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EXPONENTIAL CONVERGENCE FOR BAM NEURAL
NETWORKS WITH DISTRIBUTED DELAYS

YONGKUN LI, YAPING REN

Abstract. This paper concerns the exponential convergence of bidirectional
associative memory (BAM) neural networks with unbounded distributed de-

lays. Sufficient conditions are derived by exploiting the exponentially fading

memory property of delay kernel functions. The method is based on compari-
son principle of delay differential equations and does not need the construction

of any Lyapunov functions.

1. Introduction

The bidirectional associative memory (BAM) model, known as an extension
of the unidirectional autoassociator of Hopfied [3], was first introduced by Kosko
[4]. It has been used in many fields such as the pattern recognition and automatic
control. Sufficient conditions have been obtained for the global asymptotic stability
of delayed BAM networks; see the references in this article. Only a few results are
available on the exponential stability of BAM networks with distributed delays.
As well known, the exponential stability guarantees fast response in a system and
therefore is a desirable performance in evaluating and designing BAM networks.

Mathematically, the effect of distributed time delays on the dynamics of BAM
networks is often characterized through delay kernel functions. It is hence natural
to think that certain conditions should be required on the nature of delay kernels
in order to attain the exponential convergence in the system.
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The BAM networks with unbounded distributed delays under consideration are
described by the following integro-differential equations

ẋi(t) = −ai(t)xi(t) +
m∑

j=1

Aji(t)fj(x(t− τj))

+
m∑

j=1

Cji(t)
∫ t

−∞
Kji(t− s)gj(xj(s)) ds+ Ii(t), i = 1, . . . , n,

ẏj(t) = −bj(t)yj(t) +
n∑

i=1

Bij(t)hi(y(t− τi))

+
n∑

i=1

Dij(t)
∫ t

−∞
Gij(t− s)li(xi(s)) ds+ Jj(t), j = 1, . . . ,m,

(1.1)

where xi and yj are the activations of the ith neuron and the jth neuron (i =
1, . . . , n, j = 1, . . . ,m); ai > 0 and bj > 0 are passive decay rates of neurons i
and j; Aji, Cji, Bij and Dij are the connection weights; fj , gj , hi and li are the
activation functions of the neurons; Ii(t), Jj(t) denote the ith and jth component
of internal input sources introduced from outside the networks to the cells i and
j, respectively; Kji and Gij are the distributed delay kernels representing the past
history effects on the neuron state dynamics. It is usually assumed that Kji and
Gij are non-negative and continuous functions defined on [0,+∞) and satisfy the
normalization conditions∫ ∞

0

Kji(s) ds = 1,
∫ ∞

0

Gij(s) ds = 1.

We also assume that the delay kernels satisfy the conditions∫ ∞

0

Kji(s)eσ0s ds <∞,

∫ ∞

0

Gij(s)eσ0s ds <∞, i = 1, . . . , n, j = 1, . . . ,m,

(1.2)
for some scalar σ0 > 0. That is, we assume that the neurons are of exponentially
fading memory.

The initial conditions for system (1.1) are specified as continuous functions ϕxi
,

ϕyj
: (−∞, 0] → Rn, i.e., xi(s) = ϕxi

(s) and yj(s) = ϕyj
(s) for s ≤ 0. The existence

and uniqueness of a solution to the initial value problem of system (1.1) can follow
from the Lipshitz conditions on the activation functions:

|fj(a)− fj(b)| ≤ µfj |a− b|, |gj(a)− gj(b)| ≤ µgj |a− b|, ∀a, b ∈ R, (1.3)

|hi(a)− hi(b)| ≤ µhi
|a− b|, |li(a)− li(b)| ≤ µli |a− b|, ∀a, b ∈ R, (1.4)

where µfj > 0, µgj > 0, µhi > 0 and µli > 0 are the Lipschitz constants, i =
1, . . . , n, j = 1, . . . ,m.

Without loss of generality we may assume fj(0) = 0, gj(0) = 0, hi(0) = 0 and
li(0) = 0 for i = 1, . . . , n, j = 1, . . . ,m. So the origin is a fixed point of system
(1.1). The aim of this paper is to establish conditions for system (1.1) to converge
to the origin in terms of

|xi(t)| ≤ αie
−σt, |yj(t)| ≤ βje

−σt, t ≥ 0, i = 1, . . . , n, j = 1, . . . ,m, (1.5)

whenever |xi(s)| ≤ αi and |yj(s)| ≤ βj , for s ≤ 0, where αi > 0 and βj > 0, σ > 0
are real constants. (1.5) gives a componentwise exponential convergence estimate
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for the system (1.1). Clearly, σ provides an estimate of the exponential decay rate
of the system, αi and βj give bounds on the states of the ith neuron and jth neuron.

It is not difficult to see that the componentwise exponential convergence property
defined above is stronger than the conventional exponential stability in Lyapunov
sense. Indeed, if the estimate (1.5) hold the origin of system (1.1) must be expo-
nentially stable, but the converse is not true in general. An obvious advantage of
this type of convergence is that it allows an individual monitoring of each neuron’s
state.

The main purpose of this paper is to find conditions which ensure the compo-
nentwise exponential convergence estimate. The organization of this paper is as
follows. In Section 2, we introduce some lemmas cited from [1] which are useful
in the proof of our main results of this paper. In Section 3, we use comparison
principle to analysis the exponential convergence of BAM networks. In Section 4,
we give an illustrative example of the effectiveness of the obtained results.

2. Preliminaries

Let F (t, ϕ) be an n-vector-valued continuous functional with t ≥ 0 and ϕ a
continuous function from (−∞, 0] into Rn, and Fi denotes the ith component of F.
F (t, ϕ) is said to be quasi-monotone non-decreasing in ϕ if, for i = 1, . . . , n,

Fi(t, ϕ) ≤ Fi(t, ψ) whenever ϕi(0) = ψi(0) and ϕi(s) ≤ ψi(s) (in componentwise
sense) for all s ≤ 0.

For a continuous function z(t) from R into Rn, define the truncation zt by zt(s) =
z(t+ s) for s ≤ 0.

The following comparison principle is a direct extension of that cited in [1] to
unbounded delay case.

Lemma 2.1. Let F (t, ϕ) be quasi-monotone non-decreasing in ϕ. If p(t) and q(t)
are vector-valued continuous functions such that, for i = 1, . . . , n, s ≤ 0, t ≥ 0,

(i) D+pi(t) ≤ Fi(t, pt),
(ii) q̇t(t) = Fi(t, qt),
(iii) pi(s) ≤ qi(s),

then pi(t) ≤ qi(t) for t ≥ 0.

Following the same line of proof as in of [1, Lemma 2], we can derive from Lemma
2.1 the following comparison result.

Lemma 2.2. Let F (t, ϕ) be quasi-monotone non-decreasing in ϕ. If e(t) and q(t)
are vector-valued continuous functions such that, for i = 1, . . . , n, s ≤ 0, t ≥ 0,

(i) ei(t) ≥ Fi(t, et),
(ii) q̇t(t) = Fi(t, qt),
(iii) qi(s) ≤ ei(s),

then qi(t) ≤ ei(t) for t ≥ 0.

3. Exponential convergence

In this section we discuss the componentwise exponential convergence of system
(1.1). To get the estimate (1.5), we evaluate the upper right derivative D+|xi(t)|
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for a solution xi(t) of system (1.1) to obtain

D+|xi(t)| = lim
r→0+

sup
1
r
[|xi(t+ r)| − |xi(t)|]

≤ −|ai(t)||xi(t)|+
m∑

j=1

|Aji(t)||fj(x(t− τj))|

+
m∑

j=1

|Cji(t)|
∫ t

−∞
Kji(t− s)|gj(xj(s))| ds+ |Ii(t)|

≤ −|ai(t)||xi(t)|+
m∑

j=1

|Aji(t)|µfj
|x(t− τj)|

+
m∑

j=1

µgj
|Cji(t)|

∫ t

−∞
Kji(t− s)|xj(s)| ds+ |Ii(t)|,

(3.1)

for i = 1, . . . , n.
In the context of this paper, we may take F in Lemma 2.1 with

Fi(0, ϕ) = −|ai(0)|ϕi(0) +
m∑

j=1

|Aji(0)|µfj
ϕ(−τj)

+
m∑

j=1

µgj
|Cji(0)|

∫ 0

−∞
Kji(−s)ϕj(s) ds+ |Ii(0)|,

for i = 1, . . . , n. It is clear that F is quasi-monotone non-decreasing in ϕ. So
the right-hand side of the last inequality (3.1) is quasi-monotone non-decreasing in
|xi(s)| for s ∈ (−∞, t] with t ≥ 0. This implies that |xi(t)| can be dominated by
the following comparison system:

q̇i(t) = −|ai(t)|qi(t) +
m∑

j=1

|Aji(t)|µfj
q(t− τj)

+
m∑

j=1

µgj
|Cji(t)|

∫ t

−∞
Kji(t− s)qj(s) ds+ |Ii(t)|,

(3.2)

in the sense that |xi(t)| ≤ qi(t) for t ≥ 0 whenever |xi(s)| ≤ qi(s) for s ≤ 0,
i = 1, . . . , n. The result is a special case of a general comparison principle for
distributed delay systems, see Lemma 2.1. It enables us to derive properties of
non-linear system (1.1) by examining a linear comparison system (3.2). However,
it should be noted that even for a linear distributed delay system such as (3.2), there
are not known general results which provide necessary and sufficient conditions for
exponential convergence of the system. Therefore, in the sequel we should first
proceed to find an appropriate exponential estimate for the comparison system
(3.2), from which we can then yield the estimate (1.5) for system (1.1) by the
above comparison principle. To do this, we make use of the following comparison
result.
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Suppose that there are n functions ei(t) such that

ėi(t) ≥ −|ai(t)|ei(t) +
m∑

j=1

|Aji(t)|µfje(t− τj)

+
m∑

j=1

µgj |Cji(t)|
∫ t

−∞
Kji(t− s)ej(s) ds+ |Ii(t)|,

(3.3)

for i = 1, . . . , n. Then qi(t) ≤ ei(t) for t ≥ 0 provided qi(s) ≤ ei(s) for s ≤ 0.
Actually, this can be derived simply by using the above comparison principle along
with the reverse transformations : qi → −qi and ei → −ei in (3.2) and (3.3),
respectively. See Lemma 2.2.

From this we have |xi(t)| ≤ ei(t) for t ≥ 0 provided |xi(s)| ≤ ei(s) for s ≤ 0,
i = 1, . . . , n. Now, taking ei(t) = αie

−σt, to satisfy inequalities (3.3) it suffices to
have

(σ − |ai(t)|)αi +
m∑

j=1

αj |Aji(t)|µfj
eστj

+
m∑

j=1

αjµgj |Cji(t)|
∫ ∞

0

Kji(s)eσs ds+ |Ii(t)| ≤ 0,

(3.4)

for i = 1, . . . , n. For the same reason we can get

(σ − |bj(t)|)βj +
n∑

i=1

βi|Bij(t)|µhi
eστi

+
n∑

i=1

βiµli |Dij(t)|
∫ ∞

0

Gij(s)eσs ds+ |Jj(t)| ≤ 0,

(3.5)

for j = 1, . . . ,m. Those together with condition (1.2) lead to the following result.

Theorem 3.1. System (1.1) admits the exponential convergent estimate (1.5) with
0 < σ ≤ σ0 if conditions (3.4) and (3.5) hold.

This result establishes an explicit relation on specific exponential convergent
dynamics and system parameters including the weights, the gain of neurons, and
the delay kernels.

Remark 3.2. It is obvious that criterion (3.4) depends only on the relative values
of αi(i = 1, . . . , n). Thus, if condition (3.4) is satisfied by a set of αi > 0(i =
1, . . . , n), it remains valid with |ai(t)|αi replacing each αi for any |ai(t)| > 0. This
is essential because of the global Lipschitz conditions (1.3) and (1.4) of the non-
linear functions assumed previously. As a result, Theorem 3.1 actually provides a
sufficient condition for global exponential convergence of system (1.1). In fact, for
any initial function ϕxi

(s), one can always pick a scalar |ai(t)| > 0 large enough so
that |ϕxi

(s)| ≤ |ai(t)|αi for s ≤ 0, i = 1, . . . , n. Hence, by the theorem it follows
that:

|xi(t)| ≤ |ai(t)|αie
−σt, i = 1, . . . , n. (3.6)

For the same reason, we get

|yj(t)| ≤ |bj(t)|βje
−σt, j = 1, . . . ,m. (3.7)

So the system is globally exponentially convergent to the origin in terms of the
estimates (3.6) and (3.7).
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Conditions (3.4) and (3.5) are delay-dependent since they involve the delay ker-
nelsKji(s) andGij(s) explicitly. We can also derive the following delay-independent
results. To do this, let

zx(σ) = max
1≤i≤n

{
(σ − |ai(t)|)αi +

m∑
j=1

αj |Aji(t)|µfj
eστj

+
m∑

j=1

αjµgj
|Cji(t)|

∫ t

−∞
Kji(t− s)eσs ds+ |Ii(t)|

}
and

zy(σ) = max
1≤j≤m

{
(σ − |bj(t)|βj +

n∑
i=1

βi|Bij(t)|µhi
eστi

+
n∑

i=1

βiµli |Dij(t)|
∫ ∞

0

Gij(s)eσs ds+ |Jj(t)|
}
.

It is clear that zx(σ) and zy(σ) are continuous for σ ∈ [0, σ0] by condition (1.2).
Therefore, if zx(0) < 0 and zy(0) < 0; i.e.,

−|ai(t)|αi +
m∑

j=1

αj |Aji(t)|µfj
+

m∑
j=1

αjµgj
|Cji(t)|+ |Ii(t)| < 0, (3.8)

−|bj(t)|βj +
n∑

i=1

βi|Bij(t)|µhi
+

n∑
i=1

βiµli |Dij(t)|+ |Jj(t)| < 0, (3.9)

for i = 1, . . . , n and j = 1, . . . ,m, then by continuity, there should be some σ ∈
(0, σ0] such that zx(σ) ≤ 0 and zy(σ) ≤ 0, i.e., conditions (3.4) and (3.5) holds, and
vice versa. Thus, by noting Remark 3.2 also, we conclude the following equivalent
condition to Theorem 3.1.

Theorem 3.3. System (1.1) is globally exponentially convergent in terms of the
estimates (3.6) and (3.7) for some σ ∈ (0, σ0] and αi > 0, βj > 0, i = 1, . . . , n,
j = 1, . . . ,m, if conditions (3.8) and (3.9) holds.

4. Examples

To illustrate the above results, we now consider a simple example of system
(1.1) comprising n identical neurons coupled through weights Aji, Bij , Cji and
Dij whose absolute values |Aji|, |Bji|, |Cji| and |Dij | constitute doubly stochastic
matrix. Examples of such matrix are as below:

A = B = C = D :=
1

n− 1

∣∣∣∣∣∣∣∣∣
0 1 1 . . . 1
1 0 1 · · · 1
...

...
...

. . .
...

1 1 1 . . . 0

∣∣∣∣∣∣∣∣∣ .
Assume the neuronal passive decay rates ai = a > 0, bj = b > 0 and the neuron
activation satisfies conditions (1.3) and (1.4) with the gains 0 < µfj

= µhi
< 1 and

µgj = µli := µ > 0. The delay kernels Kji and Gij are taken as

Kji = Gij =
rm+1

m!
tme−rt, r ∈ (0,∞),m = 0, 1, 2, . . . .
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It can be calculated that∫ ∞

0

Kji(s)eσs ds =
∫ ∞

0

Gij(s)eσs ds =
( r

r − σ

)m+1
.

For simplicity, we take all αi = 1 in condition (3.4). Then by Theorem 3.1 and
Remark 3.2, if the neuron gain µ satisfies the bound

µ ≤ (c− σ)
(
1− σ

r

)m+1
,

the system will globally converge to the origin in terms of

|xi(t)| ≤ ke−σt, |yj(t)| ≤ ke−σt, t ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,

whenever |xi(θ)| ≤ k and |yj(θ)| ≤ k for θ ≤ 0, with k > 0 a constant depending
on the initial condition xi(θ) and yj(θ), i = 1, . . . , n, j = 1, . . . ,m, and 0 < σ <
min{c, r}. If one is merely interested in qualitatively confirming global exponential
convergence of the system, it is convenient to use the criterion

µ < c

according to condition (3.4) with all αi = 1. That is, the neuron activation gain
should not exceed the value of the neuronal passive decay rates.
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