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EXISTENCE OF ALMOST AUTOMORPHIC SOLUTIONS TO
SOME NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH INFINITE DELAY

TOKA DIAGANA

Abstract. In this paper we obtain the existence of almost automorphic so-

lutions for some neutral first-order functional differential equations with Sp-
almost automorphic coefficients.

1. Introduction

The impetus of this paper comes from two main sources. The first source is
a paper by N’Guérékata and Pankov [34], in which the concept of Stepanov-like
almost automorphy (or Sp-almost automorphy) was introduced. Such a notion was,
subsequently, utilized to study the existence of weak almost automorphic solutions
to some parabolic evolution equations. The second source is a paper by Diagana
and N’Guérékata [4] in which, the concept of Stepanov-like almost automorphy was
extensively utilized to obtain the existence and uniqueness of almost automorphic
solutions to the semilinear differential equations

u′(t) = Au(t) + F (t, u(t)), t ∈ R, (1.1)

where A : D(A) ⊂ X 7→ X is a densely defined closed linear operator on a Banach
space X, which also is the infinitesimal generator of an exponentially stable C0-
semigroup (T (t))t≥0 on X and F : R× X 7→ X is Sp-almost automorphic for p > 1
and jointly continuous.

In this paper we study more general differential equations than (1.1), that is, we
investigate the existence and uniqueness of an almost automorphic solution to the
neutral first-order functional differential equation

d

dt
[u(t) + f(t, ut)] = Au(t) + g(t, ut), ∀t ∈ R, (1.2)

where A : D(A) ⊂ X 7→ X is a densely defined closed linear operator for t ∈ R,
the history ut : (−∞, 0] 7→ X defined by ut(τ) = u(t+ τ) belongs to some abstract
phase space B, which is defined axiomatically, and the coefficients f, g are Sp-almost
automorphic for p > 1 and jointly continuous. It is worth mentioning that since
the space ASp(X) of Stepanov-like almost automorphic functions contains the space
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AA(X) of almost automoprhic functions, it turns out that the results of this paper
generalize in particular the existence results established in Diagana et al. [7].

As an application, our main result will be utilized to study the existence of almost
automorphic solutions to a slightly modified integrodifferential equation which was
considered in Diagana et al. [11] in the pseudo almost periodic case.

The existence of almost automorphic, almost periodic, asymptotically almost
periodic, and pseudo almost periodic solutions is certainly one of the most attractive
topics in qualitative theory of differential equations due to their significance and
various applications. The concept of almost automorphy, which is the central issue
in this paper was first introduced in the literature by Bochner in the earlier sixties
[1] and is a natural generalization of the notion of almost periodicity. Since then,
such a topic has generated several developments and extensions. For the most
recent developments, we refer the reader to the book by N’Guérékata [32].

Existence results related to almost periodic and asymptotically almost periodic
solutions to ordinary neutral differential equations and abstract partial neutral
differential equations have recently been established in [29, 38, 20], respectively.
To the best of our knowledge, there are few papers devoted to the existence of
almost automorphic solutions to functional-differential equations with delay in the
literature, among them are for instance [23, 12, 13, 7]. However, the existence
of almost automoprhic solutions to neutral functional differential equations of the
form (1.2) in the case when the forcing terms f, g are Sp-almost automorphic is
an untreated topic and constitutes the main motivation of the present paper. One
should point out that neutral differential equations arise in many areas of applied
mathematics. For this reason, those equations have been of a great interest for
several mathematicians during the past few decades. The literature relative to
ordinary neutral differential equations is quite extensive and so for more on this
topic and related issues we refer the reader to [16, 36, 37, 17, 18, 19] and the
references therein.

2. Preliminaries

In what follows we recall some definitions and notations needed in the sequel.
Most of these definitions and notations come from [7].

Let (Z, ‖ · ‖Z), (W, ‖ · ‖W) be Banach spaces. The notation L(Z,W) stands for
the Banach space of bounded linear operators from Z into W equipped with its
natural topology; in particular, this is simply denoted L(Z) when Z = W. The
spaces C(R,Z) and BC(R,Z) stand respectively for the collection of all continuous
functions from R into Z and the Banach space of all bounded continuous functions
from R into Z equipped with the sup norm defined by

‖f‖∞ := sup
t∈R

‖f(t)‖.

We have similar definitions as above for both C(R× Z,W) and BC(R× Z,W).
In this paper, (X, ‖ · ‖) stands for a Banach space and the linear operator A is

the infinitesimal generator of a C0-semigroup (T (s))s≥0, which is asymptotically
stable. Namely, there exist some constants M, δ > 0 such that

‖T (t)‖ ≤Me−δt

for every t ≥ 0.
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3. Sp-Almost Automorphy

Definition 3.1 (Bochner). A function f ∈ C(R,X) is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N, there exists a subsequence
(sn)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.

Remark 3.2. The function g in Definition 3.1 is measurable, but not necessarily
continuous. Moreover, if g is continuous, then f is uniformly continuous [33, The-
orem 2.6]. If the convergence above is uniform in t ∈ R, then f is almost periodic.
Denote by AA(X) the collection of all almost automorphic functions R → X. Note
that AA(X) equipped with the sup norm, ‖ · ‖∞, turns out to be a Banach space.
Among other things, almost automorphic functions satisfy the following properties.

Theorem 3.3 ([2], [30, Theorem 2.1.3]). If f, f1, f2 ∈ AA(X), then

(i) f1 + f2 ∈ AA(X),
(ii) λf ∈ AA(X) for any scalar λ,
(iii) fα ∈ AA(X) where fα : R → X is defined by fα(·) = f(·+ α),
(iv) the range Rf :=

{
f(t) : t ∈ R

}
is relatively compact in X, thus f is bounded

in norm,
(v) if fn → f uniformly on R where each fn ∈ AA(X), then f ∈ AA(X) too.
(vi) if g ∈ L1(R), then f ∗ g ∈ AA(R), where f ∗ g is the convolution of f with

g on R.

For more on almost automorphic functions and related issues we refer the reader
to the following books by N’Guérékata [30, 32].

We will denote by AAu(X) the closed subspace of all functions f ∈ AA(X) with
g ∈ C(R,X). Equivalently, f ∈ AAu(X) if and only if f is almost automorphic
and the convergence in Definition 3.1 are uniform on compact intervals, i.e. in
the Fréchet space C(R,X). Indeed, if f is almost automorphic, then, by Theorem
2.1.3(iv) [30], its range is relatively compact.

Obviously, the following inclusions hold:

AP (X) ⊂ AAu(X) ⊂ AA(X) ⊂ BC(X) ,

where AP (X) stands for the collection of all X-valued almost periodic functions.

Definition 3.4. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function
f : R 7→ X, is defined by

f b(t, s) := f(t+ s).

Remark 3.5. Note that a function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner trans-
form of a certain function f(t),

ϕ(t, s) = f b(t, s) ,

if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].
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Definition 3.6 ([35]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f b ∈ L∞

(
R, Lp(0, 1; X)

)
. This is a Banach space with the

norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

( ∫ t+1

t

‖f(τ)‖p dτ
)1/p

.

Definition 3.7 ([34]). The space ASp(X) of Stepanov-like almost automorphic
functions (or Sp-almost automorphic) consists of all f ∈ BSp(X) such that f b ∈
AA

(
Lp(0, 1; X)

)
.

In other words, a function f ∈ Lp
loc(R; X) is said to be Sp-almost automorphic if

its Bochner transform f b : R → Lp(0, 1; X) is almost automorphic in the sense that
for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and
a function g ∈ Lp

loc(R; X) such that[ ∫ t+1

t

‖f(sn + s)− g(s)‖pds
]1/p

→ 0,[ ∫ t+1

t

‖g(s− sn)− f(s)‖pds
]1/p

→ 0

as n→∞ pointwise on R.

Remark 3.8. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lq
loc(R; X) is Sq-almost

automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is
Sp-almost automorphic for any 1 ≤ p <∞.

It is also clear that f ∈ AAu(X) if and only if f b ∈ AA(L∞(0, 1; X)). Thus,
AAu(X) can be considered as AS∞(X).

Example 3.9 ([34]). Let x = (xn)n∈Z ∈ l∞(X) be an almost automorphic sequence
and let ε0 ∈ (0, 1

2 ). Let f(t) = xn if t ∈ (n − ε0, n + ε0) and f(t) = 0, otherwise.
Then f ∈ ASp(X) for p ≥ 1 but f 6∈ AA(X), as f is discontinuous.

Theorem 3.10 ([34]). The following statements are equivalent:
(i) f ∈ ASp(X);
(ii) f b ∈ AAu(Lp(0, 1; X));
(iii) for every sequence (s′n) of real numbers there exists a subsequence (sn) such

that
g(t) := lim

n→∞
f(t+ sn) (3.1)

exists in the space Lp
loc(R; X) and

f(t) = lim
n→∞

g(t− sn) (3.2)

in the sense of Lp
loc(R; X).

In view of the above, the following inclusions hold:

AP (X) ⊂ AAu(X) ⊂ AA(X) ⊂ ASp(X) ⊂ BSp(X).

Definition 3.11. A function F : R × X 7→ X, (t, u) 7→ F (t, u) with F (·, u) ∈
Lp

loc(R; X) for each u ∈ X, is said to be Sp-almost automorphic in t ∈ R uniformly
in u ∈ X if t 7→ F (t, u) is Sp-almost automorphic for each u ∈ X, that is, for
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every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and a
function G(·, u) ∈ Lp

loc(R; X) such that[ ∫ t+1

t

‖F (sn + s, u)−G(s, u)‖pds
]1/p

→ 0,[ ∫ t+1

t

‖G(s− sn, u)− F (s, u)‖pds
]1/p

→ 0

as n→∞ pointwise on R for each u ∈ X.

The collection of those Sp-almost automorphic functions F : R×X 7→ X will be
denoted by ASp(R× X,X).

The next composition theorem is a slight generalization of [4, Theorem 2.15].

Theorem 3.12. Let F : R × Z 7→ W be a Sp-almost automoprhic. Suppose that
there exists a continuous function LF : R 7→ (0,∞) satisfying LF := supt∈R LF (t) <
∞ and such that

‖F (t, u)− F (t, v)‖W ≤ LF (t) . ‖u− v‖Z (3.3)

for all t ∈ R, (u, v) ∈ Z× Z.
If ϕ ∈ ASp(Z), then Γ : R → W defined by Γ(·) := F (·, ϕ(·)) belongs to ASp(W).

4. The Phase Space B

In this work we will employ an axiomatic definition of the phase space B, which
is similar to the one utilized in [25]. More precisely, B is a vector space of func-
tions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B such that the next
assumptions hold.

(A) If u : (−∞, σ + a) 7→ X, a > 0, σ ∈ R, is continuous on [σ, σ + a) and
uσ ∈ B, then for every t ∈ [σ, σ + a) the following hold:
(i) ut is in B;
(ii) ‖u(t)‖ ≤ H‖ut‖B;
(iii) ‖ut‖B ≤ K(t− σ) sup{‖u(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖uσ‖B,
where H > 0 is a constant; K,M : [0,∞) 7→ [1,∞), K is continuous, M is
locally bounded and H,K,M are independent of u(·).

(A1) For the function u(·) appearing in (A), its corresponding history t→ ut is
continuous from [σ, σ + a) into B.

(B) The space B is complete.
(C2) If (vn)n∈N is a uniformly bounded sequence in C((−∞, 0],X) given by func-

tions with compact support and vn → ϕ in the compact-open topology, then
v ∈ B and ‖vn − v‖B → 0 as n→∞.

In what follows, we let B0 = {v ∈ B : v(0) = 0}.

Definition 4.1. Let S(t) : B → B be the C0-semigroup defined by S(t)v(θ) = v(0)
on [−t, 0] and S(t)v(θ) = v(t+θ) on (−∞,−t]. The phase space B is called a fading
memory if ‖S(t)v‖B → 0 as t → ∞ for every v ∈ B0. Now, B is called uniform
fading memory whenever ‖S(t)‖L(B0) → 0 as t→∞.

Remark 4.2. In this paper we suppose Q > 0 is such that ‖v‖B ≤ Q supθ≤0 ‖v(θ)‖
for each v ∈ B bounded continuous (see [25, Proposition 7.1.1]). Moreover, if B
is a fading memory, we assume that max{K(t),M(t)} ≤ Q′ for t ≥ 0, (see [25,
Proposition 7.1.5]).
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Remark 4.3. It is worth mentioning that in [25, p. 190] it is shown that the phase
B is a uniform fading memory space if and only if axiom (C2) holds, the function
K(·) is then bounded and limt→∞M(t) = 0.

Example 4.4 (The phase space Cr × Lp(ρ,X)). Let r ≥ 0, 1 ≤ p <∞ and let ρ :
(−∞,−r] 7→ R be a nonnegative measurable function which satisfies the conditions
[25, (g-5)-(g-6)]. Basically, this means that ρ is locally integrable and there exists a
nonnegative locally bounded function γ on (−∞, 0] such that ρ(ξ+θ) ≤ γ(ξ)ρ(θ) for
all ξ ≤ 0 with θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a subset whose Lebesgue
measure is zero. The space B = Cr × Lp(ρ,X) consists of all classes of functions
ϕ : (−∞, 0] 7→ X such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and
ρ‖ϕ‖p is Lebesgue integrable on (−∞,−r). The seminorm in Cr × Lp(ρ,X) is
defined as follows:

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
( ∫ −r

−∞
ρ(θ)‖ϕ(θ)‖pdθ

)1/p

.

The space B = Cr ×Lp(ρ,X) satisfies axioms (A), (A-1), and (B). Moreover, when
r = 0 and p = 2, one can then take H = 1, M(t) = γ(−t)1/2 and K(t) = 1 +( ∫ 0

−t
ρ(θ) dθ

)1/2 for t ≥ 0 (see [25, Theorem 1.3.8] for details).
It is worth mentioning that if the conditions [25, (g-5)-(g-7)] hold, then B is a

uniform fading memory.

5. Existence of Almost Auotomorphic Solutions

This section is devoted to the search of an almost automorphic solution to the
neutral functional differential equation (1.2).

Definition 5.1. A continuous function u : [σ, σ + a) → X for a > 0 is said to
be a mild solution to the neutral system (1.2) on [σ, σ + a) whenever the function
s→ AT (s)f(s, us) is integrable on [σ, t) for every σ < t < σ + a, and

u(t) = T (t− σ)(ϕ(0) + f(σ, ϕ))− f(t, ut)−
∫ t

σ

AT (t− s)f(s, us)ds

+
∫ t

σ

T (t− s)g(s, us)ds, t ∈ [σ, σ + a).

Let p > 1 and let q ≥ 1 such that 1/p+ 1/q = 1. Motivated by Definition 5.1, in
the sequel we introduce the technical tools needed for the proof of our main result.
From now on, we let (Y, ‖ · ‖Y) denote a Banach space continuously embedded into
X and require:

(H1) The function s→ AT (t− s) defined from (−∞, t) into L(Y,X) is strongly
measurable and there exist a non-increasing function H : [0,∞) → [0,∞)
and γ > 0 with s 7→ e−γsH(s) ∈ L1[0,∞) ∩ Lq[0,∞) such that

‖AT (s)‖L(Y,X) ≤ e−γsH(s), s > 0.

(H2) The functions f, g ∈ ASp(R × X,X) ∩ C(R × X,X), f is Y-valued, f :
R × X 7→ Y is continuous and there are a constant Lf ∈ (0, 1) and a
continuous function Lg : R → (0,∞) satisfying Lg := supt∈R Lg(t) < ∞
and such that

‖f(t, y1)− f(t, y2)‖Y ≤ Lf‖y1 − y2‖, t ∈ R, y1, y2 ∈ X,
‖g(t, y1)− g(t, y2)‖ ≤ Lg(t)‖y1 − y2‖, t ∈ R, y1, y2 ∈ X.
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Remark 5.2. Note that the assumption on f and (H1) are linked to the integra-
bility of the function s → AT (t − s)f(s, us) over [0, t). Observe for instance, that
except trivial cases, the operator function s → AT (s) is not integrable over [0, a].
If we assume that AT (·) ∈ L1([0, t]), then from the relation

T (t)x− x = A

∫ t

0

T (s)ds =
∫ t

0

AT (s)ds

it follows that the semigroup is uniformly continuous and as consequence that A is
a bounded linear operator on X, which is not interesting, especially for applications.
On the other hand, if we assume that (H1) is valid, then from the Bochner’s criterion
for integrable functions and the estimate

‖AT (t− s)f(s, us)‖ ≤ H(s)e−γ(t−s)‖f(s, us)‖Y,

it follows that the function s 7→ AT (t − s)f(s, us) is integrable over (−∞, t) for
each t > 0.

Lemma 5.3 ([7]). Let u ∈ AAu(X) ⊂ ASp(X). Then the function t → ut belongs
to AAu(B) ⊂ ASp(B).

Proof. For a given sequence (s′n)n∈N of real numbers, fix a subsequence (sn)n∈N of
(s′n)n∈N and a function v ∈ BC(R,X) such that u(s + sn) → v(s) uniformly on
compact subsets of R. Since B satisfies axiom C2, from [25, Proposition 7.1.1], we
infer that us+sn → vs in B for each s ∈ R. Let Ω ⊂ R be an arbitrary compact and
let L > 0 such that Ω ⊂ [−L,L]. For ε > 0, fix Nε,L ∈ N such that

‖u(s+ sn)− v(s)‖ ≤ ε, s ∈ [−L,L],

‖u−L+sn
− v−L‖ ≤ ε,

whenever n ≥ Nε,L.
In view of the above, for t ∈ Ω and n ≥ Nε,L we get

‖ut+sn
− vt‖B

≤M(L+ t)‖u−L+sn
− v−L‖B +K(L+ t) sup

θ∈[−L,L]

‖u(θ + sn)− v(θ)‖

≤ 2Q′ε,

where Q′ is the constant appearing in Remark 4.2.
In view of the above, ut+sn

converges to vt uniformly on Ω. Similarly, one can
prove that vt−sn

converges to ut uniformly on Ω. Thus, the function s 7→ us belongs
to AAc(B). �

Lemma 5.4. Under assumption (H1), define the function Φ, for u ∈ ASp(Y), by

Φ(t) :=
∫ t

−∞
AT (t− s)u(s)ds

for each t ∈ R and suppose

hγ,H
q :=

∞∑
n=1

[ ∫ n

n−1

e−qγrHq(r)dr
]1/q

<∞.

Then Φ ∈ AA(X).
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Remark 5.5. Note that there are several functions H for which the assumption
“hγ,H

q <∞” appearing in Lemma 5.4 is achieved. For instance when H0(s) = e−βs

for all β > 0, then hγ,H0
q <∞.

Proof of Lemma 5.4. Define for all n = 1, 2, . . . , the sequence of integral operators

Φn(t) :=
∫ n

n−1

AT (s)u(t− s)ds

for each t ∈ R. Now letting r = t− s, it follows that

Φn(t) =
∫ t−n+1

t−n

AT (t− r)u(r)dr for all t ∈ R.

From the Bochner’s criterion on integrable functions and the estimate

‖AT (t− r)u(r)‖ ≤ ‖AT (t− r)‖L(Y,X)‖u(r)‖Y

≤ e−γ(t−r)H(t− r)‖u(r)‖Y
(5.1)

it follows that the function s 7→ AT (t − r)u(r) is integrable over (−∞, t) for each
t ∈ R, by assumption (H1).

Using the Hölder’s inequality, it follows that

‖Φn(t)‖ ≤
∫ t−n+1

t−n

e−γ(t−r)H(t− r)‖u(r)‖Ydr

≤
( ∫ t−n+1

t−n

e−qγ(t−r)Hq(t− r)dr
)1/q( ∫ t−n+1

t−n

‖u(r)‖p
Ydr

)1/p

≤
( ∫ t−n+1

t−n

e−qγ(t−r)Hq(t− r)dr
)1/p

‖u‖Sp

=
( ∫ n

n−1

e−qγsHq(s)ds
)1/q

‖u‖Sp .

Using the assumption hγ,H
q < ∞, we then deduce from the well-known Weirstrass

theorem that the series
∑∞

n=1 Φn(t) is uniformly convergent on R. Furthermore,

Φ(t) =
∞∑

n=1

Φn(t),

Φ ∈ C(R,Y), and

‖Φ(t)‖ ≤
∞∑

n=1

‖Φn(t)‖ ≤ hγ,H
q ‖u‖Sp for each t ∈ R.

The next step consists of showing that Φn ∈ AA(X). Indeed, let (sm)m∈N be a
sequence of real numbers. Since u ∈ ASp(Y), there exists a subsequence (smk

)k∈N
of (sm)m∈N and a function v ∈ ASp(Y) such that[ ∫ t+1

t

‖u(smk
+ σ)− v(σ)‖p

Ydσ
]1/p

→ 0 as k →∞.

Define

Ψn(t) =
∫ n

n−1

AT (ξ)v(t− ξ)dξ.
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Then using the Hölder’s inequality we get

‖Φn(t+ smk
)−Ψn(t)‖ =

∥∥∫ n

n−1

AT (ξ)[u(t+ smk
− ξ)− v(t− ξ)]dξ

∥∥
≤

∫ n

n−1

e−γξH(ξ)‖u(t+ smk
− ξ)− v(t− ξ)‖Ydξ

≤ gγ,H
q

[ ∫ n

n−1

‖u(t+ smk
− ξ)− v(t− ξ)‖p

Ydξ
]1/p

where gγ,H
q = supn

[ ∫ n

n−1
e−qγsHq(s)ds

]1/q
<∞, as hγ,H

q <∞. Obviously,

‖Φn(t+ smk
)−Ψn(t)‖ → 0 as k →∞.

Similarly, we can prove that

‖Ψn(t+ smk
)− Φn(t)‖ → 0 as k →∞.

Therefore each Φn ∈ AA(X) for each n and hence their uniform limit Φ ∈ AA(X),
by using [30, Theorem 2.1.10]. �

Lemma 5.6. If u ∈ ASp(X) and if Ξ is the function defined by

Ξ(t) :=
∫ t

−∞
T (t− s)u(s)ds

for each t ∈ R, then Ξ ∈ AA(X).

Proof. Define the sequence of operators

Ξn(t) =
∫ n

n−1

T (s)u(t− s)ds for each t ∈ R.

Letting r = t− s one obtains

Ξn(t) =
∫ t−n+1

t−n

T (t− r)u(r)dr for each t ∈ R.

From the asymptotic stability of T (t), it follows that the function s 7→ T (t−r)u(r) is
integrable over (−∞, t) for each t ∈ R. Furthermore, using the Hölder’s inequality,
it follows that

‖Ξn(t)‖ ≤M

∫ t−n+1

t−n

e−δ(t−r)‖u(r)‖dr

≤M
( ∫ t−n+1

t−n

e−qδ(t−r)dr
)1/q( ∫ t−n+1

t−n

‖u(r)‖pdr
)1/p

≤
( ∫ n

n−1

e−qδsds
)1/q

‖u‖Sp

≤
(
e−δn M q

√
1 + eqδ

qδ

)
‖u‖Sp .

Now since M q

√
1+eqδ

qδ

∑∞
n=1 e

−δn < ∞, we deduce from the well-known Weirstrass

theorem that the series
∑∞

n=1 Ξn(t) is uniformly convergent on R. Furthermore,

Ξ(t) =
∞∑

n=1

Ξn(t),
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Ξ ∈ C(R,Y), and

‖Ξ(t)‖ ≤
∞∑

n=1

‖Ξn(t)‖ ≤ kδ,M
q ‖u‖Sp ,

where kδ,M
q > 0 is a constant, which depends on the parameters q, δ, and M only.

The next step consists of showing that Ξn ∈ AA(X). Indeed, let (sm)m∈N be a
sequence of real numbers. Since u ∈ ASp(X), there exists a subsequence (smk

)k∈N
of (sm)m∈N and a function v ∈ ASp(X) such that[ ∫ t+1

t

‖u(smk
+ σ)− v(σ)‖pdσ

]1/p

→ 0 as k →∞.

Define

Ωn(t) =
∫ n

n−1

T (ξ)v(t− ξ)dξ.

Then using the Hölder’s inequality we get

‖Ξn(t+ smk
)− Ωn(t)‖ = ‖

∫ n

n−1

T (ξ)[u(t+ smk
− ξ)− v(t− ξ)]dξ‖

≤M

∫ n

n−1

e−δξ‖u(t+ smk
− ξ)− v(t− ξ)‖dξ

≤ mγ,M
q

[ ∫ n

n−1

‖u(t+ smk
− ξ)− v(t− ξ)‖pdξ

]1/p

where mδ,M
q = M q

√
1+eqδ

qδ . Obviously,

‖Ξn(t+ smk
)− Ωn(t)‖ → 0 as k →∞.

Similarly, we can prove that

‖Ωn(t+ smk
)− Ξn(t)‖ → 0 as k →∞.

Therefore, each Ξn ∈ AA(X) for each n and hence their uniform limit Ξ(t) ∈ AA(X),
by using [30, Theorem 2.1.10]. �

Definition 5.7. A function u ∈ AA(X) is a mild solution to the neutral system
(1.2) provided that the function s→ AT (t− s)f(s, us) is integrable on (−∞, t) for
each t ∈ R and

u(t) = −f(t, ut)−
∫ t

−∞
AT (t− s)f(s, us)ds+

∫ t

−∞
T (t− s)g(s, us)ds,

for each t ∈ R.

Theorem 5.8. Under previous assumptions and if (H1)–(H2) hold, then there exist
a unique almost automorphic solution to (1.2) whenever

C =
(
Lf + Lf sup

t∈R

∫ t

−∞
e−γ(t−s)H(t− s)ds+M sup

t∈R

∫ t

−∞
e−δ(t−s)Lg(s)ds

)
Q < 1,

where Q is the constant appearing in Remark 4.2.

Proof. In ASp(X), define the operator Γ : ASp(X) → C(R,X) by setting

Γu(t) := −f(t, ut)−
∫ t

−∞
AT (t− s)f(s, us)ds+

∫ t

−∞
T (t− s)g(s, us)ds,

for each t ∈ R.
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From previous assumptions one can easily see that Γu is well-defined and con-
tinuous. Moreover, from Lemmas 5.3, 5.4, and 5.6 we infer that Γ maps ASp(X)
into AA(X). In particular, Γ maps AA(X) ⊂ ASp(X) into AA(X). Next, we prove
that Γ is a strict contraction on AA(X). Indeed, if Q is the constant appearing in
Remark 4.2, for u, v ∈ AA(X), we get

‖Γu(t)− Γv(t)‖ ≤ Lf‖ut − vt‖B + Lf

∫ t

−∞
e−γ(t−s)H(t− s)‖us − vs‖Bds

+M

∫ t

−∞
e−δ(t−s)Lg(t)‖us − vs‖Bds

≤ Lf

(
1 + sup

t∈R

∫ t

−∞
e−γ(t−s)H(t− s)ds

)
Q‖u− v‖∞

+
(
M sup

t∈R

∫ t

−∞
e−δ(t−s)Lg(s)ds

)
Q‖u− v‖∞

≤ C‖u− v‖∞.

The assertion is now a consequence of the classical Banach fixed-point principle. �

6. Examples

In this section we provide with an example to illustrate our main result. We
study the existence of almost automorphic solutions to a nonautonomous integrod-
ifferential equation which was considered in Diagana et al. [11] in the pseudo almost
periodic case. Consider

∂

∂t

[
ϕ(t, x) +

∫ t

−∞

∫ π

0

b(t− s, η, x)ϕ(s, η)dηds
]

=
∂2

∂x2
ϕ(t, x) + V ϕ(t, x) +

∫ t

−∞
a1(t− s)ϕ(s, x)ds+ a2(t, x),

(6.1)

ϕ(t, 0) = ϕ(t, π) = 0, (6.2)

for t ∈ R and x ∈ I = [0, π].
It is worth mentioning that systems of the type (6.1)-(6.2) arise in control sys-

tems described by abstract retarded functional differential equations with feedback
control governed by proportional integro-differential law [17].

The existence and qualitative properties of the solutions to (6.1)-(6.2) was re-
cently described in [17, 19] for the existence and regularity of mild solutions, [18]
for the existence of periodic solutions, [20] for the existence of almost periodic and
asymptotically almost periodic solutions, [11] for pseudo almost periodic solutions,
and [7] for the existence of almost automorphic solutions. For similar works we
refer the reader to Hernández [22] and Diagana et al. [9, 10].

To establish the existence of almost automorphic solutions to Eqns. (6.1)-(6.2),
we need to introduce the required technical tools.

Let X = L2[0, π] and B = C0 × L2(ρ,X) (see Example 4.4). Define the linear
operator A by

D(A) := {ϕ ∈ L2[0, π] : ϕ′′ ∈ L2[0, π], ϕ(0) = ϕ(π) = 0},
Aϕ = ϕ′′ + V ϕ for all ϕ ∈ D(A),

where V is a constant satisfying V < 1.
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The operator A is the infinitesimal generator of an analytic semigroup (T (t))t≥0

on L2[0, π] satisfying

‖T (s)‖ ≤ e−(1−V )s for every s ≥ 0.

For the rest of the paper, we assume that the following conditions hold:

(i) The functions b(·), ∂i

∂ζi , b(τ, η, ζ), for i = 1, 2, are Lebesgue measurable,
b(τ, η, π) = 0, b(τ, η, 0) = 0 for every (τ, η), and

Lf := max
{∫ π

0

∫ 0

−∞

∫ π

0

( ∂i

∂ζi
b(τ, η, ζ)

)2

dηdτdζ : i = 0, 1, 2
}
<∞.

(ii) The functions a1, a2, b are continuous, Sp-almost automorphic and

Lg =
( ∫ 0

−∞

a2
1(−θ)
ρ(θ)

dθ
)1/2

<∞.

Additionally, we define the operators f, g : B → L2[0, π] by setting

f(t, ψ)(x) :=
∫ 0

−∞

∫ π

0

b(s, η, x)ψ(s, η)dηds, (6.3)

g(t, ψ)(x) :=
∫ 0

−∞
a1(s)ψ(s, x)ds+ a2(t, x), (6.4)

which enable us to transform the system (6.1)-(6.2) into an equation of the form
(1.2). Obviously, f, g are continuous. Moreover, using a straightforward estimation,
which can be obtained with the help of both (i) and (ii), it is then easy to see that
f has values in Y = (D(A), ‖ · ‖1), where the norm ‖ · ‖1 defined by: ‖ϕ‖1 = ‖Aϕ‖
for each ϕ ∈ D(A)). Furthermore, f a Y-valued bounded linear operator with
‖f‖L(B,Y) ≤ Lf . Note also that g is Lipschitz with respect to the second variable
ψ whose Lipschitz constant is Lg.

The next result is a direct consequence of Theorem 5.8.

Theorem 6.1. Under the previous assumptions, the system (6.1)-(6.2) has a unique
almost automorphic solution whenever

Q
[
Lf

(
1 +

1
1− V

)
+ Lg

]
< 1.
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