Xavier Carvajal, Mahendra Panthee
Abstract:
 
 We  study  some well-posedness issues of  the initial value problem
 associated with the equation
 
 where 
 ,
, 
 and
 
 and 
 is  bounded above.
 Using the theory developed by Bourgain and Kenig, Ponce and Vega,
 we prove that the initial value problem is locally well-posed for
 given data in Sobolev spaces
 is  bounded above.
 Using the theory developed by Bourgain and Kenig, Ponce and Vega,
 we prove that the initial value problem is locally well-posed for
 given data in Sobolev spaces 
 with regularity below
 with regularity below 
 .
 Examples of this model are the Ostrovsky-Stepanyams-Tsimring equation
 for
.
 Examples of this model are the Ostrovsky-Stepanyams-Tsimring equation
 for 
 , the derivative
 Korteweg-de Vries-Kuramoto-Sivashinsky equation for
, the derivative
 Korteweg-de Vries-Kuramoto-Sivashinsky equation for 
 , 
 and  the Korteweg-de Vries-Burguers equation
 for
, 
 and  the Korteweg-de Vries-Burguers equation
 for 
 .
.
 
 Submitted August 1, 2007. Published January 2, 2008.
Math Subject Classifications: 35A07, 35Q53.
Key Words: Bourgain spaces; KdV equation; local smoothing effect.
           
Show me the PDF file (312 KB), TEX file for this article.
|  | Xavier Carvajal Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária Ilha do Fundão, Caixa Postal 68530 21941-972 Rio de Janeiro, RJ, Brasil email: carvajal@im.ufrj.br | 
|---|---|
|  | Mahendra Panthee Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Departamento de Matemática, Instituto Superior Técnico 1049-001 Lisboa, Portugal email: mpanthee@math.ist.utl.pt | 
Return to the EJDE web page