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ASYMPTOTIC BEHAVIOR OF A DELAY PREDATOR-PREY
SYSTEM WITH STAGE STRUCTURE AND VARIABLE

COEFFICIENTS

ERIC AVILA-VALES, ANGEL G. ESTRELLA, JAVIER A. HERNANDEZ-PINZON

Abstract. In this paper, we establish a global attractor for a Lotka-Volterra

type reaction-diffusion predator-prey model with stage structure for the preda-

tor, delay due to maturity and variable coefficients. This attractor is found by
the method of upper and lower solutions and is given in terms of bounds for

the coefficients.

1. Introduction

Almost all animals have the stage structure of immature and then mature, and
in each stage they show different characteristics. For instance, immature predators
are not able to hunt, while mature animals have more powerful survival capacities;
likewise, rates of birth or death vary on each stage. Therefore, considering stage-
structured models could lead to more accurate results.

In 2006, Xu, Chaplain and Davidson [7], considered the following Lotka-Volterra
type reaction-diffusion predator-prey model with stage structure for the predator
and delay due to maturity

∂u1

∂t
= D1∆u1(t, x) + u1(t, x)[r1 − a11u1(t, x)− a12u2(t, x)],

(t, x) ∈ (0,∞)× Ω
(1.1)

∂u2

∂t
= D2∆u2(t, x) + α

∫ τ

0

f(s)e−γsu1(t− s, x)u2(t− s, x)ds

− r2u2(t, x)− a22u
2
2(t, x) (t, x) ∈ (0,∞)× Ω

(1.2)

∂ui

∂ν
= 0 (i = 1, 2), t > 0, x ∈ ∂Ω (1.3)

ui(t, x) = φi(t, x) (i = 1, 2), t ∈ [−τ, 0] , x ∈ Ω (1.4)

In this problem, Ω is a bounded domain in Rn with smooth boundary ∂Ω, where
∂
∂ν denotes the outward normal derivative on ∂Ω. The boundary conditions in (1.3)
imply that the populations do not move across the boundary ∂Ω. The parameters
r1, r2, a11, a12, a22, α, γ are positive constants. u1(t, x) represents the density of
the prey population at time t and location x, u2(t, x) denotes the density of the

2000 Mathematics Subject Classification. 35Q80, 92D25.

Key words and phrases. Lotka-Volterra; reaction-diffusion; stage structure; time delay.
c©2008 Texas State University - San Marcos.
Submitted July 8, 2008. Published October 16, 2008.

1



2 E. AVILA-V., A. G. ESTRELLA, J. A. HERNANDEZ-P. EJDE-2008/140

mature predator population at time t and location x, respectively. The data φi(t, x)
(i = 1, 2) are nonnegative and Hölder continuous and satisfy ∂φi

∂ν = 0 in (−τ, 0)×∂Ω.
The model is derived under the following assumptions.
• The prey population: The growth of the species is of Lotka - Volterra na-

ture. The parameters r1, a11 and D1 are the intrinsic growth rate, intra-specific
competition rate and diffusion rate, respectively.
• The predator population: a12,

α
a12
, r2 and a22 are the capturing rate, conversion

rate,death rate and intra-specific competition rate of the mature predator, respec-
tively; γ > 0 is the death rate of the immature predator population, D2 is the
diffusion rate of the mature population. The term αu1(t − s, x)u2(t − s, x) is the
number born at time t−s and location x per unit time, and is taken as proportional
to the number of the prey and mature predator the around. f(s) denotes the prob-
ability that the maturation time is between s and s+ ds with ds infinitesimal,and∫∞
0
f(s)ds = 1. e−γs is the probability of an individual born at time t− s still alive

at time t. Individuals becoming mature at time t could have been born at any time
prior to this, and the integral totals up the contributions from all previous times.

They also use the following assumptions:

(H1) f(t) is piecewise continuous in [0, τ ] and has the property: f(t) ≥ 0,∫ τ

0
f(t)dt = 1; i.e., f(t) is a probability diet on [0, τ ]

System (1.1)–(1.4) possesses a trivial uniform equilibrium E0(0, 0) and a semi-trivial
uniform equilibrium E1

(
r1
a11
, 0

)
. If the following holds:

(H2) r1αI > r2a11.

Then (1.1)–(1.4) also has a unique positive uniform equilibrium E?(u?
1, u

?
2) where:

u?
1 =

r1a22 + r2a12

a11a22 + αa12I
, u?

2 =
r1αI − r2a11

a11a22 + αa12I
(1.5)

where I =
∫ τ

0
f(s)e−γsds. The main result in [7] is as follows:

Theorem 1.1. Let the initial functions φi (i = 1, 2) be Hölder continuous in
[−τ, 0] × Ω, with φi(t, x) ≥ 0, φi(0, x) 6= 0. Let (u1(t, x), u2(t, x)) satisfy (1.1)–
(1.4). In addition to (H1)–(H2), assume that

(H3) a11a22 > a12α
∫ τ

0
f(s)e−γsds

Then limt→∞ ui(t, x) = u?
i (i = 1, 2) uniformly for x ∈ Ω

Xu, Chaplain and Davidson considered both, the coefficients of inter-species in-
teraction and their birth and death rates to be constant. However, it must not be
forgotten that the variability implicit in the environment means that these coeffi-
cients may depend on variables such as time, temperature, light flux, etc. Therefore,
whenever possible, it is convenient to introduce these factors as functions of these
variables even though this may complicate the resolution of the system of differen-
tial equations [4].
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In this work, we extend Theorem 3.3 to the case where the coefficients are func-
tions of space and time as follows

∂u1

∂t
= D1∆u1(t, x) + u1(t, x)

[
r1(t, x)− a11(t, x)u1(t, x)− a12(t, x)u2(t, x)

]
(1.6)

∂u2

∂t
= D2∆u2(t, x) + α(t, x)

∫ τ

0

f(s)e−γsu1(t− s, x)u2(t− s, x)ds

− r2(t, x)u2(t, x)− a22(t, x)u2
2(t, x); (t, x) ∈ (0,∞)× Ω

(1.7)

∂ui

∂ν
= 0 (i = 1, 2), t > 0, x ∈ ∂Ω (1.8)

ui(t, x) = φi(t, x) (i = 1, 2), t ∈ [−τ, 0], x ∈ Ω (1.9)

In our case the asymptotic behavior of time-dependent solution will be deter-
mined since we will be able to a obtain a prior upper an lower bounds for the system
(1.6)–(1.9).

Similar problems with constant coefficients are considered in [2, 8], where systems
of equations with diffusion are studied. One equation with diffusion and variable
coefficients is analyzed in [9]. The competition case with diffusion and variable
coefficients is studied in [6]. Some cases of variable coefficients with no diffusion
are studied in [1, 5, 10].

The rest of the paper is organized as follows. In section 2 we state the definition of
upper and lower solutions, we also discuss the existence and uniqueness of positive
solution of our system. In section 3 we find a global attractor for (1.6)–(1.9).
Finally, we present a brief discussion in the last section.

2. Preliminaries

Definition 2.1. A pair of functions

ũ(t, x) = (ũ1(t, x), ũ2(t, x)), û(t, x) = (û1(t, x), û2(t, x))

defined for t ≥ 0, x ∈ Ω are called coupled upper and lower solutions of systems
(1.6)–(1.9) if ũi ≥ ûi in [−τ × Ω) and if for all ψi such that ûi ≤ ψi ≤ ũi the
following differential inequalities hold:

∂ũ1

∂t
≥ D1∆ũ1 + ũ1(t, x)[r1(t, x)− a11(t, x)ũ1(t, x)− a12(t, x)û2(t, x)]

∂ũ2

∂t
≥ D2∆ũ2(t, x) + α(t, x)

∫ τ

0

f(s)e−γsψ1ψ2ds− r2(t, x)ũ2 − a22(t, x)ũ2
2

∂û1

∂t
≤ D1∆û1 + û1(t, x)[r1(t, x)− a11(t, x)û1 − a12(t, x)ũ2]

∂û2

∂t
≤ D2∆û2(t, x) + α(t, x)

∫ τ

0

f(s)e−γsψ1ψ2ds

− r2(t, x)ũ2(t, x)− a22(t, x)(ũ2(t, x))2

for (t, x) ∈ (0,∞)× Ω, and

∂ûi

∂ν
≤ 0 ≤ ∂ũi

∂ν
(i = 1, 2), (t, x) ∈ (0,∞)× ∂Ω

ûi(t, x) ≤ φi(t, x) ≤ ũi(t, x) (i = 1, 2), (t, x) ∈ [−τ, 0]× Ω
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It is easy to see that (0, 0) and (k1, k2), with

k1 = max{ r1
A11

, sup
−τ≤θ≤0

‖φ(θ, ·)‖},

k2 = max{ r2

α2k1

∫ τ

0
f(s)e−γτdτ

, sup
−τ≤θ≤0

‖φ(θ, ·)‖},

are pairs of coupled lower-upper solutions of problem (1.6)–(1.9).
The existence of solutions of problem (1.6)–(1.9) is guaranteed by a result estab-

lished by Redlinger in [3] if the reaction part of the equations satisfy the Lipschitz
condition, which turns to be true in this case.

Proposition 2.2. Let the initial function φ be Hölder continuous in [−τ, 0] × Ω.
Assume that A1 ≥ 0, B > 0, A2 > 0, and f(s) is defined as in (H1). Let u(x, t) be
a nonnegative nontrivial solution of the scalar problem
∂u

∂t
= D∆u+B

∫ τ

0

f(s)e−γsu(t− s, x)ds−A1u(t, x)−A2u
2(t, x), (t, x)× Ω,

∂u

∂ν
= 0, (t, x)× ∂Ω,

u(t, x) = φ(t, x) ≥ 0, φ(0, x) 6= 0, (t, x) ∈ [−τ, 0]× Ω.

Then we have
(i) if B

∫ τ

0
f(s)e−γsds > A1, then

lim
t→∞

u(t, x) =
B

∫ τ

0
f(s)e−γsds−A1

A2
uniformly for x ∈ Ω

(ii) if B
∫ τ

0
f(s)e−γsds < A1, then

lim
t→∞

u(t, x) = 0 uniformly for x ∈ Ω

A proof of the above proposition can be found in [7].

3. Global Attractor

We assume that system (1.6)–(1.9) has bounded variable coefficients with the
following properties:

0 < a11 ≤ a11(t, x) ≤ A11, 0 < a12 ≤ a12(t, x) ≤ A12,

0 < r1 ≤ r1(t, x) ≤ R1, 0 < r2 ≤ r2(t, x) ≤ R2,

0 ≤ α1 ≤ α(t, x) ≤ α2, 0 < a22 ≤ a22(t, x) ≤ A22 .

We have the following results.

Proposition 3.1. Let u1, u2 be solutions of (1.6)–(1.9),

M i = lim inf
t→∞

[min
x∈Ω

ui(t, x)], M i = lim sup
t→∞

[max
x∈Ω

ui(t, x)]

and I =
∫ τ

0
f(s)e−γsds. Assume (H1), and that the initial conditions φi ≥ 0 for

i = 1, 2.
(a) If M1 >

R2
α1I , then

α1M1I −R2

A22
≤M2 ≤M2 ≤

α2M1I − r2
a22

(3.1)
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(b) If a11r2 ≥ α2R1I, then M2 = 0 = M2.

Proof. Let ū and û be solutions of

L2ū = α2M1I(ū)− r2ū− a22ū
2,

L2û = α1M1I(û)−R2û−A22û
2,

(3.2)

with boundary conditions and initial values as for u2, where Liu = ut −Di∆u for
i = 1, 2, and

I(u) =
∫ τ

0

f(s)e−γsu(t− s, x)ds,

then ū and û are upper and lower solutions of u2; therefore

û ≤ u2 ≤ ū. (3.3)

If M1 >
R2
α1I then M1 >

r2
α2I , thus applying (a) of Proposition 2.2 we obtain

lim
t→∞

û =
α1M1I −R2

A22
, lim

t→∞
ū =

α2M1I − r2
a22

,

from this and (3.3) we obtain (3.1). The proof of de second part is similar using
(b) of Proposition 2.2. �

With a similar idea and taking the appropriate upper and lower solutions of (1.6)
we note that

r1 −M2A12

A11
≤M1 ≤M1 ≤

R1 −M2a12

a11
. (3.4)

With the hypothesis and notation of the previous proposition and its proof, we
have the following result.

Proposition 3.2. If a11r2 ≤ α2R1I, then

M2 ≤
α2

R1
a11
I − r2

a22
(3.5)

Proof. ¿From equation (3.4) we have that M1 < R1/a11, therefore for each ε > 0
there exists T > 0 such that u1(t− s, x) < (R1/a11) + ε for all t > T , s ∈ [0, τ ] and
x ∈ Ω. Let ω2 be a solution of

L2ω2 = α2

(R1

a11
+ ε

)
I(ω2)(t, x)− r2ω2(t, x)− a22(ω2(t, x))2; t > T, x ∈ Ω (3.6)

∂ω2

∂t
= 0 t > T, x ∈ ∂Ω (3.7)

ω2(t, x) = k2 (t, x) ∈ [T − τ, T ]× Ω. (3.8)

where I(w)(t, x) =
∫∞
0
f(s)e−γsw(t− s, x)ds. Since

α2

(R1

a11
+ ε

)
I ≥ α2

R1

a11
I ≥ r2

then we can use Proposition 2.2 to obtain

lim
t→∞

ω2(t, x) =
α2

(
R1
a11

+ ε
)
I − r2

a22
.

Since ω2 is an upper solution of u2, ω2(t, x) ≤ u2(t, x) for t > T and x ∈ Ω; therefore

M2 ≤ lim
t→∞

ω2(t, x) =
α2

(
R1
a11

+ ε
)
I − r2

a22
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and we obtain (3.5) from the fact that ε is arbitrary. �

Now, we are able to state our two main results.

Theorem 3.3. Let the initial functions φi be Hölder continuous in [−τ, 0] × Ω,
with φi(t, x) ≥ 0, φi(0, x) 6= 0 for i = 1, 2. Let u1(t, x), u2(t, x) satisfy (1.6)–(1.9).
In addition to (H1) assume further that

a11r2 ≤ α2R1I, (3.9)

α2A12R1I ≤ a11(a22r1 + a12r2) . (3.10)

Then

α1IM1 −A22M2 ≤ R2, (3.11)

r2 ≤ α2IM1 − a22M2, (3.12)

r1 ≤ A11M1 +A12M2, (3.13)

a11M1 + a12M2 ≤ R1. (3.14)

Proof. From (3.10) we obtain

α2
R1
a11
I − r2

a22
≤
r1 − A11R2

α1I

A12
.

Now, we can use Proposition 3.2, because of (3.9), the above inequality leads to

M2 ≤
r1 − A11R2

α1I

A12

which implies
R2

α1I
≤ r1 −M2A12

A11

and with (3.4), we obtain
R2

α1I
≤M1,

thus, we can use Proposition 3.1 to obtain (3.11)–(3.12), and (3.13)–(3.14) follow
from (3.4). �

Theorem 3.4. Let δ = a11a22A11A22−a12A12α1α2I
2, and assume hypothesis (H1)

and (3.9)–(3.10). If δ > 0, then

s1 ≤M1 ≤M1 ≤ S1, s2 ≤M2 ≤M2 ≤ S2,

where

s1 =
a11A22(A12r2 + a22r1)− α2A12I(a12R2 +A22R1)

δ
,

S1 =
A11a22(a12R2 +A22R1)− α1a12I(A12r2 + a22r1)

δ
,

s2 =
a11a22(α1r1I −A11R2)− α1A12I(α2R1I − a11r2)

δ
,

S2 =
A11A22(α2R1I − a11r2)− α2a12I(α1r1I −A11R2)

δ
.

Proof. This is the solution of the set of inequalities (3.11)–(3.14) using the fact that
δ > 0. �
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Theorem 3.5. Let the initial functions φi (i=1,2) be Hölder continuous in [−τ, 0]×
Ω with φi(t, x) ≥ 0. Let (u1, u2) satisfy (1.6)–(1.9). In addition to (H1) assume
further that

a11r2 ≥ α2R1I

then M2 = 0 = M2 and

r1
A11

≤M1 ≤M1 ≤
R1

a11
. (3.15)

The above theorem is a consequence of the second part of the Proposition 3.1
and (3.4).

As a consequence of Theorem 3.4 and Theorem 3.5, when the coefficients are
constants we obtain [7, Theorems 2.1 and 2.2]. However, here we provided another
way to prove these two theorem.

3.1. Discussion. Motivated by the work on [6], in this paper we have incorporated
variable coefficients in to a Lotka Volterra type predator-prey model with diffusion
and stage structure. By using the coupled upper-lower solutions technique, we give
sufficient conditions to guarantee the existence of a global attractor for the system.
Biologically condition (15) says that lower bound of the death rate of the mature
predator and the lower bound of the intra specific competition rate of the prey are
sufficiently low. Condition (16) means that the inter specific growth rate of the
prey and the inter specific interaction between the prey and the mature predator
are low enough. Theorem 3.5 ecologically implies that the predator population will
go to extinction but the prey population will persist and this occurs if the death
rate of the mature predator population and the intra specific competition rate are
high and the conversion rate of the predator and the intrinsic growth rate of the
prey are sufficiently low. According to Theorem 3.4 and Theorem 3.5 we note that
the bounds do not depend on the diffusion coefficients D1 and D2, that is the global
attractors found depend only on the reaction terms.
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