Theorem 1.1 and Corollary 2.1 it
immediately follows that conditions (1.19)-(1.21) are sufficient for the nonexistence
of the gradient blow-up of a bounded solution in the interior of QT for problems
(1.1), (1.2), (1.5) and (1.1), (1.3), (1.5). Concerning problem (1.1), (1.4), (1.5), one
has to impose condition (1.12) supplementary to (1.19)-(1.21) in order to obtain
the nonexistence of the gradient blow-up of a bounded solution in QT . Obviously,
if we suppose that f2(t, x, 0, p) = 0, then condition (1.12) is a simple consequence
of the strict monotonicity of f2 in u (see condition (1.20)) Thus if f2(t, x, 0, p) = 0,
then the nonexistence of the gradient blow-up in QT for problem (1.1), (1.4), (1.5)
follows from (1.19)-(1.21) and we do not need condition (1.12).

Remark 2.4. Note that if f1 satisfies Bernstein-Nagumo condition (1.8) then for
every q0 there always exists q1 > q0 such that (1.14) takes place. Thus if α ≤ 0 in
(1.21), then inequality (2.14) does not depend on q1 and we can always construct
h(τ) that satisfies (2.6) (due to the divergence of the integral in (1.14) in this case).

Remark 2.5. Put f1 = 0. In this case ψ(p) = 0 and h′′ = 0. From (2.6) it follows
that h = osc u

τ0
τ , h′ = osc u

τ0
. Thus we have that q0 = q1 = osc u

τ0
. Consequently

(2.14) takes the form
q0 ≥ Cqα

0 (2.18)

that is fulfilled for q0 ≥ C
1

1−α and α < 1. Obviously, when α = 1, then in order to
obtain the gradient a priori estimate one has to suppose that C ≤ 1. One can easily
check that even in the case where f1 = 0 (2.18) holds for q0 ≤ C

1
1−α if α > 1. Thus

we can prove Theorem 1.1 with α > 1 only for K ≤ C
1

1−α . Note that condition
(1.21) can be generalized in the following way

max
V

K1(t, x, y, u1, p)
γ(t, x, u1, u2, p)

≤ Ψ(|p|),

where Ψ(ρ) is a nondecreasing positive function. As a consequence condition (2.14)
appears as

q0 ≥ Ψ(q1).

Remark 2.6. Let us give some simple examples of functions that satisfy (1.19)-
(1.21) and at the same time do not satisfy (1.10), (1.11). Easy calculations show
that, for example, the functions

f2(t, x, u, p) = x|p|µ − u|p|ν , ∀ µ, ν such that µ− ν ≤ 1,

f2(t, x, u, p) = −ue(x+c)pα

, α < 1, c > l,
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where α is such that pα is defined, satisfy (1.19)-(1.21) and do not satisfy (1.10),
(1.11). Moreover, in the case when f2 = −ue(x+c)pα

, α < 1, c > l, problem (1.4),
(1.5) as well as problems (1.2), (1.5) and (1.3), (1.5), for example, for the equation

ut = a(t, x, u, ux)uxx + f2, a > 0, (2.19)

have a global classical solution for any Lipschitz continuous initial data. When
f2(t, x, u, p) = x|p|µ − u|p|ν , µ − ν ≤ 1, problems (2.19), (1.2), (1.5) and (2.19),
(1.3), (1.5) have a global classical solution for any Lipschitz continuous initial data.

3. Gradient estimates in the special case

In this section we obtain global a priori estimates of the gradient of classical solu-
tions for boundary-value problems for equation (1.1) where f2 = X(t, x)U(u)H(p).
One can easily see that in this case conditions (1.19), (1.20) take the form

|f2(t, x, u, p)− f2(t, y, u, p)| ≤ K2|U(u)||H(p)||x− y|

for t ∈ [0, T ], x, y ∈ [−l, l], 0 < x− y < τ0, |u| ≤M , p ∈ [−q1,−q0] ∪ [q0, q1], where
K2 is the Lipschitz constant of X(t, x) with respect to x,

f2(t, x, u1, p)− f2(t, x, u2, p) = X(t, x)H(p)(U(u1)− U(u2))

≥ γ1X(t, x)H(p)(u2 − u1) ≥ γ0(u2 − u1)

for t ∈ [0, T ], x ∈ [−l, l], |u1|, |u2| ≤ M , u2 > u1, p ∈ [−q1,−q0] ∪ [q0, q1], where
γ1, γ0 > 0. Recall that without loss of generality we assume that U(u(t, x)) is a
strictly decreasing function. The last assumption means that X(t, x)H(p) > 0. Put
γ2 = mint,x∈[0,T ]×[−l,l] |X(t, x)| > 0. Obviously if f2(t, x, u, p) = X(t, x)U(u)H(p),
then condition (1.21) is fulfilled with C = K2|U(−M)|

γ1γ2
, α = 0 and as a consequence

can be dropped.

Proof of Theorem 1.2. The proof differs from the proof of the previous theorem
only in the choice of the quantity q0. In the general case q0 depends on q1 and α
(see (2.14)). We will show now that if f2(t, x, u, p) = X(t, x)U(u)H(p), then q0 is
independent of q1 and α. Following the proof of Theorem 1.1 we arrive to (2.12)
that appears in the form

L̃1(w̃) ≥ e−t1 [−K2|U(u(t1, y1))||H(h′(x1 − y1))|(x1 − y1)

+ γ1X(t1, x1)H(h′(x1 − y1))(u(t1, x1))− u(t1, y1))].
(3.1)

Due to (1.23) we have that γ1X(t, x)H(p) > 0 and consequently

γ1X(t, x)H(p) = γ1|X(t, x)||H(p)|. (3.2)

Thus from (3.1), (3.2) we obtain that (recall that U(u(t, x)) is a strictly decreasing
function and |u| ≤M)

L̃1(w̃) ≥ e−t1 |H(h′(x1 − y1))|[−K2|U(−M)|(x1 − y1)

+ γ1|X(t1, x1)|(u(t1, x1)− u(t1, y1))].
(3.3)

Due to the fact that u(t1, x1)) − u(t1, y1) ≥ h′(ξ)(x1 − y1), from (3.3) it follows
(recall that h′(ξ) ≥ q0)

L̃1(w̃) ≥ e−t1 |H(h′(x1 − y1))|(x1 − y1)[−K2|U(−M)|+ γ1|X(t1, x1)|h′(ξ)]
≥ e−t1 |H(h′(x1 − y1))|(x1 − y1)[−K2|U(−M)|+ γ1|X(t1, x1)|q0].

(3.4)
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To obtain the contradiction with L̃1(w̃)
∣∣
(t1,x1,y1)

< 0 we have to show that

−K2|U(−M)|+ γ1|X(t1, x1)|q0 ≥ 0. (3.5)

Obviously this is the case when

q0 ≥
K2|U(−M)|

γ1γ2
. (3.6)

From this contradiction we conclude that w̃ cannot attain its positive maximum
in P̄ \ Γ. Similarly one can prove that w̃1 = e−t(u(t, y) − u(t, x) − h(x − y))
cannot attain its positive maximum in P̄ \ Γ. Further without any changes we
follow the proof of Theorem 1.1. Note here that in (2.7) one has to suppose that
q0 ≥ max{K, K2|U(−M)|

γ1γ2
}. Theorem 1.2 is proved. �

Remark 3.1. In the case of problems (1.1), (1.3), (1.5) and (1.1), (1.4), (1.5) one
can easily formulate results that are similar to those of Corollaries 2.1 and 2.2. The
proofs of these results is an easy compilation of the proofs of Theorems 1.1, 1.2,
Corollary 2.1 and of Theorems 1.1, 1.2, Corollary 2.2 respectively.

Remark 3.2. From the mentioned above it follows that the strict monotonicity of
f2(t, x, u, p) = X(t, x)U(u)H(p) in u, coupled with the Lipschitz continuity in x,
guarantee the nonexistence of the gradient blow-up of a bounded solution in the
interior of QT for problems (1.1), (1.2), (1.5) and (1.1), (1.3), (1.5). If additionally
f2(t, x, 0, p) = 0 then the strict monotonicity of f2(t, x, u, p) in u, coupled with the
Lipschitz continuity in x, guarantee the nonexistence of the gradient blow-up of a
bounded solution in QT for problem (1.1), (1.4), (1.5). Concerning problem (1.1),
(1.4), (1.5) in the case where f2(t, x, 0, p) 6= 0, one has to impose condition (1.12)
supplementary to (1.22), (1.23) in order to obtain the nonexistence of the gradient
blow-up of a bounded solution in QT .

Remark 3.3. Let us give some simple examples of functions that satisfy (1.22),
(1.23) and at the same time do not satisfy (1.10), (1.11). Easy calculations show
that, for example, the functions

f2(t, x, u, p) = g(x)up2m, f2(t, x, u, p) = g(x)u3|p|ν , f2(t, x, u, p) = g(x)uep,

where g(x) < 0 is an arbitrary Lipschitz continuous function, m > 1 is an integer
number, ν > 2 is a real number, satisfy (1.22), (1.23) and do not satisfy (1.10),
(1.11). Moreover, in the case where f2 has one of the above representations, prob-
lems (2.19), (1.2), (1.5), (2.19), (1.3), (1.5) and (2.19), (1.4), (1.5) have a global
classical solution for any Lipschitz continuous initial data.
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