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WELL-POSED INITIAL-BOUNDARY VALUE PROBLEMS FOR
THE ZAKHAROV-KUZNETSOV EQUATION

ANDREI V. FAMINSKII

Abstract. This paper deals with non-homogeneous initial-boundary value

problems for the Zakharov-Kuznetsov equation, which is one of the variants of

multidimensional generalizations of the Korteweg de Vries equation. Results
on local and global well-posedness are established in a scale of Sobolev-type

spaces under natural assumptions on initial and boundary data.

1. Introduction

The goal of the present paper is to study initial-boundary value problems for the
Zakharov–Kuznetsov (ZK) equation

ut + uxxx + uxyy + uux = f(t, x, y) (1.1)

(u = u(t, x, y)) in three domains:

Π+
T = {(t, x, y) : t ∈ (0, T ), x > 0, y ∈ R} ≡ (0, T )× R2

+,

Π−T = {(t, x, y) : t ∈ (0, T ), x < 0, y ∈ R} ≡ (0, T )× R2
−,

QT = {(t, x, y) : t ∈ (0, T ), x ∈ (0, 1), y ∈ R} ≡ (0, T )× Σ,

where T > 0. In all three cases we set an initial condition

u(0, x, y) = u0(x, y) (1.2)

(where respectively (x, y) ∈ R2
+, (x, y) ∈ R2

−, (x, y) ∈ Σ) and the following bound-
ary conditions for (t, y) ∈ BT = (0, T )× R:
(1) for the problem in Π+

T one condition:

u(t, 0, y) = u1(t, y), (1.3)

(2) for the problem in Π−T two conditions:

u(t, 0, y) = u2(t, y), ux(t, 0, y) = u3(t, y), (1.4)

(3) for the problem in QT three conditions:

u(t, 0, y) = u1(t, y), u(t, 1, y) = u2(t, y), ux(t, 1, y) = u3(t, y). (1.5)
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The ZK equation is one of the variants of multidimensional generalizations of
the famous Korteweg-de Vries equation (KdV)

ut + uxxx + uux = f(t, x). (1.6)

It describes nonlinear wave processes in dispersive media, when waves propagate in
the x-direction and are deformated in the transverse y-direction. In particular, it
is a model equation for ion-acoustic waves in magnetized plasma, [22].

Initial-boundary value problems for the KdV equation in domains similar to Π+
T ,

Π−T and QT (without the variable y) have been intensively studied in the recent
years (see [6, 2, 3, 10, 15, 12] for the last results and references there). In the
first approximation the scheme of these investigations is similar and consists of 1)
a proof of local well-posedness based on the contraction principle, where solutions
are constructed as fixed points of mappings u = Λv such that u is a solution to a
corresponding initial-boundary value problem for an equation ut + uxxx = f − vvx,
and 2) global a priori estimates based on conservation laws for the initial value
problem for KdV (f ≡ 0):∫

R
u2 dx = const,

∫
R
(u2

x −
1
3
u3) dx = const,

∫
R
(u2

xx +
5
6
u2uxx +

5
36

u4) dx = const.

(1.7)
For the initial value problem for KdV this scheme was for the first time implemented
in [16].

One of the common features of the aforementioned papers is an idea to establish
well-posedness under natural assumptions on initial and boundary data, namely,
u0 ∈ Hs, u1, u2 ∈ H(s+1)/3, u3 ∈ Hs/3. Such assumptions originate from internal
properties of the operator ∂t + ∂3

x. In fact, if u(t, x) ∈ C(Rt;Hs(Rx)) is a solution
to the initial value problem

ut + uxxx = 0, u
∣∣
x=0

= u0(x) ∈ Hs(R), s ∈ R, (1.8)

then for any x ∈ R

‖D1/3
t u(·, x)‖Hs/3(Rt) = ‖ux(·, x)‖Hs/3(Rt) = c(s)‖u0‖Hs(R) (1.9)

(see, for example, [16]).
The pointed out approach requires the necessity of study of the corresponding

initial-boundary value problems for the linearized KdV equation. In [10, 12] solu-
tions to such problems are constructed via combination of solutions to the initial
value problem and solutions to the initial-boundary value problems for the homo-
geneous linearized equation (1.8) with zero initial data, which can be referred as
”boundary potentials”. For the problem in a right half-strip (0, T ) × R+ such a
boundary potential J was for the first time introduced in [5] with the use of the
Airy function. Alternative representations for this function J were obtained in the
papers [2, 10]. For example, in [10] the following formula was derived:

J(t, x;u1) = F−1
t

[
er(λ)xû1(λ)

]
(t) (1.10)

for x ≥ 0, where r(λ) = − 1
2 (
√

3|λ|1/3 + iλ1/3) is the unique root of the algebraic
equation r3+iλ = 0, λ 6= 0, with the negative real part. Similar boundary potentials
for the problem in a left half-strip (0, T ) × R− were constructed in [12]. All these
boundary potentials were also used in that paper for the problem in a bounded
rectangle (0, T )× (0, 1).
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As a result, local well-posedness under natural assumptions on initial and bound-
ary data was established for all three initial-boundary value problems for the KdV
equation if s > −3/4, s 6= 3m + 1/2, s 6= 3m + 3/2 (for the last two problems),
m ≥ 0 – integer, [10, 15, 12]. Solutions to these problems were constructed, in par-
ticular, in functional spaces of Bourgain type, first introduced in [4] for the initial
value problem and modified in [6] for initial-boundary value problems.

In comparison with the initial value problem presence of boundary conditions
produces additional difficulties for global a priori estimates in the case of initial-
boundary value problems. Consider, for example, an estimate in L2. Let I be either
R or R+ or R− or (0, 1) and let ∂I denotes the finite part of its boundary. Let
u(t, x) be a solution of the equation (1.6), where f ≡ 0, in (0, T ) × I sufficiently
smooth and decaying at infinity. Multiplying (1.6) by 2u and integrating over I
one obtains an equality

d

dt

∫
I

u2 dx +
(
2uuxx − u2

x +
2
3
u3

)∣∣
∂I

= 0. (1.11)

For I = R this equality coincides with the first conservation law (1.7). For the
initial-boundary value problems in the case u|∂I = 0 an estimate on the solution
u in L2(I) uniform with respect to t ≥ 0 also succeeds from (1.11). But in the
case of non-homogeneous boundary data the presence of the term uuxx|∂I makes
it impossible to derive such an estimate directly from (1.11). Then it is quite
natural to introduce an auxiliary function ϕ(t, x) such that ϕ|∂I = u|∂I , define a
new function U(t, x) ≡ u(t, x)− ϕ(t, x) and try to obtain the desired estimate first
for the function U . This function satisfies a more complicated equation, so this
approach implies, that the function ϕ can be chosen such that its properties ensure
such a possibility. In the papers [10, 12] the function ϕ was constructed on the base
of the boundary potential J and the estimates in L2 were obtained under ε-close
to natural u1, u2 ∈ H1/3+ε, u3 ∈ L2 assumptions on the boundary data.

Further obstacles appear for estimates in more smooth spaces, e.g. in H1 and
H2. The difficulties on this way can be shown even in the linear case and zero
boundary data. Multiplying the equation (1.8) by −2uxx(t, x) and integrating over
I one derives an equality

d

dt

∫
I

u2
x dx− u2

xx

∣∣
∂I

= 0, (1.12)

so an estimate on ux in L2(I) can be obtained only for the problem in the right
half-strip. Next, multiplying this equation by 2uxxxx(t, x) and integrating over I
one derives an equality

d

dt

∫
I

u2
xx dx− 2utxuxx

∣∣
∂I

= 0 (1.13)

and here the estimate on uxx in L2(I) can be obtained only for the problem in the
left half-strip.

Note that differentiation with respect to t leads to the initial-boundary value
problem of the same type for the derivative ut. Therefore, for example, an estimate
on the solution u in H3(I) can be obtained from an estimate for ut in L2(I) via
expressing the third derivative uxxx from the equation (1.6) itself.

On this way estimates on solutions in H3k, H3k+1, k ≥ 0 – integer, to the
problem in the right half-strip, in H3k, H3k+2 to the problem in the left half-
strip and in H3k to the problem in the bounded rectangle were established in
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[10, 12] and for intermediate orders of smoothness, following the approach from [2],
nonlinear interpolation was used. As a result, global well-posedness of all three
considered initial-boundary value problems for the KdV equation was established
in these papers under natural assumptions on initial and boundary data for s > 0,
s 6= 3m + 1/2, s 6= 3m + 3/2 (for the last two problems), m ≥ 0 – integer, and
ε-close to natural for s = 0.

The study of the ZK equation in comparison with KdV besides traditional diffi-
culties originating from the transfer from the line to the plane has some additional
obstacles. First of all, Bourgain-type spaces, which turned out to be very useful
for KdV, are not found yet for this equation. Next, in contrast to (1.7) only two
conservation laws are known for (1.1), f ≡ 0:∫∫

R2
u2 dx dy = const,

∫∫
R2

(u2
x + u2

y −
1
3
u3) dx dy = const. (1.14)

Note that first global existence result (without uniqueness) for the initial value
problem for ZK in the space L∞(0, T ;H1(R2)) in the case u0 ∈ H1(R2) was, in
particular, established in [20] just on the base of these conservation laws.

On the other hand, the so-called local smoothing effect is valid for this equation
as for KdV. Let u(t, x, y) be a smooth and decaying at infinity solution to the initial
value problem (1.1), (1.2), where f ≡ 0. Multiplying (1.1) by 2u(t, x, y)ρ(x) for
certain smooth, non-negative and non-decreasing function ρ one can easily derive
after integration that

d

dt

∫∫
R2

u2ρ dx dy+
∫∫

R2
(3u2

x+u2
y)ρ′ dx dy−

∫∫
R2

(
u2ρ′′′+

2
3
u3ρ′

)
dx dy = 0, (1.15)

and after an appropriate choice of ρ, making use of the first conservation law (1.14),
establish an estimate

λ(u;T ) = sup
m∈Z

∫ T

0

∫ m+1

m

∫
R
(u2

x + u2
y) dy dx dt ≤ c(T, ‖u0‖L2(R2)). (1.16)

The estimate (1.16) gave an opportunity in the paper [7] to establish global existence
result for the problem (1.1), (1.2) in the class {u : u ∈ L∞(0, T ;L2(R2)), λ(u;T ) <
∞} for u0 ∈ L2(R2) (in fact, in [20, 7] more general quasilinear evolution equations
of an arbitrary high odd order in the multidimensional case were considered). More-
over, if, in addition, xu0 ∈ L2(R2

+), a class of global well-posedness was constructed
for this problem in [7].

In the paper [8] results from [16] on global well-posedness of the initial value
problem for KdV were transferred to ZK, namely, classes of global well-posedness
for the problem (1.1), (1.2) were constructed for u0 ∈ Hk(R2), k – natural (see
Remark 2.10 below).

In [17] gain of regularity for solutions to the initial value problem for ZK under
decaying at infinity initial data was established.

The study of initial-boundary value problems for the ZK equation started only
in recent years (with the only exception in [19], where one problem in a bounded
domain for an equation, which can be reduced to ZK by a simple transformation,
was considered). Certain results in the case u0 ∈ L2 on global existence and
uniqueness of weak solutions to the problem (1.1)–(1.3) in Π+

T were obtained in [9]
and similar results on global existence to the problem (1.1), (1.2), (1.4) in Π−T – in
[13]. These results are as in [7] based on the first conservation law (1.14) and the
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local smoothing effect (1.15), (1.16) (in more details they are discussed further in
Section 6).

The approach of the present paper repeats the one from [10, 12] (besides the use
of Bourgain-type spaces, of course). Special solutions of the ”boundary potential”
type are constructed and studied for a linearized ZK equation and further used for
linear problems in Π+

T , Π−T and QT . Solutions to the corresponding linear initial
value problem, which was previously studied in [8], are also used here. Moreover,
properties of this initial value problem show, that by analogy with (1.9) smooth-
ness assumptions u0 ∈ Hk, u1, u2 ∈ H

(k+1)/3,k+1
t,y , u3 ∈ H

k/3,k
t,y , where Hs1,s2 are

anysotropic Sobolev spaces, are natural for the considered initial-boundary value
problems (see Remark 3.2 below).

Then local well-posedness of all three considered problems for the ZK equation
under natural assumptions on boundary data is established for u0 ∈ Hk via the
contraction principle.

Global a priori estimates in L2 for the considered problems are obtained by
methods similar to ones for KdV (see (1.11) and subsequent arguments). Obstacles
similar to (1.12), (1.13) also appear for the ZK equation, so an estimate in H1 is
established (by methods similar to ones for the second conservation law (1.14)) for
the problem in Π+

T . The absence of an analogue for ZK of the third conservation
law (1.7) has not allowed to establish a global estimate in H2 for the problem in
Π−T .

Global a priori estimate in H3 for the problem in QT are obtained via differenti-
ation of the equation with respect to t and to y. Note that in comparison with KdV
an extra obstacle to establish such an estimate is that one can express from the
equation (1.1) not a single derivative of the third order but the term (uxxx +uxyy).

Other global estimates in more smooth classes are obtained on the basis of the
aforementioned ones.

As a result, global well-posedness is established for the problem (1.1)–(1.3) in
Π+

T for u0 ∈ Hk(R2
+), k – natural, and for the problem (1.1), (1.2), (1.5) in QT for

u0 ∈ Hk(Σ), k ≥ 3 – natural, under natural assumptions on the boundary data
(the result for the problem in Π+

T in the case k = 1 was previously published in
[11]). Global well-posedness for the problem (1.1), (1.2), (1.4) in Π−T is an open
problem.

The paper is organized as follows. Section 2 contains main notation and a state-
ment of the main result on local and global well-posedness of the considered prob-
lems. In Section 3 potentials for the linearized ZK equation are studied. Section 4 is
devoted to the corresponding initial-boundary value problems for this linear equa-
tion. The proof of the main result is accomplished in Section 5. Certain remarks
on global weak solutions to the considered problems can be found in Section 6.

2. Notation and Statement of the main result

In what follows (if there are no other conditions) in introduced notation we use
a symbol I for an arbitrary interval (bounded or unbounded) on the real axis, Ω –
for a domain in Rn, k, l, m, n, j – non-negative integers, p ∈ [1,+∞], s ∈ R.

Let [s] be the integer part of s (s− [s] ∈ [0, 1)).
Let Ck

b (Ω) be a space of functions with all derivatives up to the order k continuous
and bounded in Ω. Define Cb(Ω) = C0

b (Ω). If Ω is bounded, the index b is omitted.
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Let f̂ ≡ F[f ] and F−1[f ] be respectively the direct and inverse Fourier transforms
of a function f , considered as operations in L2(Rn). In particular, for f ∈ S(R)

f̂(ξ) =
∫

R
e−iξxf(x) dx, F−1[f ](x) =

1
2π

∫
R

eiξxf(ξ) dξ.

Define the fractional order Sobolev space

Hs(Rn) =
{
f : F−1[(1 + |ξ|)sf̂(ξ)] ∈ L2(Rn)

}
and let Hs(Ω) be a space of restrictions on Ω of functions from Hs(Rn). Note that
Hk(Ω) = W k

2 (Ω). Define

Hs
0(Ω) =

{
f ∈ Hs(Rn) : supp. f ⊂ Ω

}
.

Properties of the spaces Hs and Hs
0 can be found, for example, in [18].

For domains Ω ⊂ R2 with regular boundaries (in particular, for Ω = R2
+ and

Ω = Σ) the following interpolation inequality is valid:

‖f‖Lp(Ω) ≤ c(p, Ω)
[
‖∇f‖(p−2)/p

L2(Ω) ‖f‖2/p
L2(Ω) + ‖f‖L2(Ω)

]
, (2.1)

where 2 ≤ p < +∞ (see, e.g. [1]).
For description of properties of boundary data we also use the anysotropic

Sobolev spaces for s1, s2 ≥ 0:

Hs1,s2(R2) = Hs1,s2
t,y (R2) =

{
µ(t, y) : F−1[(1 + |λ|s1 + |η|s2)µ̂(λ, η)] ∈ L2(R2)

}
.

For Ω ⊂ R2 a symbol Hs1,s2(Ω) is also used for a space of corresponding restrictions.
If B is a certain Banach space, define by Cb(I;B) a space of continuous bounded

mappings from I to B (for bounded I the index b is omitted). The symbol Lp(I;B)
is used in the conventional sense.

Solutions to the considered problems are constructed in special functional spaces
Xk.

Definition 2.1. For any T > 0 let Xk((0, T ) × I × R) be a space of functions
u(t, x, y) such that

∂m
t u ∈ C

(
[0, T ];Hk−3m(I × R)

)
, m ≤ [k/3], (2.2)

∂l
xu ∈ Cb

(
I;H(k−l+1)/3,k−l+1(BT )

)
, l ≤ k + 1, (2.3)

∂m
t ∂l

x∂j
yu ∈ L2

(
0, T ;Cb(I × R)

)
, 3m + l + j ≤ k, (2.4)

∂m
t ∂l

x∂j
yu ∈ L2

(
I;Cb(BT )

)
, k ≥ 1, 3m + l + j ≤ k − 1. (2.5)

Remark 2.2. For small k such solutions are interpreted in a weak (distributional)
sense (see, e.g. [10, 12] for corresponding definitions in similar situations for KdV).

For description of properties of the right part of the equation introduce the
following spaces Mk.

Definition 2.3. For any T > 0 let Mk((0, T ) × I × R) be a space of functions
f(t, x, y) such that

∂m
t f ∈ L2

(
0, T ;Hk−3m(I × R)

)
, m ≤ m0 = [(k + 1)/3].

For simplicity we often use shortened symbols Xk and Mk. Let ∂x,y denotes
either ∂x or ∂y.
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Lemma 2.4. For any T > 0 and I ⊂ R

‖u∂x,yv‖M0 + ‖v∂x,yu‖M0 ≤ c‖u‖X1‖v‖X0 , (2.6)

‖u∂x,yv‖Mk
≤ c(k)‖u‖Xk

‖v‖Xk
, k ≥ 1, (2.7)

‖u∂x,yu‖Mk
≤ c(k)‖u‖Xk−1‖u‖Xk

, k ≥ 2. (2.8)

Proof. Note that M0 = L2, so (2.6) follows from obvious inequalities

‖u∂x,yv‖L2((0,T )×I×R) ≤ ‖u‖L2(I;Cb(BT ))‖∂x,yv‖Cb(I;L2(BT )), (2.9)

‖v∂x,yu‖L2((0,T )×I×R) ≤ ‖u‖C([0,T ];H1(I×R))‖v‖L2(0,T ;Cb(I×R)). (2.10)

Let in (2.7) and (2.8) k = 3n + j, 0 ≤ j ≤ 2. If j ≤ 1, then m0 = n and these
inequalities can be derived similarly to (2.9), (2.10). Let j = 2, then m0 = n+1 and
in addition to the previous cases we must evaluate ∂m0

t (u∂x,yv) in L2(0, T ;H−1).
Here

u∂m0
t ∂x,yv = ∂x,y(u∂m0

t v)− ∂x,yu∂m0
t v

and similarly to (2.9)

‖∂x,y(u∂m0
t v)‖L2(0,T ;H−1(I×R)) ≤ ‖u∂m0

t v‖L2((0,T )×I×R) ≤ ‖u‖X1‖v‖Xk
, (2.11)

‖∂x,yu∂m0
t v‖L2(0,T ;H−1(I×R)) ≤ ‖∂x,yu∂m0

t v‖L2((0,T )×I×R) ≤ ‖u‖X2‖v‖Xk
.

Thus (2.8) for k ≥ 3 and (2.7) are established. Finally, note that if k = 2, then
∂t(u∂x,yu) = ∂x,y(uut), and the inequality (2.8) in this case follows from (2.11). �

In order to describe properties of boundary data we introduce some special no-
tation common for all three considered problems.

Definition 2.5. Let n = 1, I = R+ = (0,+∞) for the problem in Π+
T ; n = 2,

I = R− = (−∞, 0) for the problem in Π−T ; n = 3, I = (0, 1) for the problem in QT .
Let Bk

n(T ) be a space of ordered assemblies Un, where

U1 = (u1), U2 = (u2, u3), U3 = (u1, u2, u3),

such that
u1, u2 ∈ H(k+1)/3,k+1(BT ), u3 ∈ Hk/3,k(BT ),

with the natural norm.

We also need to formulate compatibility conditions for the considered problems.

Definition 2.6. Let Φ0(x, y) ≡ u0(x, y) and for m ≥ 1

Φm(x, y) ≡ ∂m−1
t f(0, x, y)− (∂3

x + ∂x∂2
y)Φm−1(x, y)

−
m−1∑
l=0

(
m− 1

l

)
Φl(x, y)∂xΦm−l−1(x, y).

(2.12)

We say that the compatibility conditions of the order k are satisfied if
(1) ∂m

t u1(0, y) ≡ Φm(0, y) for m < k/3 in the case of the problem in Π+
T ;

(2) ∂m
t u2(0, y) ≡ Φm(0, y) for m < k/3, ∂m

t u3(0, y) ≡ ∂xΦm(0, y) for m <
(k − 1)/3 in the case of the problem in Π−T ;

(3) ∂m
t u1(0, y) ≡ Φm(0, y), ∂m

t u2(0, y) ≡ Φm(1, y) for m < k/3, ∂m
t u3(0, y) ≡

∂xΦm(1, y) for m < (k − 1)/3 in the case of the problem in QT .

Now we can present the main result of the paper.
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Theorem 2.7. Let either n = 1, I = R+ for the problem in Π+
T or n = 2,

I = R− for the problem in Π−T or n = 3, I = (0, 1) for the problem in QT . Let
u0 ∈ Hk(I × R), Un ∈ Bk

n(T ), f ∈ Mk((0, T ) × I × R) for certain T > 0, k ≥ 1.
Assume also that the compatibility conditions of the order k are satisfied for the
considered problem. Then respectively

(1) the problem (1.1)–(1.3) is well-posed in Xk(Π+
T );

(2) there exists t0 ∈ (0, T ] such that the problem (1.1), (1.2), (1.4) is well-posed
in Xk(Π−t0);

(3) the problem (1.1), (1.2), (1.5) is well-posed in Xk(QT ) if k ≥ 3 and there
exists t0 ∈ (0, T ] such that this problem is well-posed in Xk(Qt0) if k = 1
or k = 2.

Remark 2.8. We mean that the problem is well-posed in the space Xk, if there
exists a unique solution u(t, x, y) in this space and the map (u0,U

n, f) 7→ u is
Lipschitz continuous on any ball in the norm of the map Hk(I × R) × Bk

n(T ) ×
Mk((0, T )× I × R) into Xk.

Remark 2.9. All these well-posedness results can be easily generalized for an
equation of the (1.1) type with a nonlinear term g(u)ux, where the sufficiently
smooth function g has not more than linear rate of growth (more precisely, g′ is
bounded on R) and g(0) = 0.

Remark 2.10. In the paper [8] global well-posedness of the initial value problem
(1.1), (1.2) was established under assumptions u0 ∈ Hk(R2), f ∈ L1(0, T ;Hk(R2)),
k ≥ 1, in the classes similar to Xk but without smoothness properties with respect
to t.

3. Potentials

Consider a linear equation

ut + uxxx + uxyy = f(t, x, y). (3.1)

Solution to the initial value problem in a domain ΠT = (0, T )×R2 with the initial
profile (1.2) can be constructed in a form (see [8])

u(t, x, y) = S(t, x, y;u0) + K(t, x, y; f), (3.2)

where potentials S and K are given by formulae

S(t, x, y;u0) ≡ F−1
x,y

[
eit(ξ3+ξη2)û0(ξ, η)

]
(x, y),

K(t, x, y; f) ≡
∫ t

0

S(t− τ, x, y; f(τ, ·, ·)) dτ.
(3.3)

By analogy with (2.12) let Φ̃0(x, y) ≡ u0(x, y) and for m ≥ 1

Φ̃m(x, y) ≡ ∂m−1
t f(0, x, y)− (∂3

x + ∂x∂2
y)Φ̃m−1(x, y). (3.4)

Lemma 3.1. If u0 ∈ Hk(R2), f ∈ Mk(ΠT ) for some T > 0 and k ≥ 0, then a
unique solution u(t, x, y) to the problem (3.1), (1.2) exists and for any t0 ∈ (0, T ]

‖u‖Xk(Πt0 )

≤ c(T, k)
(
‖u0‖Hk(R2) + t

1/6
0 ‖f‖Mk(Πt0 ) +

m0−1∑
m=0

‖∂m
t f

∣∣
t=0

‖Hk−3(m+1)(R2)

)
.

(3.5)
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Proof. First of all note that

∂m
t S(t, x, y;u0) + ∂m

t K(t, x, y; f) = S(t, x, y; Φ̃m) + K(t, x, y; ∂m
t f). (3.6)

For m = 0 corresponding estimates on the solution u in the norms (2.2), (2.4), (2.5)
(where I = R) by ‖u0‖Hk(R2) and ‖f‖L1(0,t0;Hk(R2)) are established in [8] (moreover,
in (2.4) L2 with respect to t can be enlarged to L3).

In [8] it was also proved that

‖∇x,yu‖Cb(R;L2(Bt0 )) ≤ c(T, k)
(
‖u0‖H1(R2) + ‖f‖L1(0,t0;H1(R2))

)
. (3.7)

Similarly to (3.7) a corresponding estimate on ∂l
xS in Cb(R;H(k−l+1)/3,k−l+1(Bt0))

by ‖u0‖Hk(R2) for l ≤ k + 1 can be also derived.
For the potential K first of all we show that for s ∈ [0, 1]

‖K(·, ·, ·; f)‖Cb(R;Hs,3s(Bt0 )) ≤ c(T )t(1−s)/2
0 ‖f‖L2(0,t0;H3s−1(R2)). (3.8)

In fact, if s = 0 then this inequality is similar to (3.7), if s = 1 it succeeds from an
equality

Kt(t, x, y; f) = f(t, x, y)−
∫ t

0

(∂3
x + ∂x∂2

y)S(t− τ, x, y; f(τ, ·, ·)) dτ

and the already established estimates on the potential S, for intermediate values of
s (3.8) is obtained via interpolation.

Finally, it is suffice to note that if one applies (3.8) to K(t, x; ∂m
t f), where

m = [(k − l + 1)/3], s = (k − l + 1)/3 −m, the minimal value 1/6 for the degree
(1− s)/2 is achieved if k − l + 1 = 3m + 2. �

Remark 3.2. By the methods from [8] it is easy to show that for the function
S = S(t, x, y;u0), where u0 ∈ Hs(R2), uniformly with respect to x ∈ R∥∥D

1/3
t S

∥∥2

H
s/3,s
t,y (R2)

+
∥∥∂xS

∥∥2

H
s/3,s
t,y (R2)

+
∥∥∂yS

∥∥2

H
s/3,s
t,y (R2)

∼ ‖u0‖2Hs(R2)

(here Dα denotes the Riesz potential of the order −α).

In what follows we need simple properties of solutions to an algebraic equation

r3 − rη2 + iλ = 0, (λ, η) 6= (0, 0). (3.9)

This equation has one root r0(λ, η) with the negative real part, one root r1(λ, η)
with the positive real part and one pure imaginary root r2(λ, η). These roots can
be written in a form

r0 = −p(λ, η) + iq(λ, η), r1 = p(λ, η) + iq(λ, η), r2 = iκ(λ, η), (3.10)

where p > 0, q ∈ R and the function κ for a fixed η is the inverse function to
ϕ(ξ) ≡ ξ3 + ξη2. Moreover, for certain positive constants c, c1 and any (λ, η)

p(λ, η) ≥ c(|λ|1/3 + |η|), (3.11)

|rj(λ, η)| ≤ c1(|λ|1/3 + |η|) ∀j, (3.12)

|rj(λ, η)− rk(λ, η)| ≥ c(|λ|1/3 + |η|), j 6= k. (3.13)

Now we can introduce boundary potentials for the homogeneous equation (3.1).
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Definition 3.3. Let µ, ν ∈ L2(R2). Define for x ≥ 0

J+(t, x, y;µ) ≡ F−1
t,y [er0xµ̂(λ, η)] (t, y) (3.14)

and for x ≤ 0,

J−(t, x, y;µ, ν) ≡ F−1
t,y

[r1e
r2x − r2e

r1x

r1 − r2
µ̂(λ, η) +

er1x − er2x

r1 − r2
ν̂(λ, η)

]
(t, y), (3.15)

where rj = rj(λ, η) are the aforementioned roots of the equation (3.9).

Lemma 3.4. Let µ ∈ H(k+1)/3,k+1(R2) for some k ≥ 0, then for any T > 0

‖J+(·, ·, ·;µ)‖Xk(Π+
T ) ≤ c(T, k)‖µ‖H(k+1)/3,k+1(R2). (3.16)

Proof. In order to obtain an estimate in the norm (2.2) we use the following funda-
mental inequality from [2]: if certain continuous function γ(θ) satisfies an inequality
Re γ(θ) ≤ −ε|θ| for some ε > 0 and all θ ∈ R, then∥∥∥∫

R
eγ(θ)xf(θ) dθ

∥∥∥
L2(Rx

+)
≤ c(ε)‖f‖L2(R). (3.17)

Therefore, changing variables λ = θ3 we derive from (3.14) with the use of (3.11)
and (3.12) that for 3m + l + j ≤ k uniformly with respect to t ∈ R,

‖∂m
t ∂l

x∂j
yJ+(t, ·, ·;µ)‖L2(R2

+) ≤ c
∥∥θ3m+2ηj(|θ|l + |η|l)µ̂(θ3, η)

∥∥
L2(R2)

≤ c1

∥∥λm+1/3ηj(|λ|l/3 + |η|l)µ̂(λ, η)
∥∥

L2(R2)

≤ c2‖µ‖H(k+1)/3,k+1(R2).

(3.18)

Similarly to (3.18), for 3m + l + j ≤ k − 1,∥∥ sup
(t,y)∈R2

|∂m
t ∂l

x∂j
yJ+(·, t, y;µ)|

∥∥
L2(Rx

+)

≤ c

∫
R

∥∥∫
R

e−p(λ,η)x|λmηj |(|λ|l/3 + |η|l)|µ̂(λ, η)| dλ
∥∥

L2(Rx
+)

dη

≤ c1

∫
R
|ηj |

∥∥θ3m+2(|θ|l + |η|l)µ̂(θ3, η)
∥∥

L2(Rθ)
dη

≤ c2‖λm+1/3ηj+1(|λ|l/3 + |η|l)µ̂(λ, η)‖L2(R2)

≤ c3‖µ‖H(k+1)/3,k+1(R2)

(3.19)

and we obtain the desired estimate in the norm (2.5).
The estimate in the norm (2.3) simply follows from the equality (3.14) since

Re r0 ≤ 0.
Finally, the estimate in the norm (2.4) succeeds by virtue of the well-known

embedding H1+ε(Ω) ⊂ Cb(Ω) for domains Ω ⊂ R2 from the following inequality:
for s ≥ 0

‖∂m
t J+(·, ·, ·;µ)‖L2(0,T ;Hs−3m(R2

+)) ≤ c(T, s)‖µ‖H(2s−1)/6,s−1/2(R2). (3.20)

It is suffice to prove (3.20) for m = 0. Let

µ0(t, y) ≡ F−1
t,y [χ(λ, η)µ̂(λ, η)] (t, y), µ1(t, y) ≡ µ(t, y)− µ0(t, y), (3.21)

where χ denotes the characteristic function of the unit circle {(λ, η) : λ2 + η2 < 1}.
Then it follows from the already established estimate (3.18) that for any s ≥ 0

‖J+(·, ·, ·;µ0)‖L2(0,T ;Hs(R2
+)) ≤ T 1/2 sup

t∈[0,T ]

‖J+(t, ·, ·;µ0)‖H[s]+1(R2
+)
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≤ c(T, s)‖µ‖H−1(R2).

Next,

‖∂l
x∂j

yJ+(·, ·, ·;µ1)‖L2(Rt×R2
+)

=
∥∥∥rl

0η
jµ̂1(λ, η)

(∫
R+

e−2p(λ,η)x dx
)1/2∥∥∥

L2(R2)

≤ c
∥∥(|λ|l/3 + |η|l)ηjp−1/2(λ, η)µ̂(λ, η)

(
1− χ(λ, η)

)∥∥
L2(R2)

≤ c1‖µ‖H(2(l+j)−1)/6,l+j−1/2(R2)

and using interpolation we complete the proof of (3.20). �

Remark 3.5. It follows from the proof of Lemma 3.4 that the estimates on J+ are
valid in norms of the (2.2), (2.3), (2.5) type, where the domain of the variable t is
the whole real axis.

The potential J+ possesses also certain additional properties.

Lemma 3.6. Let µ ∈ L2(R2) and µ(t, y) = 0 for t < 0. Then the function
J+(t, x, y;µ) is infinitely differentiable for x > 0, J+(t, x, y;µ) = 0 for t ≤ 0 and
for any T > 0, x0 > 0, β ≥ 0 and m, l, j

sup
t∈[0,T ],x≥x0

(1 + x)β‖∂m
t ∂l

xJ+(t, x, ·;µ)‖Hj(R) ≤ c(T, x0, β,m, l, j)‖µ‖L2(R2). (3.22)

Proof. These properties succeed from the following representation of the function
J+ for x > 0:

J+(t, x, y;µ) =
∫ t

−∞

∫
R
(3∂2

x + ∂2
y)G(t− τ, x, y − z)µ(τ, z) dzdτ, (3.23)

G(t, x, y) ≡ 1
t2/3

A
( x

t1/3
,

y

t1/3

)
, A(x, y) ≡ F−1

x,y

[
ei(ξ3+ξη2)

]
(x, y). (3.24)

This formula was proved in [11]. We reproduce here the scheme of the proof.
Changing variables ξ = κ(λ, η), where κ is the function from (3.10), we can write
an equality

G(t, x, y) = F−1
t,y

[
∂λκ(λ, η)eiκ(λ,η)x

]
(t, y).

So if we denote by J the right part of (3.23) then

Ft,y[J ](λ, η) = Ft,y

[
(3∂2

x + ∂2
y)G(t, x, y)ϑ(t)

]
(λ, η)µ̂(λ, η)

= − 1
4π2

(
eiκ(λ,η)x ∗

(
ϑ̂(λ)× δ(η)

))
µ̂(λ, η)

= −
(1

2
eiκ(λ,η)x +

i

2π
v.p.

∫
R

eiκ(ζ,η)x

ζ − λ
dζ

)
µ̂(λ, η),

where ϑ is the Heaviside function. The last integral can be easily calculated:

v.p.

∫
R

eiκ(ζ,η)x

ζ − λ
dζ = v.p.

∫
R

eizx(3z2 + η2)
z3 + zη2 − λ

dz = 2πier0(λ,η)x + πieiκ(λ,η)x

and, consequently, J = J+.
The function A was studied in [9] (in fact, more general one). In particular, it

was proved that A ∈ S(R2

+) – the space of restrictions on R2

+ of functions from
S(R2). This property applied to (3.23) provides the assertion of the lemma (see [9]
for more details). �
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Now we consider properties of the potential J−.

Lemma 3.7. Let µ ∈ H(k+1)/3,k+1(R2), ν ∈ Hk/3,k(R2) for some k ≥ 0, then for
any T > 0

‖J−(·, ·, ·;µ, ν)‖Xk(Π−
T ) ≤ c(T, k)

(
‖µ‖H(k+1)/3,k+1(R2) + ‖ν‖Hk/3,k(R2)

)
. (3.25)

Proof. First consider the part of J− containing the term er1x. Since the root r1

has the properties similar to r0, taking into account the inequality (3.13) one can
derive corresponding analogues of (3.18)–(3.20) for this part by the same methods
as for J+ (the analogues of (3.18), (3.19) are supplemented with ‖ν‖Hk/3,k(R2), of
(3.20) – with ‖ν‖H(2s−3)/6,s−3/2(R2)).

The estimate in the norm (2.3) is obvious just as for J+ except the case l = 0
because of the denominator near the point (0, 0) in the part containing ν̂, but
here one can use the partition of ν similar to (3.21) and for ν0 apply the already
established estimate in the (2.2) norm.

In order to evaluate the part of J− containing the term er2x consider an expres-
sion

I(t, x, y) ≡ F−1
t,y

[
er2(λ,η)xf(λ, η)

]
(t, y).

By virtue of (3.3), (3.10) and the change of variables λ = ξ3 + ξη2 it can be written
in a form

I = S
(
t, x, y;F−1

[
(3ξ2 + η2)f(ξ3 + ξη2, η)

])
.

It is easy to see that∥∥F−1
[
(3ξ2 + η2)f(ξ3 + ξη2, η)

]∥∥
Hk(R2)

≤ c‖(|λ|1/3 + |η|)f(λ, η)‖Hk/3,k(R2)

and so the desired estimates on the rest part of J− succeed from Lemma 3.1. �

4. Linear problems

Consider for the equation (3.1) initial-boundary value problems in the domains
Π+

T , Π−T , QT with the initial data (1.2) and the boundary data (1.3), (1.4) or (1.5)
respectively. First we establish one auxiliary lemma for the first two problems.
Note that solutions to these problems are unique in the spaces L2(Π+

T ) and L2(Π−T )
respectively because of the already proved solvability in smooth classes (see [21],
these problems are, in fact, adjoint to each other).

Lemma 4.1. Let u0 ≡ 0, f ≡ 0, u1, u2 ∈ H1/3,1(R2), u3 ∈ L2(R2) and u1(t, y) =
u2(t, y) = u3(t, y) = 0 for t < 0. Then J+(t, x, y;u1) and J−(t, x, y;u2, u3) are
respectively (unique) solutions to the problems (3.1), (1.2), (1.3) in Π+

T or (3.1),
(1.2), (1.4) in Π−T for any T > 0 in the classes X0(Π+

T ) or X0(Π−T ).

Proof. By virtue of Lemmas 3.4 and 3.7 without loss of generality one can assume
that uj ∈ C∞

0 (Rt
+ × Ry).

It is obvious that the functions J+ and J− satisfy the homogeneous equation (3.1)
if x ≥ 0 or x ≤ 0 respectively and satisfy the corresponding boundary conditions
(1.3) or (1.4). Lemma 3.6 provides also that the function J+ satisfies the zero initial
condition (1.2), so for the problem in Π+

T the proof is complete.
Since for the function J− we don’t have an equality of the (3.23) type, we choose

in this case an indirect way and prove that a solution to the problem in Π−T coincides
with J−. According to [21] (see also [9]) there exists a solution u(t, x, y) to the
problem (3.1), (1.2), (1.4) and ∂m

t u ∈ C([0, T ];H l(R2
−)) for any T > 0, m, l ≥ 0.
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Moreover, if u2(t, y) = u3(t, y) = 0 for t ≥ T0 > 0 then multiplying (3.1) by
2u(t, x, y) and integrating over R2

− one can easily derive that for t ≥ T0

d

dt
‖u(t, ·, ·)‖L2(R2

−) = 0. (4.1)

Obviously similar equality can be obtained for any derivative ∂m
t ∂j

yu. Derivatives
with respect to x can be expressed from the equation (3.1) itself (see for more details
[9] or the following arguments in the proof of Lemma 5.4). Finaly, we obtain that
∂m

t u ∈ Cb(R
t

+;H l(R2
−)) for any m, l ≥ 0.

Therefore for any p = ε + iλ, where ε > 0, and η ∈ R we can define the Laplace
transform with respect to t and the Fourier transform with respect to y:

ũ(p, x, η) ≡
∫∫

R2
+

e−pt−iηyu(t, x, y) dtdy.

The function ũ solves a problem

pũ(p, x, η) + ũxxx(p, x, η)− η2ũx(p, x, η) = 0, x ≤ 0, (4.2)

ũ(p, 0, η) = ũ2(p, η), ũx(p, 0, η) = ũ3(p, η),

where ũ2, ũ3 are the similar Laplace–Fourier transforms of u2, u3. The correspond-
ing characteristic equation for (4.2) r3 − η2r + iλ + ε = 0 has exactly two roots
r1(λ, η, ε) and r2(λ, η, ε) with the positive real parts (and one root with the negative
one), so since ũ(p, x, η) → 0 as x → −∞ it follows that

ũ(p, x, η) =
r1e

r2x − r2e
r1x

r1 − r2
ũ2(p, η) +

er1x − er2x

r1 − r2
ũ3(p, η).

Applying the formulae of invertion of the Laplace and the Fourier transforms and
passing to the limit as ε → +0 we derive that u ≡ J−. �

For the considered initial-boundary value problems for the equation (3.1) intro-
duce the notion of compatibility conditions of the order k similar to Definition 2.6,
where only Φm must be substituted by Φ̃m (see (3.4)).

Now we can establish the main lemma for the linear problems.

Lemma 4.2. Let n = 1, I = R+ for the problem in Π+
T ; n = 2, I = R− for the

problem in Π−T ; n = 3, I = (0, 1) for the problem in QT . Let u0 ∈ Hk(I × R),
Un ∈ Bk

n(T ), f ∈ Mk((0, T ) × I × R) for certain T > 0, k ≥ 0. Assume also that
the compatibility conditions of the order k are satisfied for each of the considered
problems. Then there exists a unique solution u(t, x, y) to each problem in the space
Xk((0, T )× I × R) and for any t0 ∈ (0, T ]

‖u‖Xk((0,t0)×I×R) ≤ c(T, k)
(
‖u0‖Hk(I×R) + ‖Un‖Bk

n(T ) + t
1/6
0 ‖f‖Mk((0,t0)×I×R)

+
m0−1∑
m=0

‖∂m
t f

∣∣
t=0

‖Hk−3(m+1)(I×R)

)
.

(4.3)

Proof. Consider first the problems in Π+
T and Π−T . Extend u0 and f to the whole

real axis with respect to x in the classes Hk(R2) and Mk(ΠT ) respectively and
consider a solution U(t, x, y) to the initial value problem (3.1), (1.2) in the class
Xk(ΠT ) given by Lemma 3.1. Note that by virtue of the compatibility conditions

u1 − U |x=0, u2 − U |x=0 ∈ H
(k+1)/3,k+1
0 (R2

+)
∣∣
BT

, u3 − Ux|x=0 ∈ H
k/3,k
0 (R2

+)
∣∣
BT

,
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so these functions can be extended by zero to the whole plane R2 in the same
classes. Then the desired result succeeds from Lemmas 4.1, 3.4 and 3.7.

Solutions to the last problem (similarly to the corresponding problem for KdV
in [12]) are constructed with the help of solutions to the first two in the form

u(t, x, y) = w(t, x, y) + v(t, x, y), (4.4)

where w(t, x, y) is a solution to an initial-boundary value problem in Π−T,1 = (0, T )×
(−∞, 1) for the equation (3.1) with the initial and boundary conditions (1.2) and
(1.4) (for x = 1) in the class Xk(Π−T,1). Then

‖w‖Xk(Π−
T,1)

≤ c(T, k)
(
‖u0‖Hk(Σ) + ‖U2‖Bk

2 (T )

+ t
1/6
0 ‖f‖Mk(Qt0 ) +

m0−1∑
m=0

‖∂m
t f

∣∣
t=0

‖Hk−3(m+1)(Σ)

)
.

(4.5)

Moreover, by virtue of the compatibility conditions on the line (0, 0, y)

v1(t, y) ≡ u1(t, y)− w(t, 0, y) ∈ H
(k+1)/3,k+1
0 (R2

+)
∣∣
BT

and
‖v1‖H(k+1)/3,k+1(BT ) ≤ c(T, k)

(
‖u0‖Hk(Σ) + ‖U3‖Bk

3 (T )

+ t
1/6
0 ‖f‖Mk(Qt0 ) +

m0−1∑
m=0

‖∂m
t f

∣∣
t=0

‖Hk−3(m+1)(Σ)

)
.

(4.6)

Consider in QT a problem for the function v:

vt + vxxx + vxyy = 0, (4.7)

v
∣∣
t=0

= 0, v
∣∣
x=0

= v1, v
∣∣
x=1

= vx

∣∣
x=1

= 0. (4.8)

In order to construct a solution to this problem we consider the boundary potential
J+(t, x, y;µ) for an arbitrary function µ ∈ H

(k+1)/3,k+1
0 (R2

+)
∣∣
BT

. According to
Lemma 3.6 for any δ ∈ (0, T ]

‖J+(·, 1, ·;µ)‖H(k+1)/3,k+1(Bδ) + ‖∂xJ+(·, 1, ·;µ)‖Hk/3,k(Bδ) ≤ c(T, k)δ1/2‖µ‖L2(Bδ).

(4.9)
Moreover, J+(·, 1, ·;µ) ∈ H

(k+1)/3,k+1
0 (R2

+)|BT
, ∂xJ+(·, 1, ·;µ) ∈ H

k/3,k
0 (R2

+)|BT
.

Consider in the domain Π−δ,1 the problem of the (3.1), (1.2), (1.4) (for x = 1)
type, where u0 ≡ 0, f ≡ 0, u2 ≡ −J+(·, 1, ·;µ), u3 ≡ −∂xJ+(·, 1, ·;µ). A solution
to this problem V ∈ Xk(Π−δ,1) exists and, in particular,

‖V (·, 0, ·)‖H(k+1)/3,k+1(Bδ)

≤ c(T, k)
(
‖J+(·, 1, ·;µ)‖H(k+1)/3,k+1(Bδ) + ‖∂xJ+(·, 1, ·;µ)‖Hk/3,k(Bδ)

)
.

(4.10)

Moreover, it is obvious that V (·, 0, ·) ∈ H
(k+1)/3,k+1
0 (R2

+)|Bδ
.

Consider a linear operator Γ : µ 7→ V (·, 0, ·) in the space H
(k+1)/3,k+1
0 (R2

+)|Bδ
.

For small δ = δ(T, k) the estimates (4.9) and (4.10) provide that the operator
(E + Γ) is invertible (E is the identity operator) and setting µ ≡ (E + Γ)−1v1 we
obtain the desired solution to the problem (4.7), (4.8)

v(t, x, y) ≡ J+(t, x, y;µ) + V (t, x, y),

where
‖v‖Xk(Qδ) ≤ c(T, k)‖v1‖H(k+1)/3,k+1(BT ). (4.11)
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Thus the solution u(t, x, y) to the problem (3.1), (1.2), (1.5) in the domain Qδ

is constructed and according to (4.4)–(4.6) and (4.11) is evaluated in the space
Xk(Qδ) by the right part of (4.3). Moving step by step (δ is constant) we obtain
the desired solution in the whole domain QT .

Uniqueness of weak solutions to the problem (3.1), (1.2), (1.5) in L2(QT ) suc-
ceeds from existence of smooth solutions to the adjoint problem

φt + φxxx + φxyy = f ∈ C∞
0 (QT ),

φ
∣∣
t=T

= 0, φ
∣∣
x=0

= φx

∣∣
x=0

= φ
∣∣
x=1

= 0,

which after simple change of variables transforms to the original one. �

For global a priori estimates for solutions to nonlinear problems we also need
certain integral inequalities.

Lemma 4.3. Let the hypothesis of Lemma 4.2 be satisfied for n = 1, I = R+,
k = 0 and, in addition, u1 ≡ 0. Consider a solution to the problem (3.1), (1.2),
(1.3) in the class X0(Π+

T ). Then for any t ∈ (0, T ]∫∫
R2

+

u2(t, x, y) dxdy +
∫∫

Bt

u2
x(τ, 0, y) dydτ

=
∫∫

R2
+

u2
0 dxdy + 2

∫∫∫
Π+

t

fu dxdy dτ.

(4.12)

Proof. For smooth solutions (4.12) is obtained obviously by multiplication of the
equation (3.1) by 2u(t, x, y) and consequent integration (compare with (4.1)) and
then for weak ones via closure. �

Lemma 4.4. Let the hypothesis of Lemma 4.2 be satisfied for n = 1, I = R+,
k = 1 and, in addition, u1 ≡ 0. Consider a solution to the problem (3.1), (1.2),
(1.3) in the class X1(Π+

T ). Then for any t ∈ (0, T ]∫∫
R2

+

(
u2

x + u2
y −

1
3
u3

)
ρ(x) dxdy +

1
2

∫∫∫
Π+

t

(u2
xx + u2

xy + u2
yy)ρ′(x) dx dy dτ

+ 2
∫∫∫

Π+
t

uux(uxx + uyy)ρ dx dy dτ

≤
∫∫

R2
+

(
u2

0x + u2
0y −

1
3
u3

0

)
ρ dx dy + 2

∫∫∫
Π+

t

(fxux + fyuy)ρ dx dy dτ

−
∫∫∫

Π+
t

fu2ρ dx dy dτ + c

∫∫
Bt

(f2 + u2
x)

∣∣∣
x=0

dydτ

+ c
(
1 + ‖u‖2C([0,t];L2(R2

+))

) ∫∫∫
Π+

t

(u2
x + u2

y + u2)ρ dx dy dτ,

(4.13)
where ρ(x) ≡ 2− (1 + x)−1/2.

Proof. This lemma was proved in [11]. We represent here the slightly modified
version of the proof.
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As in the previous lemma it it sufficient to consider smooth solutions. Multiply-
ing (3.1) by −

(
2(ux(t, x, y)ρ(x))x +2uyy(t, x, y)ρ(x)+u2(t, x, y)ρ(x)

)
and integrat-

ing over R2
+ we derive an equality

d

dt

∫∫
R2

+

(u2
x + u2

y −
1
3
u3)ρ dxdy +

∫∫
R2

+

(3u2
xx + 4u2

xy + u2
yy)ρ′ dxdy

+
∫

R

(
u2

xxρ + 2uxxuxρ′ − u2
xρ′′

)∣∣
x=0

dy −
∫∫

R2
+

(u2
x + u2

y)ρ′′′ dxdy

+ 2
∫∫

R2
+

uux(uxx + uyy)ρ dxdy +
∫∫

R2
+

u2(uxx + uyy)ρ′ dxdy

= 2
∫∫

R2
+

(fxux + fyuy)ρ dxdy + 2
∫

R
(fuxρ)

∣∣
x=0

dy −
∫∫

R2
+

fu2ρ dxdy.

(4.14)

Applying the interpolational inequality (2.1) in the case p = 4 we find that∣∣∣∫∫
R2

+

u2(uxx + uyy)ρ′ dxdy
∣∣∣

≤ 1
2

∫∫
R2

+

(u2
xx + u2

yy)ρ′ dxdy + c

∫∫
R2

+

(u2
x + u2

y + u2)ρ dxdy

∫∫
R2

+

u2 dxdy

and derive (4.13) from (4.14). �

Lemma 4.5. Let the hypothesis of Lemma 4.2 be satisfied for n = 3, I = (0, 1),
k = 0 and, in addition, u1 = u2 ≡ 0. Consider a solution to the problem (3.1),
(1.2), (1.5) in the class X0(QT ). Then for any t ∈ (0, T ]∫∫

R2
+

u2(t, x, y)ρ(x) dxdy +
∫∫∫

Qt

(3u2
x + u2

y)ρ′(x) dx dy dτ +
∫∫

Bt

u2
x

∣∣
x=0

dydτ

=
∫∫

R2
+

u2
0ρ dxdy + ρ(1)

∫∫
Bt

u2
3 dydτ + 2

∫∫∫
Qt

fuρ dxdy dτ,

(4.15)
where either ρ ≡ 1 or ρ ≡ 1 + x.

Proof. Similarly to Lemma 4.3 for smooth solutions (4.15) is obtained via multi-
plication of (3.1) by 2u(t, x, y)ρ(x) and consequent integration and then for weak
ones via closure. �

5. Proof of the main result

This section contains the proof of Theorem 2.7 consisting of several lemmas. The
first one is devoted to local well-posedness.

Lemma 5.1. Let the hypothesis of Theorem 2.7 be satisfied. Then there exists
t0 ∈ (0, T ] such that any of the considered initial-boundary value problems for the
equation (1.1) is well posed in Xk((0, t0)× I × R).

Proof. For t0 ∈ (0, T ] introduce a set of functions

Yk((0, t0)× I × R) =
{
v ∈ Xk((0, t0)× I × R) : ∂m

t v
∣∣
t=0

= Φm for m ≤ m0 − 1
}

and define on this set a map Λ in such a way: u = Λv is a solution in Yk((0, t0)×
I × R) to a corresponding initial-boundary value linear problem for an equation

ut + uxxx + uxyy = f − vvx (5.1)
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with the initial profile (1.2) and one of the three boundary conditions (1.3), (1.4)
or (1.5). Note that the functions Φ̃m, written for these problems, coincide for
m < k/3 with the functions Φm written for the original problems. Therefore
the compatibility conditions of the order k are satisfied. Moreover, by virtue of
Lemma 2.4 vvx ∈ Mk((0, t0)× I ×R), so Lemma 4.2 provides existence of the map
Λ and according to (4.3) and (2.7)

‖u‖Xk((0,t0)×I×R) ≤ c(T, k)
(
c̃ + t

1/6
0 ‖v‖2Xk((0,t0)×I×R)

)
, (5.2)

where the constant c̃ depends on the norms of u0, Un and f in the corresponding
spaces. It follows from (5.2) that for considerably large R > 0 and considerably
small t∗0 ∈ (0, T ] the map Λ transforms for any t0 ∈ (0, t∗0] a ball Yk,R((0, t0)× I ×
R) = {v ∈ Yk((0, t0)× I × R) : ‖v‖Xk((0,t0)×I×R) ≤ R} into itself.

Next, consider two functions v and ṽ from the set Yk,R((0, t0)×I×R). Similarly
to (5.2)

‖Λv − Λṽ‖Xk((0,t0)×I×R) ≤ c(T, k)t1/6
0 R‖v − ṽ‖Xk((0,t0)×I×R)

and therefore Λ is a contraction in Yk,R((0, t0)× I × R) for considerably small t0.
Continuous dependence is established in a similar way. �

The next lemma is devoted to one global conditional a priori estimate valid for
all three considered problems.

Lemma 5.2. Let the hypothesis of Theorem 2.7 be satisfied for k ≥ 2. Let u(t, x, y)
be a solution to any of the three initial-boundary value problems for the equation
(1.1) in the class Xk((0, T ′) × I × R) for some T ′ ∈ (0, T ]. Then uniformly with
respect to T ′,
‖u‖Xk((0,T ′)×I×R)

≤ c
(
T, k, ‖u0‖Hk(I×R), ‖Un‖Bk

n(T ), ‖f‖Mk((0,T )×I×R), ‖u‖Xk−1((0,T ′)×I×R)

)
.

(5.3)

Proof. Consider u as a solution to the corresponding problem for the equation (5.1),
where v ≡ u. Then the inequalities (2.8) and (4.3) yield that similarly to (5.2)

‖u‖Xk((0,t0)×I×R) ≤ c(T, k)
(
c̃ + t

1/6
0 ‖u‖Xk−1((0,T ′)×I×R)‖u‖Xk((0,t0)×I×R)

)
,

whence (5.3) follows by the standard argument. �

The next lemma provides a global a priori estimate for the problem in Π+
T in the

class X1(Π+
T ) and thus completes the proof of Theorem 2.7 in this case.

Lemma 5.3. Let the hypothesis of Theorem 2.7 be satisfied for n = 1, I = R+,
k = 1. Let u(t, x, y) be a solution to the problem (1.1)–(1.3) in the class X1(Π+

T ′)
for some T ′ ∈ (0, T ]. Then uniformly with respect to T ′

‖u‖C([0,T ′];H1(R2
+)) ≤ c(T, ‖u0‖H1(R2

+), ‖u1‖H2/3,2(BT ), ‖f‖L2(0,T ;H1(R2
+))). (5.4)

Proof. We reproduce here in brief the proof from [11]. Extend the function u1 in
the class H2/3,2 to the whole plane R2 such that u1(t, y) = 0 for t ≤ −1. Let

U(t, x, y) ≡ u(t, x, y)− J+(t, x, y;u1). (5.5)

Write down for the function U the equality (4.12), then for t ∈ [0, T ′]∫∫
R2

+

U2(t, x, y) dx dy+
∫∫

Bt

U2
x

∣∣∣
x=0

dy dτ ≤ c+2
∫∫∫

Π+
t

(f−uux)U dxdy dτ. (5.6)
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Since

uuxU =
(U3

3
+ J+

U2

2

)
x

+ ∂xJ+

(U2

2
+ J+U

)
(5.7)

and U
∣∣
x=0

= 0, it follows from (5.6) and (3.16) that

‖u‖C([0,T ′];L2(R2
+)) + ‖ux

∣∣
x=0

‖L2(BT ′ )
≤ c. (5.8)

Next, write down for the function U the inequality (4.13), then by virtue of the
already established estimate (5.8) for any t ∈ [0, T ′]∫∫

R2
+

(U2
x + U2

y −
1
3
U3)ρ dx dy +

1
2

∫∫∫
Π+

t

(U2
xx + U2

xy + U2
yy)ρ′ dx dy dτ

≤ c + c

∫∫∫
Π+

t

(U2
x + U2

y )ρ dx dy dτ +
∫∫∫

Π+
t

uuxU2ρ dx dy dτ

+ c

∫∫
Bt

u2
1u

2
x

∣∣
x=0

dy dτ + 2
∫∫∫

Π+
t

uuxUxρ′ dx dy dτ

+ 2
∫∫∫

Π+
t

(J+Ux + u∂xJ+)(Uxx + Uyy)ρ dx dy dτ.

(5.9)

The inequality (2.1) and the estimates (3.16), (5.8) yield that∫∫∫
Π+

t

uuxU2ρ dx dy dτ =
∫∫∫

Π+
t

(
∂xJ+uU2ρ− 1

3
(J+ρ)xU3 − 1

4
U4ρ′

)
dx dy dτ

≤ c

∫∫∫
Π+

t

(U2
x + U2

y )ρ dx dy dτ + c,

2
∫∫∫

Π+
t

uuxUxρ′ dx dy dτ

= −
∫∫

Bt

u2
1(Uxρ′)

∣∣
x=0

dy dτ −
∫∫∫

Π+
t

u2(Uxxρ′ + Uxρ′′) dx dy dτ

≤ 1
6

∫∫∫
Π+

t

U2
xxρ′ dx dy dτ + c

∫∫∫
Π+

t

(U2
x + U2

y )ρ dx dy dτ + c,

∫∫
Bt

u2
1u

2
x

∣∣
x=0

dy dτ ≤ ε

∫∫∫
Π+

t

U2
xxρ′ dx dy dτ

+ c(ε)
∫ t

0

(
1 + sup

y∈R
u4

1

) ∫∫
R2

+

U2
xρ dx dy dτ + c,

where ‖u1‖L4(0,T ;Cb(R)) ≤ c‖u1‖H2/3,2(R2) (see, e.g. [1]) and ε > 0 can be chosen
arbitrarily small. In the above arguments we also use the obvious interpolational
inequality

|ϕ(0)| ≤ c
(∫

R+

(ϕ′)2ρ′ dx
)1/4(∫

R+

ϕ2ρ dx
)1/4

+ c
(∫

R+

ϕ2ρ dx
)1/2

. (5.10)

Finally,

2
∫∫∫

Π+
t

(J+Ux + u∂xJ+)(Uxx + Uyy)ρ dx dy dτ

≤ 1
6

∫∫∫
Π+

t

(U2
xx + U2

yy)ρ′ dx dy dτ
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+ c

∫ t

0

sup
(x,y)∈R2

+

[(
(∂xJ+)2 + J2

+

)ρ2

ρ′

] ∫∫
R2

+

(U2
xρ + u2) dx dy dτ

≤ 1
6

∫∫∫
Π+

t

(U2
xx + U2

yy)ρ′ dx dy dτ +
∫ t

0

γ(τ)
∫∫

R2
+

U2
xρ dx dy dτ + c,

where ‖γ‖L1(0,T ) ≤ c since ρ2(ρ′)−1 ≤ c(1+x)3/2 and we can apply the inequalities
(3.16) and (3.22). Therefore the inequality (5.9) provides (5.4). �

The last lemma establishes a global a priori estimate for the problem in QT in
the class X3(QT ) and thus completes the proof of Theorem 2.7.

Lemma 5.4. Let the hypothesis of Theorem 2.7 be satisfied for n = 3, I = (0, 1),
k = 3. Let u(t, x, y) be a solution to the problem (1.1), (1.2), (1.5) in the class
X3(QT ′) for some T ′ ∈ (0, T ]. Then uniformly with respect to T ′

‖u‖C([0,T ′];H3(Σ)) ≤ c
(
T, ‖u0‖H3(Σ), ‖U3‖B3

3(T ), ‖f‖M3(QT )

)
. (5.11)

Proof. Let v(t, x, y) ∈ X3(QT ) be a solution to the linear problem (3.1), (1.2), (1.5).
Let

U(t, x, y) ≡ u(t, x, y)− v(t, x, y), (5.12)

then the function U ∈ X3(QT ′) is a solution to a problem

Ut + Uxxx + Uxyy = −uux,

U
∣∣
t=0

= 0, U
∣∣
x=0

= U
∣∣
x=1

= Ux

∣∣
x=1

= 0.

First write down the equality (4.15) for the function U in the case ρ ≡ 1. Then
using the equality (5.7), where J+ is substituted by v, similarly to (5.8) we derive
an estimate

‖u‖C([0,T ′];L2(Σ)) + ‖ux

∣∣
x=0

‖L2(BT ′ )
≤ c. (5.13)

Next, again use the equality (4.15) for the function U but now in the case ρ ≡ 1+x.
Then by virtue of the already proved estimate (5.13)∫∫∫

QT ′

(U2
x + U2

y ) dx dydt ≤ c− 2
∫∫∫

QT ′

uuxUρdx dydt. (5.14)

Again applying the corresponding analogue of (5.7) we find that

2
∫∫

Σ

uuxUρdx dy =
∫∫

Σ

(
−2

3
U3 + (vxρ− v)U2 + 2vvxUρ

)
dx dy

and by virtue of the interpolation inequality (2.1) derive from (5.14) an estimate

‖u‖L2(0,T ′;H1(Σ)) ≤ c. (5.15)

Next, by induction with respect to j we prove that for j ≤ 3

‖∂j
yu‖C([0,T ′];L2(Σ)) + ‖∂j

yu‖L2(0,T ′;H1(Σ)) + ‖∂j
yux

∣∣
x=0

‖L2(BT ′ )
≤ c. (5.16)
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For j = 0 this estimate coincides with (5.13), (5.15). For j ≥ 1 write down for the
function ∂j

yU the equality (4.15) in the case ρ ≡ 1 + x:∫∫
R2

+

(∂j
yU)2ρ dxdy +

∫∫∫
Qt

(
3(∂j

yUx)2 + (∂j+1
y U)2

)
dx dy dτ

+
∫∫

Bt

(∂j
yUx)2

∣∣
x=0

dydτ

= −2
∫∫∫

Qt

∂j
y(uux)∂j

yUρdx dy dτ.

(5.17)

Here∣∣∣2 ∫∫∫
Qt

(u∂j
yUx + ux∂j

yU)∂j
yUρdx dy dτ

∣∣∣
=

∣∣∣∫∫∫
Qt

(uxρ− u)(∂j
yU)2 dx dy dτ

∣∣∣
≤ c

∫ t

0

(∫∫
Σ

(u2
x + u2) dx dy

)1/2(∫∫
Σ

(∂j
yU)4 dx dy

)1/2

dτ

≤ ε

∫∫∫
Qt

(
(∂j

yUx)2 + (∂j+1
y U)2

)
dx dy dτ + c(ε)

∫ t

0

γ(τ)
∫∫

Σ

(∂j
yU)2 dx dy dτ,

(5.18)
where ‖γ‖L1(0,T ′) ≤ c and ε > 0 can be chosen arbitrarily small. All other terms
in the right part of (5.17) are also similarly estimated by the right part of (5.18)
(plus certain appropriate constant) and so (5.17) yields the estimate (5.16).

Now let v1(t, x, y) ∈ X0(QT ) be a solution to a problem

v1t + v1xxx + v1xyy = ft,

v1

∣∣
t=0

= Φ1, v1

∣∣
x=0

= u1t, v1

∣∣
x=1

= u2t, v1x

∣∣
x=1

= u3t.

Let
U1(t, x, y) ≡ ut(t, x, y)− v1(t, x, y),

then the function U1 ∈ X0(QT ′) is a solution to a problem

U1t + U1xxx + U1xyy = −(uux)t,

U1

∣∣
t=0

= 0, U1

∣∣
x=0

= U1

∣∣
x=1

= U1x

∣∣
x=1

= 0.

Writing down for the function U1 the equality (4.15) in the case ρ ≡ 1+x we obtain
the corresponding analogue of (5.17) and estimating nonlinear terms similarly to
(5.18) derive an estimate

‖ut‖C([0,T ′];L2(Σ)) + ‖ut‖L2(0,T ′;H1(Σ)) + ‖utx

∣∣
x=0

‖L2(BT ′ )
≤ c. (5.19)

Write down the equation (1.1) in a form

uxxx = f − uxyy − uux − ut. (5.20)

By virtue of (5.16) and (5.19) the right part of this equality can be represented
as a sum g0 + g1x, where gj ∈ C([0, T ′];L2(Σ)) with appropriate estimates on the
corresponding norms. Therefore it follows from (5.20) (together with (5.16) for
j = 2) that

‖u‖C([0,T ′];H2(Σ)) ≤ c. (5.21)
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Finally, we apply the inequality (see, e.g. [18])

‖g‖H2(Σ) ≤ c
(
‖∆g‖L2(Σ) + ‖g

∣∣
∂Σ
‖H3/2(R) + ‖g‖H1(Σ)

)
(5.22)

for the function g ≡ ux. It follows from (1.1) that

∆ux = f − uux − ut ∈ C([0, T ′];L2(Σ)).

Moreover, by virtue of (5.16), (5.19) and embedding H2(Σ) ⊂ H3/2(∂Σ) (see [18])

‖ux

∣∣
x=0

‖C([0,T ′];H3/2(R))

≤ ‖u0x

∣∣
x=0

‖H3/2(R) + 2‖utx

∣∣
x=0

‖1/2
L2(BT ′ )

‖ux

∣∣
x=0

‖1/2
L2(0,T ′;H3(R)) ≤ c,

‖ux

∣∣
x=1

‖C([0,T ′];H3/2(R)) = ‖u3‖C([0,T ′];H3/2(R))

≤ ‖u3(0, ·)‖H3/2(R) + c‖u3‖H1,3(BT ) ≤ c1.

Therefore, (5.22) together with (5.21) and (5.16) for j = 3 provide (5.11). �

6. Weak solutions

Solutions considered in Theorem 2.7 are at least in the space X1 because of the
use of the inequality (2.7), which is valid only if k ≥ 1. Of course, the contraction
principle is not the unique method to construct solutions. For example, they can be
obtained as limits of certain sequences of solutions to regularized problems, if appro-
priate uniform estimates on these regularized solutions are established (uniqueness
in this situation requires its own special approaches). In order to describe classes of
weak solutions, which are obtained on this way, we need some additional notation.

By Cw(I;B), where B is a certain Banach space, we denote a space of weakly
continuous mappings from I to B. Note that Cw(I;B) ⊂ L∞(I;B) for bounded
intervals I (see, e.g. [14]) and this space becomes the Banach space supplied with
a norm

‖f‖Cw(I;B) = sup
t∈I

‖f(t)‖B.

By analogy with (1.16) let

λ+(u;T ) = sup
m≥0

∫ T

0

∫ m+1

m

∫
R
(u2

x + u2
y) dy dx dt.

Theorem 6.1. Let (1 + x)βu0 ∈ L2(R2
+) for certain β ≥ 0, u1 ∈ Hs/3,s(BT ) for

certain s > 3/2 and T > 0, (1 + x)βf ∈ L1(0, T ;L2(R2
+)). Then there exists a

solution u(t, x, y) to the problem (1.1)–(1.3) such that

(1 + x)βu ∈ Cw([0, T ];L2(R2
+)), λ+(u;T ) < ∞.

If, in addition, β > 0 then

(1 + x)β−1/2u ∈ L2(0, T ;H1(R2
+)).

The problem (1.1)–(1.3) is well-posed in this class if β ≥ 1.

Proof. This result was established in the paper [9] under other (more complicated)
hypothesis on the boundary data u1. This hypothesis in [9] ensured that the bound-
ary potential J+(t, x, y;u1), which was constructed in the form (3.23), possessed the
following properties:

J+ ∈ C([0, T ];L2(R2
+)) ∩ L2(0, T ;H1(R2

+)), ‖∂x,yJ+(t, ·, ·;u1)‖Cb(R
2
+)
∈ L1(0, T ),

(6.1)
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which were crucial for global a priori estimates in the space C([0, T ];L2(R2
+)) (see

(5.8)) and on the value λ+(u, T ). But these properties are also provided by the
inequalities (3.18) and (3.20) under the hypothesis of the present theorem. �

Theorem 6.2. Let u0 ∈ L2(Σ), u1, u2 ∈ Hs/3,s(BT ) for certain s > 3/2 and
T > 0, u3 ∈ L2(BT ), f ∈ L1(0, T ;L2(Σ)). Then the problem (1.1), (1.2), (1.5) is
well-posed in a class Cw([0, T ];L2(Σ)) ∩ L2(0, T ;H1(Σ)).

Proof. The main global a priori estimate in this class is obtained similarly to (5.13),
(5.15), where in the formula (5.12) the function v is taken in a form

v(t, x, y) ≡ J+(t, x, y;u1)σ(1− x) + J+(−t, 1− x, y; ũ2)σ(x), (6.2)

where ũ2(t, y) ≡ u2(−t, y), u1 and u2 are extended in the class Hs/3,s to the whole
plane R2 such that u1(t, y) ≡ 0 for t ≤ −1, u2(t, y) ≡ 0 for t ≥ T + 1, and σ(x)
is a certain smooth ”cut-off” function, namely, σ(x) = 0 for x ≤ 1/4, σ(x) = 1
for x ≥ 3/4, σ′(x) > 0 for x ∈ (1/4, 3/4). Then the estimates (3.18), (3.20) and
(3.22) provide the required properties of the function v similar to (6.1), where R2

+

is substituted by Σ, and vx|x=1 is evaluated in L2(BT ) by virtue of the estimate on
∂xJ+ in Cb(R+;L2(BT )).

Uniqueness and continuous dependence are established on the base of the equality
(4.15) in the case ρ ≡ 1 + x similarly to Theorem 6.1 (here, of course, additional
decay of solutions at infinity is not required), where the boundary data are made
zero similarly to (5.12), (6.2). �

In the paper [13] existence of global solutions to the problem (1.1), (1.2), (1.4)
was established in a class of functions u ∈ Cw([0, T ];L2(R2

−)) such that

λ−(u;T ) = sup
m≥0

∫ T

0

∫ −m

−m−1

∫
R
(u2

x + u2
y) dy dx dt < ∞

under the hypothesis u0 ∈ L2(R2
−), u2 ∈ Hs/3,s(BT ) for certain s > 3/2, u3 ∈

L2(BT ), f ∈ L1(0, T ;L2(R2
−)).
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