AMBROSETTI-PRODI TYPE RESULTS IN A SYSTEM OF SECOND AND FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

YUKUN AN, JING FENG

Abstract. In this paper, by the variational method, we study the existence, nonexistence, and multiplicity of solutions of an Ambrosetti-Prodi type problem for a system of second and fourth order ordinary differential equations.

1. Introduction

Lazer and McKenna [1] presented the following (one-dimensional) mathematical model for the suspension bridge:

\[\begin{align*}
 & y_{tt} + y_{xxxx} + \delta_1 y_t + k (y - z)^+ = W(x), \quad \text{in} \ (0, L) \times \mathbb{R}, \\
 & z_{tt} - z_{xx} + \delta_2 z_t - k (y - z)^+ = h(x, t), \quad \text{in} \ (0, L) \times \mathbb{R}, \\
 & y(0, t) = y(L, t) = y_{xx}(0, t) = y_{xx}(L, t) = 0, \quad t \in \mathbb{R}, \\
 & z(0, t) = z(L, t) = 0, \quad t \in \mathbb{R},
\end{align*} \tag{1.1} \]

Where the variable \(z \) measures the displacement from equilibrium of the cable and the variable \(y \) measures the displacement of the road bed. The constant \(k \) is spring constant of the ties.

When the motion of the cable is ignored, the coupled system (1.1) can be simplified into a single equation which describes the motion of the road bed of suspension bridge, as follows

\[\begin{align*}
 & y_{tt} + y_{xxxx} + \delta_1 y_t + ky^+ = W(x, t), \quad \text{in} \ (0, L) \times \mathbb{R}, \\
 & y(0, t) = y(L, t) = y_{xx}(0, t) = y_{xx}(L, t) = 0, \quad t \in \mathbb{R}.
\end{align*} \tag{1.2} \]

This Problem have been studied by many authors. In [2, 3, 4], the authors, using degree theory and the variational method, investigated the multiplicity of some symmetrical periodic solutions when \(\delta = 0 \) and \(W(x, t) = 1 + \epsilon h(x, t) \) or \(W(x, t) = \alpha \cos x + \beta \cos 2t \cos x \). In [5], the similar results for (1.2) are obtained in case of \(\delta \neq 0 \) and \(W(x, t) = h(x, t) = \alpha \cos x + \beta \cos 2t \cos x + \gamma \sin 2t \cos x \). Those results give the conditions impose on the spring constant \(k \) which guarantees the existence of multiple periodic solutions, especially the sign-changing periodic
solutions in the case of $W(x,t)$ is single-sign. It is notable that the functions \(\cos x, \cos 2t \cos x, \sin 2t \cos x \) are the eigenfunctions of linear principal operator of (1.2) in some function spaces.

When we consider only the steady state solutions of problem (1.1), we arrive at the system

\[
\begin{align*}
 y_{xxxx} + k(y-z)^+ &= h_1(x), \quad \text{in } (0, \pi), \\
 -z_{xx} - k(y-z)^+ &= h_2(x), \quad \text{in } (0, \pi), \\
 y(0) = y(\pi) = y_{xx}(0) = y_{xx}(\pi) &= 0, \\
 z(0) = z(\pi) &= 0.
\end{align*}
\] (1.3)

This problem has little been studied in [12, 13]. In [6, 15], the analogous partial differential systems have been considered when the nonlinearities $k(y-z)^+, -k(y-z)^+$ are replaced by general $f_1(y,z), f_2(y,z)$. And also, in recently, literature [16] studied the system

\[
\begin{align*}
 y_{xx} + k_1 y^+ + \epsilon z^+ &= \sin x, \quad \text{in } (0, \pi), \\
 z_{xx} + \epsilon y^+ + k_2 z^+ &= \sin x, \quad \text{in } (0, \pi), \\
 y(0) = y(\pi) &= 0, \\
 z(0) = z(\pi) &= 0.
\end{align*}
\] (1.4)

Where $u^+ = \max\{u,0\}$, the constant ϵ is small enough such that the matrix

\[
\begin{pmatrix}
 k_1 & \epsilon \\
 \epsilon & k_2
\end{pmatrix}
\]

is a near-diagonal matrix and the positive numbers k_1, k_2 satisfy

\[m_1^2 < k_1 < (m_1 + 1)^2, \quad m_2^2 < k_2 < (m_2 + 1)^2\] for some $m_1, m_2 \in \mathbb{N}$.

This is a first work in the direction of extending to systems some of well-known results established on nonlinear equation with an asymmetric nonlinearity. Meanwhile in [16] there are two open questions to be interesting:

Question 1. Can one obtain corresponding results if the second-order differential operator is replaced with a fourth-order differential operator with corresponding boundary conditions?

Question 2. Can one replace the near-diagonal matrix with something more general and use information on the eigenvalues of matrix?

Following the above works and questions, we consider the system

\[
\begin{align*}
 -u'' &= f_1(x, u, v) + t_1 \sin x + h_1(x), \quad \text{in } (0, \pi) \\
 v''' &= f_2(x, u, v) + t_2 \sin x + h_2(x), \quad \text{in } (0, \pi) \\
 u(0) &= u(\pi) = 0, \\
 v(0) &= v(\pi) = v''(0) = v'''(\pi) = 0.
\end{align*}
\] (1.5)

where t_1, t_2 are parameters and $(f_1, f_2): [0, \pi] \times \mathbb{R}^2 \to \mathbb{R}^2$ is asymptotically linear.

On the other hand, the second order elliptic systems as follows

\[
\begin{align*}
 -\Delta u &= f_1(u, v) + t_1 \varphi_1 + h_1(x), \quad \text{in } \Omega, \\
 -\Delta v &= f_2(u, v) + t_2 \varphi_1 + h_2(x), \quad \text{in } \Omega, \\
 u &= v = 0, \quad \text{on } \partial \Omega
\end{align*}
\] (1.6)
have been widely studied. Here we mention the papers [7,8,9,10] and the references therein. If $(f_1, f_2) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is asymptotically linear and the asymptotic matrices at $-\infty$ and $+\infty$ are

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix},
\begin{pmatrix}
\tilde{a} & \tilde{b} \\
\tilde{c} & \tilde{d}
\end{pmatrix}
$$

Under some growth conditions on (f_1, f_2), in those papers, the Ambrosetti-Prodi type results for (1.6) have been given respectively.

We remind that let $g \in C^{\alpha}(\Omega \times \mathbb{R})$ be a given function such that

$$
\limsup_{s \to -\infty} \frac{g(x,s)}{s} < \lambda_1 < \liminf_{s \to +\infty} \frac{g(x,s)}{s}
$$

uniformly in $x \in \Omega$, where λ_1 is the first eigenvalue of the Laplacian on a bounded domain Ω under the Dirichlet condition and φ_1 is the associated eigenfunction.

The Ambrosetti-Prodi type result in a Cartesian version states that for a given $h \in C^{\alpha}(\Omega)$ there exists a real number t_0 such that the problem

$$
-\Delta u = g(x,u) + t\varphi_1 + h, \quad\text{in } \Omega
$$

$$
u = 0, \quad\text{on } \partial\Omega
$$

(i) has no solution if $t > t_0$;

(ii) has at least two solutions if $t < t_0$.

With different variants and formulations this problem has been extensively studied.

Inspired, we consider the Ambrosetti-Prodi type problem for system (1.5). This paper is organized as follows: in Section 2, we prepare the proper variational framework and prove (PS) condition to the Euler-Lagrange functional associated to our problem. In Section 3, we prove the main theorem. Finally, a piecewise linear problem is considered as an example in Section 4.

2. PRELIMINARIES

In this section, we prepare the proper variational frame work for (1.5), that is

$$
-u'' = f_1(x,u,v) + t_1 \sin x + h_1(x), \quad\text{in } (0,\pi)
$$

$$
v''' = f_2(x,u,v) + t_2 \sin x + h_2(x), \quad\text{in } (0,\pi)
$$

$$
u(0) = u(\pi) = 0,
$$

$$
v(0) = v''(0) = v''(\pi) = 0.
$$

Where t_1, t_2 are parameters, $h_1, h_2 \in C[0,\pi]$ are fixed functions with $\int_0^\pi h_1 \sin x = \int_0^\pi h_2 \sin x = 0$.

We shall need some assumptions on the nonlinearities, which are necessary to settle the existence or not of solutions in the case of the Ambrosetti-Prodi type problem and to establish (PS) condition.

Let us order \mathbb{R}^2 with the order defined by

$$
\xi = (\xi_1, \xi_2) \geq 0 \iff \xi_1, \xi_2 \geq 0.
$$

and denote $W = (u,v)$ and $F(x,W) = (f_1(x,u,v), f_2(x,u,v))$.

We will use the following hypotheses in this article.
(H1) \(F = (f_1, f_2) : [0, \pi] \times \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is locally Lipschitzian function respect to \(u, v \), and there exists a function \(H : [0, \pi] \times \mathbb{R}^2 \rightarrow \mathbb{R} \) such that
\[
\nabla H(x, u, v) = \left(\frac{\partial H}{\partial u}, \frac{\partial H}{\partial v} \right) = (f_1(x, u, v), f_2(x, u, v)).
\]

(H2) For \(\xi = (\xi_1, \xi_2) > 0 \) large enough,
\[
F(x, \xi) \geq 0.
\]

(H3) \(F \) satisfies
\[
|F(x, \xi)| \leq c(|\xi_1| + |\xi_2| + 1), \quad \forall \xi \in \mathbb{R}^2, \ x \in (0, \pi)
\]
where \(c > 0 \) is constant.

(H4) For \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 \) and \(x \in (0, \pi) \) there holds
\[
F(x, \xi) \geq A\xi - ce,
\]
for some constant \(c > 0 \). Where \(e = (1, 1) \) and the matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) satisfies
\[
\begin{align*}
&b, c \geq 0, \\
&(A\xi, \xi) \leq \mu|\xi|^2, \quad \text{for some } 0 < \mu < 1.
\end{align*}
\]

(H5) For \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 \) and \(x \in (0, \pi) \) there holds
\[
F(x, \xi) \geq \overline{A}\xi - ce,
\]
for some constant \(c > 0 \). Where \(e = (1, 1) \) and the matrix \(\overline{A} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \) satisfies
\[
\begin{align*}
&\overline{b}, \overline{c} \leq 0, \\
&(\overline{A}\xi, \xi) \geq \overline{\mu}|\xi|^2, \quad \text{for some } \overline{\mu} > 1.
\end{align*}
\]

(If not mentioned, \(c \) will always denote a generic positive constant.)

Remark 2.1. With a simple computation it is easy to show that (2.4)-(2.5) and (2.7)-(2.8) imply, respectively,
\[
(1 - a)(1 - d) - bc > 0, \quad a, d < 1,
\]
\[
(\overline{A} - I)^{-1}\xi \leq 0, \quad \forall \xi \in \mathbb{R}^2, \ \xi \geq 0,
\]
and
\[
(1 - \overline{a})(1 - \overline{d}) - \overline{b}\overline{c} > 0, \quad \overline{a}, \overline{d} > 1,
\]
\[
(\overline{A} - I)^{-1}\xi \geq 0, \quad \forall \xi \in \mathbb{R}^2, \ \xi \geq 0,
\]
where \(I \) is the identity matrix.

Let \(X = H^1_0(0, \pi) \times (H^1_0(0, \pi) \cap H^2(0, \pi)) \) be Hilbert space with the inner product
\[
\langle W, \Psi \rangle = \int_0^\pi (u' \psi'_1 + v' \psi''_2), \quad \forall W = (u, v), \ \Psi = (\psi_1, \psi_2) \in X,
\]
and the corresponding norm
\[
\|W\|^2_X = \int_0^\pi (u'^2 + v''^2).
\]
Consider the second-order ordinary differential eigenvalue problem
\[-u'' = \lambda u, \quad \text{in } (0, \pi),\]
\[u(0) = u(\pi) = 0,\]
and the fourth-order ordinary differential eigenvalue problem
\[v'''' = \lambda v, \quad \text{in } (0, \pi),\]
\[v(0) = v(\pi) = v''(0) = v''''(\pi) = 0.\]

It is well known that \(\lambda_1 = 1\) and \(\varphi_1 = \sin x\) are the positive first eigenvalue and the associated eigenfunction, respectively. Hence, it follows from the Poincare inequality that, for all \(W \in X\),
\[
\int_0^\pi |W|^2 \leq \|W\|_X^2. \quad (\text{2.11})
\]

A vector \(W \in X\) is a weak solution of (1.5) if, and only if, it is a critical point of the associated Euler-Lagrange functional
\[
J(W) = \frac{1}{2} \int_0^\pi (u'^2 + v''^2) - \int_0^\pi H(x, u, v) - \int_0^\pi [(t_1 \sin x + h_1)u + (t_2 \sin x + h_2)v] \quad (\text{2.12})
\]

It is standard to show that the functional \(J(W)\) is well defined, \(J(W) \in C^1(X, \mathbb{R})\) and \(X \to \mathbb{R}; \; W \to \int_0^\pi H(x, u, v) + \int_0^\pi [(t_1 \sin x + h_1)u + (t_2 \sin x + h_2)v]\) has compact derivative under the assumptions (H1) and (H3).

Lemma 2.2. Assume that (H1)-(H5) hold. Then \(J\) satisfies the (PS) condition.

Proof. Let \(\{W_n = (u_n, v_n)\} \subset X\) be a sequence such that \(|J(W_n)| \leq c\) and \(J'(W_n) \to 0\). This implies
\[
\left| \int_0^\pi (u_n' \psi_1' + v_n'' \psi_2'') - \int_0^\pi [(f_1 \psi_1 + f_2 \psi_2) + (t_1 \sin x + h_1)\psi_1 + (t_2 \sin x + h_2)\psi_2] \right| \\
\leq \varepsilon_n \|\Psi\|_X \quad (\text{2.13})
\]
for all \(\Psi = (\psi_1, \psi_2) \in X\), where \(\varepsilon_n \to 0(n \to \infty)\). Then by the above discussion it suffices to prove that \(\{W_n\}\) is bounded.

Step 1: Show the boundedness of \(\{W_n^-\}\). Let \(W_n^- = (u_n^-, v_n^-)\), \(w^- = \max\{0, -w\}\). Since \(h_1, h_2\) are bounded, there exists \(M_1, M_2 \geq 0\) such that
\[
|t_1 \sin x + h_1| \leq M_1, \quad |t_2 \sin x + h_2| \leq M_2. \quad (\text{2.14})
\]

Moreover, from (2.3) and (2.4), we have
\[
f_1(x, u_n, v_n)(-u_n^-) \leq \alpha (u_n^-)^2 + b u_n^- v_n^- + c u_n^-,
\]
\[
f_2(x, u_n, v_n)(-v_n^-) \leq \alpha (v_n^-)^2 + b u_n^- v_n^- + c v_n^-.
\]

Choosing \(c > \max\{M_1, M_2\}\) and taking \(\psi_1 = -u_n^-, \psi_2 = -v_n^-\) in (2.13), then using the above inequalities and (2.5), we obtain
\[
\|W_n^-\|_X^2 \leq \int_0^\pi (AW_n^-, W_n^-) + \int_0^\pi (c u_n^- - M_1 u_n + c v_n^- - M_2 v_n^-) + c\|W_n^-\|_X \\
\leq \mu \int_0^\pi (u_n^- + v_n^-) + d \int_0^\pi (u_n^- + v_n^-) + c\|W_n^-\|_X.
\]
Moreover, from (2.14) we have
\[G \text{ characteristic function, then using the Lebesgue Dominated Convergence Theorem, we get} \]
\[\int_0^\pi |u_n| \leq c \int_0^\pi |u_n|^2 \leq c \int_0^\pi |u_n'|^2, \]
\[\int_0^\pi |v_n| \leq c \int_0^\pi |v_n|^2 \leq c \int_0^\pi |v_n''|^2. \]

Then from these two inequalities and (2.11) we have
\[(1 - \mu)\|W_n\|^2_X \leq c\|W_n\|^2_X, \]
since \(0 < \mu < 1, \|W_n\|^2_X\) is bounded.

Step 2: Show the boundedness of \(\{W_n\}\). Suppose by contradiction that \(\{W_n\}\) is unbounded, then there exists a subsequence (still denote \(\{W_n\}\)) such that \(\|W_n\|^2_X \to \infty\) as \(n \to \infty\). Setting \(V_n = (x_n, y_n) = W_n/\|W_n\|^2_X\), then \(\|V_n\|_X = 1\) and there exists a subsequence such that
\[V_n \rightharpoonup V_0 = (x_0, y_0), \quad \text{in } X, \]
\[V_n \to V_0, \quad \text{in } L^2(0, \pi) \times L^2(0, \pi), \]
\[V_n \to V_0, \quad \text{a.e. in } (0, \pi), \]
with \(|x_n(x)|, |y_n(x)| \leq h(x) \in L^2, x \in (0, \pi)\).

By step 1 we may assume that \(V_n^- \to 0\) in \(L^2 \times L^2\) and \(V_n^- \to 0\) a.e.in \((0, \pi)\).

Clearly, \(V_0 \geq 0\). Denote
\[G_n(x) = (g_n^1(x), g_n^2(x)) \]
\[= \left(f_1(x, W_n(x)) + t_1 \sin x + h_1, f_2(x, W_n(x)) + t_2 \sin x + h_2 \right) / \|W_n\|^2_X. \]

We claim that
\[G_n \to \gamma = (\gamma_1, \gamma_2) \geq 0 \quad \text{in } L^2 \times L^2. \]

In fact, let \(A_n = \{x \in (0, \pi): u_n(x) \leq 0 \text{ and } v_n(x) \leq 0\}\) and let \(\chi_n\) denotes its characteristic function, then \(G_n = \chi_nG_n + (1 - \chi_n)G_n\). By (H3), (2.19), (2.17) and using the Lebesgue Dominated Convergence Theorem, we get
\[\chi_n F(x, W_n) / \|W_n\|^2_X \to 0 \quad \text{in } L^2 \times L^2. \]

Moreover, from (2.14) we have
\[\chi_n(t_1 \sin x + h_1, t_2 \sin x + h_2) / \|W_n\|^2_X \to 0 \quad \text{in } L^2 \times L^2. \]

Hence \(\chi_nG_n \to 0\) in \(L^2 \times L^2\). With the same reasoning \((1 - \chi_n)G_n \to \gamma' = (\gamma_1', \gamma_2')\) in \(L^2 \times L^2\). Therefore, we only need to prove that \(\gamma' \geq 0\).

(i) If \(u_n(x) \geq 0\) and \(v_n(x) \leq 0\), since \(\pi > 1\), from (2.6) we have
\[(1 - \chi_n)g_n^1(x) + b(y_n^-(x)) + c \|W_n\|^2_X - (1 - \chi_n) \frac{t_1 \sin x + h_1}{\|W_n\|^2_X} \geq \pi x_n^+(x) \geq 0 \]
and from (2.3) and (2.4), we obtain
\[(1 - \chi_n)g_n^2(x) + d(y_n^+(x)) + c \|W_n\|^2_X - (1 - \chi_n) \frac{t_2 \sin x + h_2}{\|W_n\|^2_X} \geq \xi x_n^+(x) \geq 0. \]
Since $V_n^c \to 0$ in $L^2 \times L^2$ and
\[(1 - \chi_n)g_1^n(x) + \mathcal{U}(y_n^c(x)) + \frac{c}{\|W_n\|_X} - (1 - \chi_n)\frac{t_1 \sin x + h_1}{\|W_n\|_X} \to \gamma', \]
\[(1 - \chi_n)g_2^n(x) + \mathcal{G}(y_n^c(x)) + \frac{c}{\|W_n\|_X} - (1 - \chi_n)\frac{t_2 \sin x + h_2}{\|W_n\|_X} \to \gamma'' \]
we get $\gamma' \geq 0$.

(ii) If $u_n(x) \leq 0$ and $v_n(x) \geq 0$, we can handle in the same way to obtain that $\gamma' \geq 0$.

(iii) If $u_n(x) \geq 0$ and $v_n(x) \geq 0$, the assertion $\gamma' \geq 0$ can be inferred from (H2).

Now dividing (2.13) by $\|W_n\|_X$, using (2.15), (2.18) and passing to the limit we obtain
\[\int_0^\pi (\psi_1' + \psi_2') = \int_0^\pi (\gamma_1 \psi_1 + \gamma_2 \psi_2), \quad \forall \Psi = (\psi_1, \psi_2) \in X. \quad (2.19) \]
From (2.6) we have
\[\frac{(f_1(x, W_n(x)) + t_1 \sin x + h_1, f_2(x, W_n(x)) + t_2 \sin x + h_2)}{\|W_n\|_X} \geq \mathcal{A}V_0 - \frac{ce}{\|W_n\|_X}. \]
Passing to the limit in this inequality we get
\[\gamma \geq \mathcal{A}V_0. \quad (2.20) \]
Taking $\psi_1 = \sin x$, $\psi_2 = 0$ and then $\psi_1 = 0$, $\psi_2 = \sin x$ in (2.19) and using (2.20), it is achieved that
\[(\mathcal{A} - I) \left(\int_0^\pi x \sin x \right) \leq 0. \quad (2.21) \]
From Remark 2.1, applying $(\mathcal{A} - I)^{-1}$ to (2.21) we get $(\int_0^\pi x \sin x, \int_0^\pi y \sin x) \leq 0$. Hence $x = y = 0$ a.e. So, from (2.19), $\int_0^\pi (\gamma, \Psi) = 0$ and taking $\Psi > 0$ we have $\gamma = 0$.

Finally, consider $\psi_1 = x_n, \psi_2 = y_n$ in (2.13). Dividing the resulting expression by $\|W_n\|_X$, and passing to the limit we obtain $1 \leq 0$, that is impossible. \hfill \Box

Lemma 2.3. Suppose (H5) hold. Then
\[\lim_{s \to +\infty} J(s \sin x, s \sin x) = -\infty. \quad (2.22) \]

Proof. From (2.6) we have
\[H(x, u, v) \geq \frac{\pi}{2} u^2 + \bar{b}uv - cu + H(x, 0, 0) \quad \text{as } u \geq 0, \forall v, \quad (2.23) \]
\[H(x, u, v) \geq \frac{\pi}{2} v^2 + \bar{c}uv - cv + H(x, 0, 0) \quad \text{as } v \geq 0, \forall u. \quad (2.24) \]

Adding (2.23), (2.24) and using them again,
\[2H(x, u, v) \geq \frac{\pi}{2} u^2 + (\bar{b} + \bar{c})uv + \bar{d}v^2 - cu - cv + H(x, 0, 0) + H(x, u, 0) \]
\[\geq \pi u^2 + (\bar{b} + \bar{c})uv + dv^2 - 2cu - 2cv + 2H(x, 0, 0) \]
\[\geq \pi v^2 + (\bar{b} + \bar{c})uv + dv^2 - 2cu - 2cv + 2c, \quad \text{for } u, v \geq 0. \]

Then by (2.8) we have
\[H(x, W) \geq \frac{\pi}{2} |W|^2 - cv - c. \quad (2.25) \]
Taking $W = (s\sin x, s\sin x)$, where $s > 0$, from (2.14) and (2.25) we get

$$J(s\sin x, s\sin x) \leq \frac{\pi s^2}{2}(1 - \overline{\mu}) + (c + M_1)\int_0^\pi s\sin x + (c + M_2)\int_0^\pi s\sin x - c$$

$$\leq \frac{\pi s^2}{2}(1 - \overline{\mu}) + cs - c$$

since $\overline{\mu} > 1$, (2.22) holds. □

3. The Ambrosetti-Prodi type result

In this section, we state and prove the Ambrosetti-Prodi type result for system (1.5). We need the following concepts.

Definition 3.1. (1) We say that a vector function $W \in X$ is a weak subsolution of (1.5) if

$$J'(W)(\Psi) \leq 0, \quad \forall \Psi \in X, \quad \Psi \geq 0.$$

(2) $W = (u, v) \in C^2 \times C^4$ is a subsolution (classical) of (1.5) if

$$-u'' \leq f_1(x, u, v) + t_1 \sin x + h_1, \quad \text{in } (0, \pi),$$

$$v''' \leq f_2(x, u, v) + t_2 \sin x + h_2, \quad \text{in } (0, \pi),$$

$$u(0) = u(\pi) = 0,$$

$$v(0) = v'(0) = v''(0) = v'''(0) = 0.$$

(3) Weak supersolutions and supersolutions (classical) are defined likewise by reversing the above inequalities.

We can easily show that each a subsolution or a supersolution of (1.5) is indeed also a weak subsolution or a weak supersolution, respectively.

For to present the subsolution and supersolution for (1.5), we firstly show a maximum principle as follows.

Lemma 3.2. Let A be a matrix-function with entries in $C[0, \pi]$ satisfy (2.4) and (2.5). If $W = (u, v) \in X$ is such that

$$\int_0^\pi (u'\psi'_1 + v''\psi''_2) \geq \int_0^\pi (AW, \Psi), \quad \forall \Psi = (\psi_1, \psi_2) \in X, \quad (3.1)$$

then $W \geq 0$.

Proof. Let $\Psi = W^- = (u^-, v^-)$ in (3.1), by (2.4) and (2.5), we obtain

$$\int_0^\pi (|u^-|^2 + |v^-|^2) \leq \int_0^{\pi} (AW^-, W^-) - \int_0^{\pi} (AW^+, W^-)$$

$$\leq \mu \int_0^{\pi} |W^-|^2 \leq \mu \|W^-\|_X^2.$$

Therefore, $W^- = 0$, i.e. $W \geq 0$. □

Remark 3.3. In the classical sense, (2.4) and (2.5) are also sufficient conditions for having a maximum principle for the problem

$$-u'' = au + bv + g_1(x), \quad \text{in } (0, \pi),$$

$$v''' = cu + dv + g_2(x), \quad \text{in } (0, \pi),$$

$$u(0) = u(\pi) = 0,$$
\[v(0) = v(\pi) = v''(0) = v''(\pi) = 0. \]

This is, \(W = (u, v) \geq 0 \) if \(g_1 \geq 0, g_2 \geq 0. \)

Lemma 3.4. Assume condition (H4), i.e. \((2.3), (2.4) \) and \((2.5) \) hold. Then, for all \(t = (t_1, t_2) \in \mathbb{R}^2, \) system \((1.5) \) has a subsolution \(W_t \) such that, if \(W^t \) is any supersolution we have

\[W_t \leq W^t \quad \text{in} \ (0, \pi). \quad (3.2) \]

Proof. We consider the system

\[
\begin{align*}
-u'' &= au + bv - c + t_1 \sin x + h_1, \quad \text{in} \ (0, \pi), \\
v''' &= cu + dv - c + t_2 \sin x + h_2, \quad \text{in} \ (0, \pi), \\
u(0) &= u(\pi) = 0, \\
v(0) &= v(\pi) = v''(0) = v''(\pi) = 0,
\end{align*}
\]

where \(c \) is the constant in \((2.3) \) and \((2.6). \) From the hypotheses on \(A \) and \(h_1, h_2, \) \((3.3) \) has a unique solution \(W_t \in C^2 \times C^2. \) Then, using \((2.3) \) we conclude that \(W_t \) is in fact a subsolution of \((1.5). \)

Finally, suppose that \(W^t \) is any supersolution of \((1.5), \) from \((2.3) \) and applying Lemma 3.2 directly we can get the assertion \((3.2). \) \(\Box \)

Lemma 3.5. Suppose (H1) holds and \((h_1, h_2) \in C[0, \pi] \times C[0, \pi]. \) Then there exists \(t^0 \in \mathbb{R}^2 \) such that, for all \(t \leq t^0, \) system \((1.5) \) has a supersolution \(W^t. \)

Proof. Let \(\pi, \bar{\pi} \) be the solution of the system

\[
\begin{align*}
-\bar{\pi}'' &= f_1(x, 0, 0) + h_1(x), \quad \text{in} \ (0, \pi), \\
\bar{\pi}''' &= f_2(x, 0, 0) + h_2(x), \quad \text{in} \ (0, \pi), \\
u(0) &= u(\pi) = 0, \\
v(0) &= v(\pi) = v''(0) = v''(\pi) = 0.
\end{align*}
\]

Due to the locally Lipschitzian condition on \(f_1, f_2, \) it is possible to choose \(t^0 = (t_1^0, t_2^0) < 0 \) such that

\[
\begin{align*}
f_1(x, \pi, \bar{\pi}) - f_1(x, 0, 0) + t^0 \sin x &\leq 0, \\
f_2(x, \pi, \bar{\pi}) - f_2(x, 0, 0) + t^0 \sin x &\leq 0.
\end{align*}
\]

Hence, from these inequalities and the system \((3.4), \) for all \(t \leq t^0, \) \(W^{t^0} = (\pi, \bar{\pi}) \) is a supersolution for \((1.5). \) \(\Box \)

Lemma 3.6. Let (H4), (H5) hold. Then for a given \(h_1, h_2, \) there exists an unbounded domain \(\mathbb{R} \) in the plane such that if \(t \in \mathbb{R}, \) system \((1.5) \) has no supersolution.

Proof. Suppose \(W = (u, v) \) is a supersolution for \((1.5). \) Multiplying both equations of this system by \(\sin x, \) integration them by parts and using \((2.3), (2.6) \) we deduce that

\[
\begin{align*}
(A - I) \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} &\leq \pi \begin{pmatrix} -s_1 \\ -s_2 \end{pmatrix}, \\
(A - I) \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} &\leq \pi \begin{pmatrix} -s_1 \\ -s_2 \end{pmatrix}. \quad (3.5)
\end{align*}
\]
Where $\rho_1 = \int_0^\pi u \sin x, \rho_2 = \int_0^\pi v \sin x, s_1 = t_1 - c, s_2 = t_2 - c$ and c is the constant in (2.3) and (2.6). From remark 2.1 applying $(A - I)^{-1}$ and $(\overline{A} - I)^{-1}$ to (3.5) and (3.6), respectively, we obtain that

1. If $\rho_1 \leq 0$, then $s_2 \leq \frac{d-1}{b} s_1$ when $b \neq 0$, or $s_1 \leq 0$ when $b = 0$.

2. If $\rho_1 \geq 0$, then $s_2 \leq \frac{d-1}{b} s_1$ when $b \neq 0$, or $s_1 \leq 0$ when $b = 0$.

Therefore, independently of the sign of ρ_1, the pair (s_1, s_2) is in a region composed of the union of two half-planes passing through the origin, each of them bounded above by a straight-line of negative or infinity slope. \mathcal{R} is the complement of this region in the original variables t_1 and t_2. \hfill \square

Now, we are at a position to prove the Ambrosetti-Prodi type result for system (1.5).

Theorem 3.7. Suppose that conditions (H1)–(H5) are satisfied and that there exists a matrix

$$A(x) = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix},$$

with $b(x), c(x) \geq 0$ (cooperativeness condition on $A(x)$) satisfies (2.5) such that

$$F(x, \xi) - F(x, \eta) \geq A(x)(\xi - \eta), \quad \text{for } \xi, \eta \in \mathbb{R}^2, \xi \geq \eta. \quad (3.7)$$

Then there exists a continuous curve Γ splitting \mathbb{R}^2 into two unbounded components N and E such that:

1. for each $t = (t_1, t_2) \in N$, (1.5) has no solution;
2. for each $t = (t_1, t_2) \in E$, (1.5) has at least two solutions.

Proof. For each $\theta \in \mathbb{R}$, define

$$L_\theta = \{(t_1, t_2) \in \mathbb{R}^2; t_2 + \theta = t_1\},$$

and $R(\theta) = \{t_2 \in \mathbb{R}; (t_1, t_2) \in (1.5)\}$ has a supersolution with $t \in L_\theta$ for some $t_2 \in \mathbb{R}$.

Lemmas 3.5 and 3.6 allows us to define the continuous curve

$$\Gamma(\theta) = (\sup R(\theta), \sup R(\theta) - \theta),$$

which splits the plane into two disjoint unbounded domains N and E such that

- for all $t \in N$ no supersolution exists for (1.5), while for all $t \in E$ (1.5) has a supersolution.

Obviously, for all $t \in N$, no solution exists for (1.5), result (1) is proved.

To prove result (2), now we use the abstract variational theorems to find the solutions of (1.5) when $t \in E$. We write

$$\langle J'(W), \Psi \rangle = \langle W, \Psi \rangle - \int_0^\pi \left[(f_1(x, u, v) + t_1 \sin x + h_1)\psi_1 + (f_2(x, u, v) + t_2 \sin x + h_2)\psi_2\right].$$

Given $t \in E$ there exists a supersolution $W^t = (u^t, v^t)$ and a subsolution $W_t = (u_t, v_t)$ of (1.5) such that $W_t \leq W^t$ in $(0, \pi)$. Let

$$M = [W_t, W^t] = \{W \in X; W_t \leq W \leq W^t\},$$

since $W_t, W^t \in L^\infty$ by assumption, also $M \subset L^\infty$ and $H(x, W(x)) + (t_1 \sin x + h_1) + (t_2 \sin x + h_2)v \leq c$ for all $W \in M$ and almost every $x \in (0, \pi)$.

Clearly, M is a closed and convex subset of X, hence weakly closed. Since M is essentially bounded, $J(W) \geq \frac{1}{2}\|W\|_X^2 - c$ is coercive on M. On the other hand, if
$W_n \to W$ weakly in X, where $W_n, W \in M$, we may assume that $W_n \to W$ pointwise almost everywhere; moreover, $|H(x, W_n) + (t_1 \sin x + h_1)u_n + (t_2 \sin x + h_2)v_n| \leq c$ uniformly, using Lebesgue Dominated Convergence Theorem, we have

$$\int_0^\pi H(x, W_n) + \int_0^\pi [(t_1 \sin x + h_1)u_n + (t_2 \sin x + h_2)v_n] \\
\to \int_0^\pi H(x, W) + \int_0^\pi [(t_1 \sin x + h_1)u + (t_2 \sin x + h_2)v].$$

Hence J is weakly lower semi-continuous on M. Then we can use \cite{17} Theorem 1.2 to find a vector function $W_0 = (u_0, v_0) \in X$ such that $W_0 \in M$ is the infimum of the functional J restricted to M.

To see that W_0 is a weak solution of \eqref{1.5}, for $\varphi = (\varphi_1, \varphi_2) \in C_0^\infty(0, \pi)$ and $\varepsilon > 0$ let

$$u_\varepsilon = \min\{u^t, \max\{u_t, u_0 + \varepsilon \varphi_1\}\} = u_0 + \varepsilon \varphi_1 - \varphi_1^\varepsilon + \varphi_1 \varepsilon$$
$$v_\varepsilon = \min\{v^t, \max\{v_t, v_0 + \varepsilon \varphi_2\}\} = v_0 + \varepsilon \varphi_2 - \varphi_2^\varepsilon + \varphi_2 \varepsilon$$

with

$$\varphi_1^\varepsilon = \max\{0, u_0 + \varepsilon \varphi_1 - u^t\} \geq 0,$$
$$\varphi_2^\varepsilon = \max\{0, v_0 + \varepsilon \varphi_2 - v^t\} \geq 0,$$

and

$$\varphi_1 \varepsilon = -\min\{0, u_0 + \varepsilon \varphi_1 - u_t\} \geq 0,$$
$$\varphi_2 \varepsilon = -\min\{0, v_0 + \varepsilon \varphi_2 - v_t\} \geq 0.$$

Note that $W_\varepsilon = (u_\varepsilon, v_\varepsilon) \in M$ and $\varphi^\varepsilon = (\varphi_1^\varepsilon, \varphi_2^\varepsilon), \varphi_\varepsilon = (\varphi_1 \varepsilon, \varphi_2 \varepsilon) \in X \cap L^\infty(0, \pi)$.

The functional J is differentiable in direction $W_\varepsilon - W_0$. Since W_0 minimizes J in M we have

$$0 \leq \langle W_\varepsilon - W_0, J'(W_0) \rangle = \varepsilon \langle \varphi, J'(W_0) \rangle - \langle \varphi^\varepsilon, J'(W_0) \rangle + \langle \varphi_\varepsilon, J'(W_0) \rangle,$$

so that

$$\langle \varphi, J'(W_0) \rangle \geq \frac{1}{\varepsilon} \left[\langle \varphi^\varepsilon, J'(W_0) \rangle - \langle \varphi_\varepsilon, J'(W_0) \rangle\right].$$

Now, from W_ε is a supersolution to \eqref{1.5}, we get

$$\langle \varphi^\varepsilon, J'(W_0) \rangle = \langle \varphi^\varepsilon, J'(W_\varepsilon) \rangle + \langle \varphi^\varepsilon, J'(W_0) - J'(W_\varepsilon) \rangle$$
$$\geq \langle \varphi^\varepsilon, J'(W_0) \rangle - J'(W_\varepsilon)$$
$$= \int_\Omega [(u_0 - u^t)'(u_0 + \varepsilon \varphi_1 - u^t)' + (v_0 - v^t)''(v_0 + \varepsilon \varphi_2 - v^t)']$$
$$- \int_\Omega [f_1(x, W_0) - f_1(x, W_\varepsilon)](u_0 + \varepsilon \varphi_1 - u^t)$$
$$- \int_\Omega [f_2(x, W_0) - f_2(x, W_\varepsilon)](v_0 + \varepsilon \varphi_2 - v^t)$$
$$\geq \varepsilon \int_\Omega [(u_0 - u^t)' \varphi_1' + (v_0 - v^t)'' \varphi_2'']$$
$$- \varepsilon \int_\Omega |f_1(x, W_0) - f_1(x, W_\varepsilon)||\varphi_1| - \varepsilon \int_\Omega |f_2(x, W_0) - f_2(x, W_\varepsilon)||\varphi_2|$$
where $\Omega = \{x \in (0, \pi); W_0(x) + \varepsilon \varphi(x) \geq W^t(x) > W_0(x)\}$. Note that $\text{meas}(\Omega) \to 0$ as $\varepsilon \to 0$. Hence by absolute continuity of the Lebesgue integral we obtain that
\[
\langle \varphi^\varepsilon, J'(W_0) \rangle \geq o(\varepsilon)
\]
where $o(\varepsilon)/\varepsilon \to 0$ as $\varepsilon \to 0$. Similarly, we conclude that $\langle \varphi, J'(W_0) \rangle \leq o(\varepsilon)$; thus
\[
\langle \varphi, J'(W_0) \rangle \geq 0
\]
for all $\varphi \in C_0^\infty(0, \pi)$. Reversing the sign of φ and since $C_0^\infty(0, \pi)$ is dense in X we finally get that $J'(W_0) = 0$, i.e. W_0 is a weak solution to (1.5). Then using (3.7) and a Maximum Principle Lemma 3.2 we claim that W_0 is a local minimum of J.

Suppose by contradiction that W_0 is not a local minimum, then for every $\varepsilon > 0$ there is $\tilde{W}_\varepsilon \in B_\varepsilon(W_0)$ (a ball of radius ε around $W_0 \in X$) such that $J(\tilde{W}_\varepsilon) < J(W_0)$. We know that $B_\varepsilon(W_0)$ is weaker sequentially compact in X and J is weakly lower semi-continuous, therefore there is $\tilde{W}_\varepsilon \in B_\varepsilon(W_0)$ such that
\[
J(\tilde{W}_\varepsilon) = \inf_{B_\varepsilon(W_0)} J \leq J(\tilde{W}_\varepsilon) < J(W_0),
\]
and $\langle J'(\tilde{W}_\varepsilon), \tilde{W}_\varepsilon - W_0 \rangle \leq 0$, or
\[
J'(\tilde{W}_\varepsilon) = \lambda_\varepsilon(\tilde{W}_\varepsilon - W_0) \quad \text{with } \lambda_\varepsilon \leq 0,
\]
namely
\[
\int_0^\pi (\tilde{u}_\varepsilon \psi_1 + \tilde{v}_\varepsilon \psi_2') - \int_0^\pi [f_1(x, \tilde{u}_\varepsilon, \tilde{v}_\varepsilon) \psi_1 + f_2(x, \tilde{u}_\varepsilon, \tilde{v}_\varepsilon) \psi_2]
\]
\[
- \int_0^\pi [(t_1 \sin x + h_1) \psi_1 + (t_2 \sin x + h_2) \psi_2] = \lambda_\varepsilon[(\tilde{u}_\varepsilon - u_0) \psi_1 + (\tilde{v}_\varepsilon - v_0) \psi_2].
\]

On the other hand, from Definition 3.1 we have
\[
\int_0^\pi (u_\varepsilon \psi_1 + v_\varepsilon \psi_2') - \int_0^\pi [f_1(x, u_\varepsilon, v_\varepsilon) \psi_1 + f_2(x, u_\varepsilon, v_\varepsilon) \psi_2]
\]
\[
- \int_0^\pi [(t_1 \sin x + h_1) \psi_1 + (t_2 \sin x + h_2) \psi_2] \leq 0,
\]
and
\[
\int_0^\pi (u_\varepsilon \psi_1 + v_\varepsilon \psi_2') - \int_0^\pi [f_1(x, u_\varepsilon, v_\varepsilon) \psi_1 + f_2(x, u_\varepsilon, v_\varepsilon) \psi_2]
\]
\[
- \int_0^\pi [(t_1 \sin x + h_1) \psi_1 + (t_2 \sin x + h_2) \psi_2] \geq 0.
\]

From (3.8)–(3.9), we obtain
\[
\int_0^\pi [(\tilde{u}_\varepsilon - u_\varepsilon) \psi_1 + (\tilde{v}_\varepsilon - v_\varepsilon) \psi_2']
\]
\[
- \int_0^\pi [(f_1(x, \tilde{W}_\varepsilon) - f_1(x, W_\varepsilon)) \psi_1 + (f_2(x, \tilde{W}_\varepsilon) - f_2(x, W_\varepsilon)) \psi_2]
\]
\[
\geq \lambda_\varepsilon[(\tilde{u}_\varepsilon - u_\varepsilon + u_\varepsilon - u_0) \psi_1 + (\tilde{v}_\varepsilon - v_\varepsilon + v_\varepsilon - v_0) \psi_2].
\]

This implies
\[
-(\tilde{u}_\varepsilon - u_\varepsilon)'' \geq f_1(x, \tilde{W}_\varepsilon) - f_1(x, W_\varepsilon) + \lambda_\varepsilon(\tilde{u}_\varepsilon - u_\varepsilon) + \lambda_\varepsilon(u_\varepsilon - u_0),
\]
\[
(\tilde{v}_\varepsilon - v_\varepsilon)' \geq f_2(x, \tilde{W}_\varepsilon) - f_2(x, W_\varepsilon) + \lambda_\varepsilon(\tilde{v}_\varepsilon - v_\varepsilon) + \lambda_\varepsilon(v_\varepsilon - v_0).
\]
Then from (3.7) we obtain
\[
\left(-\left(\hat{u}_\varepsilon - u_t \right)' \right)'' \geq A(x) \left(\hat{W}_\varepsilon - W_t \right) + \lambda \varepsilon \left(\hat{W}_\varepsilon - W_t \right),
\]

note that \(\lambda \varepsilon \leq 0\), and by using Lemma 3.2 we obtain
\[
\hat{W}_\varepsilon - W_t \geq 0, \quad \text{or} \quad W_t \leq \hat{W}_\varepsilon.
\]

Similarly, from (3.10)–(3.8), we can obtain
\[
\hat{W}_\varepsilon \leq W_t.
\]

Which contradicts \(J(W_0) = \inf_M J(W)\).

Finally, since \(J\) is not bounded from below, a weaker form of the Mountain Pass Theorem can be used to find another solution \(W_1 \neq W_0\) of (1.5). Then result (2) is proved. \(\square\)

4. Example: A piecewise linear problem

Consider the system
\[
\begin{align*}
-u'' &= k_1 u^+ + \epsilon v^+ + t_1 \sin x + h_1(x), \quad \text{in } (0, \pi), \\
v^{(4)} &= \epsilon u^+ + k_2 v^+ + t_2 \sin x + h_2(x), \quad \text{in } (0, \pi), \\
\epsilon u(0) = u(\pi) &= 0, \\
v(0) = v(\pi) = v''(0) = v''(\pi) &= 0.
\end{align*}
\]

Where \(\epsilon\) and \(k_1, k_2\) are constants, \(t_1, t_2\) are parameters and \(h_1, h_2 \in C[0, \pi]\) are fixed functions with \(\int_0^\pi h_1 \sin x = \int_0^\pi h_2 \sin x = 0\). This problem is similar to system (1.4).

Theorem 4.1. Suppose that \(k_1 > 1, k_2 > 1\) and \(\epsilon \geq 0\). Then there exists a curve \(\Gamma\) splitting \(\mathbb{R}^2\) into two unbounded components \(N\) and \(E\) such that:

1. for each \(t = (t_1, t_2) \in N\), (4.1) has no solution;
2. for each \(t = (t_1, t_2) \in E\), (4.1) has at least two solutions.

Proof. Let
\[
\bar{A} = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Then we can easily verify that the conditions of Theorem 3.7 hold and therefore the results are follow. \(\square\)

Remark 4.2. (1) Denote by \(\mu_i (i = 1, 2)\) the eigenvalues of matrix
\[
A = \begin{pmatrix} k_1 & \epsilon \\ \epsilon & k_2 \end{pmatrix}
\]

and let \(\mu_1 \leq \mu_2\). It can be shown that \(\mu_2 > 1\) since \(k_1 > 1\) and \(k_2 > 1\).

(2) This result gives a partial answer to Question 1 and Question 2 that were posted in [16] and stated in Section 1.
References

YUKUN AN
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
E-mail address: anyksd@hotmail.com

JING FENG
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
E-mail address: erma19831@sina.com