MONOTONE SOLUTIONS FOR A NONCONVEX FUNCTIONAL
DIFFERENTIAL INCLUSIONS OF SECOND ORDER

AHMED G. IBRAHIM, FERYAL A. AL-ADSANI

Abstract. We give sufficient conditions for the existence of a monotone solution for second-order functional differential inclusions. No convexity condition, on the values of the multifunction defining the inclusion, is involved in this construction.

1. Introduction

Let K be a closed subset of \mathbb{R}^n, Ω an open subset of \mathbb{R}^n, and P a lower semi-continuous set-valued map (multifunction) from K to the family of all non-empty subsets of K, with closed graph satisfying the following two conditions:

(i) for all $x \in K$, $x \in P(x)$
(ii) for all $x, y \in K$, $y \in P(x) \Rightarrow P(y) \subseteq P(x)$.

Under these conditions, a preorder (reflexive and transitive relation) on K is defined as

$x \preceq y \iff y \in P(x)$.

Let $\sigma > 0$ and $C([-\sigma,0],\mathbb{R}^n)$ be the space of continuous functions from $[-\sigma,0]$ to \mathbb{R}^n with the uniform norm $\|x\|_\sigma = \sup\{\|x(t)\| : t \in [-\sigma,0]\}$. For each $t \in [0,T]; T > 0$, we define the operator $\tau(t)$ from $C([-\sigma,T],\mathbb{R}^n)$ to $C([-\sigma,0],\mathbb{R}^n)$ as

$(\tau(t)x)(s) = x(t + s), \quad \text{for all } s \in [-\sigma,0]$.

Here, $\tau(t)x$ represents the history of the state from the time $t - \sigma$ to the present time t.

Let $K_0 = \{\varphi \in C([-\sigma,T],\mathbb{R}^n) : \varphi(0) \in K\}$ and F be a set-valued map (multifunction) defined from $K_0 \times \Omega$ to the family of non-empty compact subsets (not necessarily convex) in \mathbb{R}^n and (φ_0, y_0) be a given element in $K_0 \times \Omega$. We consider...
the second-order functional differential inclusion
\[x''(t) \in F(\tau(t)x, x'(t)), \quad \text{a.e. on } [0, T] \]
\[x(t) = \varphi_0(t), \quad \forall t \in [-\sigma, 0] \]
\[x'(0) = y_0 \]
\[x(t) \in P(x(t)) \subset K, \quad \forall t \in [0, T] \]
\[x(s) \preceq x(t) \quad \text{whenever } 0 \leq s \leq t \leq T \] (1.1)

In the present work, we prove under reasonable conditions that there are a positive real number \(T \) and a continuous function \(x : [-\sigma, T] \to \mathbb{R}^n \) such that

1. the function \(x \) is absolutely continuous on \([0, T]\) with absolutely continuous derivative
2. \(\tau(t)x \in K_0 \), for all \(t \in [0, T] \)
3. \(x'(t) \in \Omega \), a.e. on \([0, T]\)
4. the functions \(x, x', x'' \) satisfy (1.1).

Ibrahim and Alkulaibi \[13\] proved the existence of a monotone solution for (1.1) without delay. They consider the problem
\[x''(t) \in F(x(t), x'(t)), \quad \text{a.e. on } [0, T] \]
\[x(0) = x_0, \quad x'(0) = y_0 \]
\[x(t) \in K, \quad \forall t \in [0, T] \]
\[x(s) \preceq x(t) \quad \text{whenever } 0 \leq s \leq t \leq T. \]

Further, Lupulescu \[17\] proved the existence of a local solution, not necessarily monotone, for (1.1) in the particular case \(P(x) = K \), for all \(x \in K \). Thus, the result, we are going to prove, generalizes the results of Ibrahim and Alkulaibi \[13\] and Lupulescu \[17\].

We mention, among others the works, \[9, 11, 12, 13, 18\] for the proof of existence of monotone solutions for differential inclusions or functional differential inclusions and the works \[3, 4, 7, 8, 10, 14, 15, 16, 17, 19\] for solutions not necessarily monotone. Note that the case where the solutions are not necessarily monotone has been widely investigated compared with that of monotone solutions which has been rarely investigated.

The present paper is organized as follows: In section 2, some definitions and facts to be used later are introduced. In section 3, the main result is proved.

2. Preliminaries

Let \(\mathbb{R}^n \) be the \(n \)-dimensional Euclidean space with norm \(\| \cdot \| \) and scalar product \(\langle \cdot, \cdot \rangle \). For \(x \in \mathbb{R}^n \) and \(r > 0 \) let \(B(x, r) = \{ y \in \mathbb{R}^n : \| y - x \| < r \} \) denote the open ball centered at \(x \) of radius \(r \), and \(\overline{B}(x, r) \) its closure.

For \(\varphi \in C([-\sigma, 0], \mathbb{R}^n) \) let \(B_\sigma(\varphi, r) = \{ \psi \in C([-\sigma, 0], \mathbb{R}^n) : \| \psi - \varphi \|_{\sigma} < r \} \) and \(\overline{B}_\sigma(\varphi, r) = \{ \psi \in C([-\sigma, 0], \mathbb{R}^n) : \| \psi - \varphi \|_{\sigma} \leq r \} \).

We also, denote by \(d(x, A) = \inf \{ \| x - y \| : y \in A \} \) the distance from \(x \in \mathbb{R}^n \) to a closed subset \(A \subseteq \mathbb{R}^n \).

A function \(V : \mathbb{R}^n \to \mathbb{R} \cup \{ \infty \} \) is said to be proper if its effective domain \(D(V) = \{ x \in \mathbb{R}^n : V(x) < \infty \} \) is non-empty.
The subdifferential of a proper convex lower semicontinuous function $V : \mathbb{R}^n \to \mathbb{R}$ at a point $x \in \mathbb{R}^n$ is defined (in the sense of convex analysis) by
$$\partial V(x) = \{ \xi \in \mathbb{R}^n : V(y) - V(x) \geq \langle \xi, y - x \rangle, \forall y \in \mathbb{R}^n \}$$
The second-order contingent cone of a non-empty closed subset $C \subset \mathbb{R}^n$ at a point $(x, y) \in C \times \mathbb{R}^n$ is defined by
$$T^2_C(x, y) = \{ z \in \mathbb{R}^n : \lim_{t \to 0^+} \inf \frac{d(x + ty + \frac{t^2}{2} z, C)}{t^2} = 0 \}.$$ For the properties of the second-order contingent cone see for example [2, 3, 7, 14].
A multifunction $F : K_0 \times \Omega \to 2^{\mathbb{R}^n}$ is said to be upper semicontinuous at a point $(\varphi, y) \in K_0 \times \Omega$ if for every $\varepsilon > 0$ there exists $\delta > 0$, such that
$$F(\psi, z) \subset F(\varphi, y) + B(0, \varepsilon),$$ for all $(\psi, z) \in B_2(\varphi, \delta) \times B(y, \delta)$. For more information about the continuity properties for multifunctions we refer the reader to [1, 2, 6].

3. Main Result

Lemma 3.1. Let K be a non-empty closed subset of \mathbb{R}^n, Ω a non-empty open subset of \mathbb{R}^n, P a set-valued map from K to the family of non-empty closed subsets of K and $K_0 = \{ \varphi \in C([-\sigma, 0], \mathbb{R}^n), \varphi(0) \in K \}$. Let F be an upper semicontinuous set-valued map from $K_0 \times \Omega$ to the family of non-empty compact subsets of \mathbb{R}^n. Assume also the following conditions:

(H1) For all $x \in K$, $x \in P(x)$

(H2) There exists a proper convex lower semicontinuous function $V : \mathbb{R}^n \to \mathbb{R}$ such that $F(\varphi, y) \subseteq \partial V(y)$, for every $(\varphi, y) \in K_0 \times \Omega$

(H3) For $(\varphi, y) \in K_0 \times \Omega$, $F(\varphi, y) \subseteq T^2_{P(\varphi(0))}(\varphi(0), y)$, where $T^2_{P(\varphi(0))}(\varphi(0), y)$ is the second order contingent cone of the closed subset $P(\varphi(0))$ at the point $(\varphi(0), y)$.

Let (φ_0, y_0) be a fixed element in $K_0 \times \Omega$. Then there are two positive numbers r and T such that for each positive integer m there are:

1. A positive integer ν_m.
2. A set of points $P_m = \{ t^m_0 = 0 < t^m_1 < \cdots < t^m_{\nu_m - 1} \leq T < t^m_m \}$
3. Three sets of elements in \mathbb{R}^n:
 - $X_m = \{ x^m_p : p = 0, 1, \ldots, \nu_m - 1 \}$,
 - $Y_m = \{ y^m_p : p = 0, 1, \ldots, \nu_m - 1 \}$,
 - $Z_m = \{ z^m_p : p = 0, 1, \ldots, \nu_m - 1 \}$,

with $x^m_0 = \varphi_0(0)$ and $y^m_0 = y_0$

4. A continuous function $x_m : [-\sigma, T] \to \mathbb{R}^n$ with $x_m(t) = \varphi_0(t)$, for all $t \in [-\sigma, 0]$, such that for each $p = 0, 1, \ldots, \nu_m - 1$, the following properties are satisfied:
 - (i) $h^m_{p+1} = t^m_{p+1} - t^m_p \leq \frac{1}{m}$
 - (ii) $z^m = u^m_p + w^m$ where $w^m_p \in F(t^m_p) x_m, y^m_p)$ and $w^m_p \in B(0, 1)$
 - (iii) $x_m(t) = x^m_p + (t - t^m_p) y^m_p + \frac{1}{2} (t - t^m_p)^2 z^m_p$, for all $t \in [t^m_p, t^m_{p+1}]$
 - (iv) $x^m_{p+1} = x^m_p + h^m_{p+1} y^m_p + \frac{1}{2} (h^m_{p+1})^2 z^m_p = x_m(t^m_{p+1})$
Consequently there is

\(x_{p+1}^m \in P(x_p^m) \cap B(\varphi_0(0), r) \subseteq K \) and

\[y_{p+1}^m = y_p^m + h_{p+1}^m z_p^m \in B(y_0^m, r) \subseteq \Omega \]

(vi) \(x_{m}(t) \in B(\varphi_0(0), r) \), for all \(t \in [t_p^m, t_{p+1}^m] \).

(vii) \(\tau(t_{p+1}^m)x_m \in B_\epsilon(\varphi_0, r) \cap K_0 \).

Proof. We follow the techniques developed in [18]. From [6] Prop. 1.26, for each \(y \in \mathbb{R}^n \), the subset \(\partial V(y) \) is closed, convex and bounded. Moreover, by [1] Thm. 0.7.2 the multifunction \(y \to \partial V(y) \) is upper semicontinuous. So, by [1] Prop. 1.1.3 there are two positive real numbers \(r \) and \(M \) such that

\[
\sup\{\|z\| : z \in \partial V(y)\} \leq M,
\]

for all \(y \in B(y_0, r) \). Using condition (H2), we get

\[
\sup\{\|z\| : z \in F(\psi, y)\} < M, \quad (3.1)
\]

for all \((\psi, y) \in (K_0 \cap B_r(\varphi_0, r)) \times B(y_0, r)\). Since \(\Omega \) is open we can choose \(r \) such that \(B(y_0, r) \subseteq \Omega \). It is obvious that the closedness of \(K \) implies the closedness of \(K_0 \) in \(C([-\sigma, 0], \mathbb{R}^n) \). From the continuity of \(\varphi_0 \) on \([-\sigma, 0]\), there is \(\mu > 0 \) such that for all \(t, s \in [-\sigma, 0] \) we have

\[
|t - s| < \mu \implies \|\varphi_0(t) - \varphi_0(s)\| < \frac{r}{4}. \quad (3.2)
\]

Put

\[
T = \min\left\{ \mu, \frac{r}{4(M + 1)}, \frac{r}{8(\|y_0\| + 1)}, \sqrt[4]{\frac{r}{(M + 1)}} \right\}, \quad (3.3)
\]

Thus the numbers \(r \) and \(T \) are well defined. Now let \(m \) be a fixed positive integer. We put \(t_0^m = 0 \), \(x_0^m = \varphi_0(0) \) and \(y_0^m = y_0 \). The sets \(P_m, X_m, Y_m \) and \(Z_m \) will be defined by induction. We first define \(x_1^m, t_1^m, y_1^m, z_0^m \) and \(x_m \) on \([0, t_1^m]\) such that the properties (i)-(vii) are satisfied for \(p = 0 \).

Using condition (H3), there is \(u_0^m \in F(\varphi_0, y_0) \) such that

\[
\liminf_{h \to 0} \frac{1}{h^2} d(\varphi_0(0) + h y_0^m + \frac{h^2}{2} u_0^m, P(\varphi_0(0))) = 0.
\]

So, a positive number \(h_1^m \) is found such that \(h_1^m \leq \min\{\frac{1}{m}, T\} \) and

\[
dl(\varphi_0(0) + h_1^m y_0^m + \frac{(h_1^m)^2}{2} u_0^m, P(\varphi_0(0))) \leq \frac{(h_1^m)^2}{4m}.
\]

Since \(P(\varphi_0(0)) \) is closed, there is \(x_1^m \in P(\varphi_0(0)) \) with

\[
\|\varphi_0(0) + h_1^m y_0^m + \frac{(h_1^m)^2}{2} u_0^m - x_1^m\| \leq \frac{(h_1^m)^2}{4m}.
\]

Consequently there is \(w_0^m \in \mathbb{R}^n \) such that \(\|w_0^m\| \leq \frac{1}{2m} \) and

\[
x_1^m = \varphi_0(0) + h_1^m y_0^m + \frac{(h_1^m)^2}{2} u_0^m + \frac{(h_1^m)^2}{2} w_0^m.
\]

Now we define \(z_0^m = u_0^m + w_0^m \), therefore \(z_0^m \in F(\varphi_0, y_0) + \frac{1}{2m} B(0, 1) \) and \(x_1^m = \varphi_0(0) + h_1^m y_0^m + \frac{(h_1^m)^2}{2} z_0^m \). We put \(y_1^m = y_0^m + h_1^m z_0^m \) and \(t_1^m = t_0^m + h_1^m \) and for \(t \in [t_0^m, t_1^m] \) we define

\[
x_m(t) = \varphi_0(0) + (t - t_0^m) y_0^m + \frac{(t - t_0^m)^2}{2} z_0^m.
\]
Thus, the properties (i)–(iv) are clearly satisfied for \(p = 0 \).

Since \(\tau(t^n_0)x_m = \varphi_0 \), using relation (3.1), we obtain

\[
\sup\{\|v\| : v \in F(\tau(t^n_0)x_m, y_0)\} \leq M.
\]

Therefore, \(\|z^n_0\| \leq M + \frac{1}{2^n} < M + 1 \). We get from the definition of \(y^n_1 \), \(\|y^n_1 - y^n_0\| \leq h^n_1\|z^n_0\| \leq T(M + 1) \leq r \). Thus \(y^n_1 \in B(y_0, r) \). Since, \(x^n_1 \in P(x^n_0) \subseteq K \) then to prove property (v) for \(p = 0 \), it is sufficient to show that

\[
\|x^n_1 - \varphi_0(0)\| < r.
\]

We get using (3.1), (3.3)

\[
\|x^n_1 - \varphi_0(0)\| = h^n_1\|y^n_0\| + \frac{(h^n_1)^2}{2}\|z^n_0\|
\]

\[
\leq T\|y^n_0\| + \frac{T^2}{2}(M + 1)
\]

\[
\leq \frac{r}{8\|y_0\| + 1}\|y_0\| + \frac{r}{8(M + 1)}(M + 1)
\]

\[
< \frac{r}{8} + \frac{r}{8} < r,
\]

and hence (v) is satisfied for \(p = 0 \). To prove (vi) for \(p = 0 \), we note that, for \(t \in [t^n_0, t^n_1] \),

\[
\|x_m(t) - \varphi_0(0)\| = (t - t^n_0)\|y^n_0\| + \frac{(t - t^n_0)^2}{2}\|z^n_0\|
\]

\[
\leq h^n_1\|y^n_0\| + \frac{(h^n_1)^2}{2}\|z^n_0\|
\]

\[
\leq T\|y^n_0\| + \frac{T^2}{2}(M + 1)
\]

\[
\leq \frac{r}{8\|y_0\| + 1}\|y_0\| + \frac{1}{2}\frac{r}{4(M + 1)}(M + 1)
\]

\[
< \frac{r}{8} + \frac{r}{8} < r,
\]

which proves (vi) for \(p = 0 \).

To prove property (vii) for \(p = 0 \), we note that if \(-\sigma \leq s \leq -t^n_1 \), then \(t^n_1 + s \leq 0 \) and by (3.2), (3.3), we get

\[
\|\tau(t^n_1)x_m - \varphi\|_{-\sigma} = \sup_{-\sigma \leq s \leq 0}\|x_m(t^n_1 + s) - \varphi_0(s)\| = \sup_{-\sigma \leq s \leq 0}\|\varphi(t^n_1 + s) - \varphi_0(s)\| < \frac{r}{4}.
\]

while if \(-t^n_1 \leq s \leq 0 \), then \(0 \leq t^n_1 + s \leq t^n_1 \) and hence by (3.3) we get

\[
\|x_m(t^n_1 + s) - \varphi_0(s)\| \leq \|x_m(t^n_1 + s) - \varphi_0(0)\| + \|\varphi_0(0) - \varphi_0(s)\|
\]

\[
\leq (h^n_1 + s)\|y^n_0\| + \frac{(h^n_1 + s)^2}{2}\|z^n_0\| + \frac{r}{4}
\]

\[
\leq T\|y^n_0\| + \frac{T^2}{2}\|z^n_0\| + \frac{r}{4}
\]

\[
\leq \frac{r}{8\|y_0\| + 1}\|y_0\| + \frac{r}{8(M + 1)}(M + 1) + \frac{r}{4}
\]

\[
< \frac{r}{8} + \frac{r}{8} + \frac{r}{4} = \frac{r}{2},
\]

which shows that \(\tau(t^n_1)x_m \in B_{\sigma}(\varphi_0, r) \) and hence (vii) is proved.
Now we suppose that \(t^m_{p+1}, x^m_{p+1}, y^m_{p+1}, z^m_{p+1} \) are well defined for \(p = 0, 1, \ldots, (q - 1) \) and \(x_m \) is defined on the interval \([-\sigma, t^m_q]\) such that all the properties (i)–(vii) are satisfied for \(p = 0, 1, \ldots, (q - 1) \).

We define \(t^m_{q+1}, x^m_{q+1}, y^m_{q+1}, z^m_{q+1} \) and \(x_m \) on \([t^m_q, t^m_{q+1}]\) such that the properties (i)–(vii) are satisfied for \(p = q \). We denote by \(H^m_q \) the set of all \(h \in]0, \frac{1}{m}\) for which the following conditions are satisfied:

(a) \(h < T - t^m_q \).

(b) there exists \(u^m_q \in F(\tau(t^m_q)x_m, y^m_q) \) such that

\[
\|d(x^m + hy^m_q + \frac{h^2}{4}u^m_q, P(x^m))\|_2 \leq \frac{h^2}{4m}.
\]

From the fact that (v) and (vii) are true for \(p = q - 1 \), we get \(y^m_q \in \Omega \) and \(\tau(t^m_q)x_m \in K_q \). Moreover, since (iv) is true for \(p = q - 1 \), then

\[
\tau(t^m_q)x_m(0) = x_m(t^m_q) = x^m_q.
\]

So, the condition (H3) gives:

\[
F(\tau(t^m_q)x_m, y^m_q) \subseteq T^2_{P(x^m_q)}(x^m_q, y^m_q).
\]

Therefore there is \(u^m_q \in F(\tau(t^m_q)x_m, y^m_q) \) such that

\[
\liminf_{h \to 0} \frac{1}{h^2}d(x^m + hy^m_q + \frac{h^2}{4}u^m_q, P(x^m_q)) = 0,
\]

which shows that there is a positive number \(h \) such that \(h < \min\{\frac{1}{m}, T - t^m_q\} \) and

\[
\|d(x^m + hy^m_q + \frac{h^2}{4}u^m_q, P(x^m_q))\|_2 \leq \frac{h^2}{4m}.
\]

Hence \(h \in H^m_q \). Since \(H^m_q \) is bounded by the number \(T \), there is a number \(d^m_q \) such that \(d^m_q = \sup\{\alpha : \alpha \in H^m_q\} \). Since \(H^m_q \cap \{d^m_q, d^m_q\} \neq \emptyset \), an element \(h^m_{q+1} \in H^m_q \cap \{d^m_q, d^m_q\} \) is found such that

\[
\|d(x^m + h^m_{q+1}y^m_q + \frac{(h^m_{q+1})^2}{2}u^m_q, P(x^m_q))\|_2 \leq \frac{(h^m_{q+1})^2}{4m}.
\]

From the closedness of \(P(x^m_q) \), there is \(x^m_{q+1} \in P(x^m_q) \subseteq K \) with

\[
\|x^m + h^m_{q+1}y^m_q + \frac{(h^m_{q+1})^2}{2}u^m_q - x^m_{q+1}\| \leq \frac{(h^m_{q+1})^2}{4m}.
\]

Consequently, there is \(u^m_q \in \mathbb{R}^n \) with \(\|u^m_q\| \leq \frac{1}{2m} < \frac{1}{m} \) such that

\[
x^m_{q+1} = x^m_q + h^m_{q+1}y^m_q + \frac{(h^m_{q+1})^2}{2}u^m_q + \frac{(h^m_{q+1})^2}{2}w^m_q
\]

\[
= x^m_q + h^m_{q+1}y^m_q + \frac{(h^m_{q+1})^2}{2}(u^m_q + w^m_q).
\]

We define \(z^m_q = u^m_q + w^m_q \). So that

\[
z^m_q \in F(\tau(t^m_q)x_m, y^m_q) + \frac{1}{m}B(0, 1),
\]

\[
x^m_{q+1} = x^m_q + h^m_{q+1}y^m_q + \frac{(h^m_{q+1})^2}{2}z^m_q.
\]
We put \(y_{q+1}^m = y_q^m + h_{q+1}^m z_q^m \) and \(t_{q+1}^m = t_q^m + h_{q+1}^m \) and for \(t \in [t_q^m, t_{q+1}^m] \), we define
\[
x_m(t) = x_q^m + (t - t_q^m) y_q^m + \frac{(t - t_q^m)^2}{2} z_q^m.
\]

Obviously the relations (i)–(iv) are satisfied for \(p = q \).

Now we prove that (v) is true for \(p = q \). Since (v) and (vii) are true for \(p = q - 1 \), then \(\tau(t_q^m)x_m \in B(\varphi_0, r) \) and \(y_{q+1}^m \in B(y_0, r) \), and hence by (3.1) we get \(\|z_q^m\| \leq M + 1 \).

Let us prove that \(\|y_{q+1}^m - y_0\| < r \). We note that \(y_{q+1}^m = y_q^m + h_{q+1}^m z_{q-1}^m + h_{q+1}^m z_{q-1}^m \). By iterating we get
\[
y_{q+1}^m = y_0^m + \sum_{s=0}^q h_{s+1}^m z_s^m. \tag{3.4}
\]

Thus,
\[
\|y_{q+1}^m - y_0\| = \sum_{s=0}^q h_{s+1}^m \|z_s^m\| \leq (M + 1) \sum_{s=0}^q h_{s+1}^m \leq (M + 1)T < \frac{r}{4} < r.
\]

To prove that \(x_{q+1}^m \in B(\varphi_0(0), r) \) we first use the induction technique to prove the relation
\[
x_{p+1}^m = \varphi_0(0) + \left(\sum_{j=0}^p h_{j+1}^m \right) y_0^m + \frac{1}{2} \sum_{j=0}^p (h_{j+1}^m)^2 z_j^m + \sum_{i=0}^{p-1} h_i^m h_{i+1}^m z_i^m, \tag{3.5}
\]
for \(p = 1, \ldots, q \). For \(p = 1 \) we note that
\[
x_2^m = x_1^m + h_2^m y_1^m + \frac{1}{2} (h_2^m)^2 z_1^m
\]
\[
= x_1^m + h_2^m (y_0^m + h_{2}^m z_0^m) + \frac{1}{2} (h_2^m)^2 z_1^m
\]
\[
= (x_0^m + h_1^m y_0^m + \frac{1}{2} (h_1^m)^2 z_0^m) + h_2^m (y_0^m + h_{1}^m z_0^m) + \frac{1}{2} (h_2^m)^2 z_1^m
\]
\[
= x_0^m + (h_1^m + h_2^m) y_0^m + \frac{1}{2} ((h_1^m)^2 z_0^m + (h_2^m)^2 z_1^m) + h_2^m (h_1^m z_0^m)
\]
\[
= \varphi_0(0) + \left(\sum_{j=0}^1 h_{j+1}^m \right) y_0^m + \frac{1}{2} \sum_{j=0}^1 (h_{j+1}^m)^2 z_j^m + \sum_{j=1}^1 h_j^m h_{j+1}^m z_j^m.
\]

Then relation (3.5) is true for \(p = 1 \). Suppose that (3.5) is true for \(p = q - 1 \). This gives us
\[
x_q^m = \varphi_0(0) + \sum_{j=0}^{q-1} h_{j+1}^m y_0^m + \frac{1}{2} \sum_{j=0}^{q-1} (h_{j+1}^m)^2 z_j^m + \sum_{i=0}^{q-1} h_i^m h_{i+1}^m z_i^m.
\]

So, according to the definition of \(x_{q+1}^m \) we have
\[
x_{q+1}^m = x_q^m + h_{q+1}^m y_q^m + \frac{1}{2} (h_{q+1}^m)^2 z_q^m
\]
\[
= \varphi_0(0) + \left(\sum_{j=0}^{q-1} h_{j+1}^m \right) y_0^m + \frac{1}{2} \sum_{j=0}^{q-1} (h_{j+1}^m)^2 z_j^m + \sum_{i=0}^{q-1} h_i^m h_{i+1}^m z_i^m.
\]
Thus (v) is true for p. This implies that the relation (3.5) is true for p. Now, from the fact that $\|z_p\| \leq M + 1$, for all $p = 0, 1, \ldots, q$ we get

$$
\|x_{q+1} - \varphi_0(0)\|
\leq \|y_0\|\left(\sum_{j=0}^{q} h_{j+1}^m + \frac{1}{2} \sum_{j=0}^{q} (h_{j+1}^m)^2(M + 1) + (M + 1) \sum_{i=0}^{q-1} h_{i+1}^m h_{j+1}^m\right)
\leq \|y_0\|T + \frac{1}{2} (M + 1)T^2 + (M + 1)T^2
\leq \|y_0\|T + \frac{3}{2} (M + 1)T^2
\leq \frac{r}{8} + \frac{3r}{8} = \frac{r}{2}.
$$

Thus (v) is true for $p = q$.

Let us prove (vi) for $p = q$, namely $\|x_m(t) - \varphi_0(0)\| < r$, for all $t \in [t_q^m, t_{q+1}^m]$. Let $t \in [t_q^m, t_{q+1}^m]$. We have

$$
x_m(t) = x_q^m + (t - t_q^m)y_q^m + \frac{1}{2} (t - t_q^m)^2 z_q^m
= \varphi_0(0) + \sum_{j=0}^{q-1} h_{j+1}^m y_0 + \frac{1}{2} \sum_{j=0}^{q-1} (h_{j+1}^m)^2 z_j^m + \sum_{i=0}^{q-2} \sum_{j=i+1}^{q-1} h_{i+1}^m h_{j+1}^m z_i^m
+ (t - t_q^m)(y_0 + \sum_{j=0}^{q-1} h_{j+1}^m z_j^m) + \frac{1}{2} (t - t_q^m)^2 z_q^m.
$$

Thus,

$$
\|x_m(t) - \varphi_0(0)\|
\leq \|y_0\|\left(\sum_{j=0}^{q-1} h_{j+1}^m + \frac{1}{2} \sum_{j=0}^{q-1} (h_{j+1}^m)^2\right)\|z_q^m\|.
$$
We prove (vii) for $p > q$.

\[
\|\tau(t_m^{q+1})x_m - \varphi_0\|_p = \sup_{-\sigma \leq s \leq 0} \|\tau(t_m^{q+1})x_m(s) - \varphi_0(s)\|.
\]

\[
= \sup_{-\sigma \leq s \leq 0} \|x_m(t_m^{q+1} + s) - \varphi_0(s)\|.
\]

\[
\leq \sup_{-\sigma \leq s \leq -t_m^{q+1}} \|\tau(t_m^{q+1})x_m(s) - \varphi_0(s)\| + \sup_{-t_m^{q+1} \leq s \leq 0} \|\tau(t_m^{q+1})x_m(s) - \varphi_0(s)\|.
\]

\[
\leq \sup_{-\sigma \leq s \leq -t_m^{q+1}} \|\varphi_0(t_m^{q+1} + s) - \varphi_0(s)\| + \sup_{-t_m^{q+1} \leq s \leq 0} \|x_m(t_m^{q+1} + s) - \varphi_0(s)\|
\]

\[
+ \sup_{-t_m^{q+1} \leq s \leq 0} \|\varphi_0(0) - \varphi_0(s)\|.
\]

\[
\leq \frac{r}{4} + \frac{r}{4} + \frac{r}{4} < r.
\]

It remains to show that there is a positive number ν_m such that $t_m^{q+1} - T < t_m^{q+1}$. Therefore, we have to prove that the iterative process is finite. For this purpose suppose that the iterative process is not finite. So, for each non-negative integer p, there are $t_m^p \in [0, T]$, x_m^p, y_m^p, z_m^p such that the relations (i)–(vii) are satisfied. Since the sequence $\{t_m^p\}_{p \geq 1}$ is bounded and increasing, there is $t_m^p \in [0, T]$ such that $\lim_{p \to \infty} t_m^p = t_m^\star$. Let us show that $\{x_m^p\}_{p \geq 1}$, $\{y_m^p\}_{p \geq 1}$ are Cauchy sequences. Let p and q be two positive integers such that $p > q$. From the relation (3.5) we have

\[
\|x_m^p - x_m^q\|
\]

\[
= \|\left(\sum_{j=0}^{p-1} h_{j+1}^m y_0 + \frac{1}{2} \sum_{j=0}^{p-1} (h_{j+1}^m)^2 z_j^m + \sum_{i=0}^{p-2} \sum_{j=i+1}^{p-1} h_{i+1}^m h_{j+1}^m z_i^m\right) - \left(\sum_{j=0}^{q-1} h_{j+1}^m y_0 - \frac{1}{2} \sum_{j=0}^{q-1} (h_{j+1}^m)^2 z_j^m - \sum_{i=0}^{q-1} \sum_{j=i+1}^{q-1} h_{i+1}^m h_{j+1}^m z_i^m\right)\|
\]

\[
\leq \left(\sum_{j=0}^{p-1} h_{j+1}^m\right)\|y_0\| + \frac{1}{2} \left(\sum_{j=q}^{p-1} (h_{j+1}^m)^2 \|z_j^m\| + \sum_{i=q-1}^{p-2} \sum_{j=i+1}^{q-1} h_{i+1}^m h_{j+1}^m \|z_i^m\|\right).
\]
Furthermore, by (ii) and the relation (3.1), the sequences

\[x \]

and

\[y \]

Since the sequence

\[t \]

are bounded in

\[t \]

Consequently,

\[x \]

p

\[x \]

Thus the sequence

\[x \]

\[y \]

Thus

\[x \]

\[y \]

Since the sequence \[\{t_p\}_{p \geq 1} \] is convergent, the sequence \[\{x^m_p\}_{p \geq 1} \] is Cauchy. Then there is \(x^m_{\alpha} \in \mathbb{R}^n \) such that \(\lim_{p \to \infty} x^m_p = x^m_{\alpha} \). Also,

\[\|y^m_p - y^m_q\| = \| \sum_{s=q}^{p-1} h^m_{s+1} z^m_s \| \leq (M+1)(t^m_p - t^m_q). \]

Thus the sequence \(\{y^m_p\}_{p \geq 1} \) is a Cauchy sequence in \(\mathbb{R}^n \). Hence there is \(y^m_{\alpha} \in \mathbb{R}^n \) such that

\[y^m_{\alpha} = \lim_{p \to \infty} y^m_p. \]

From property (v) we note that

\[x^m_p \in P(x^m_p) \cap \overline{B(\varphi_0(0), r)} \subseteq K, \]

(3.6)

and

\[y^m_p \in \overline{B(y_0, r)} \subseteq \Omega. \]

Thus \(x^m_{\alpha} \in K \) and \(y^m_{\alpha} \in \overline{B(y_0, r)} \subseteq \Omega. \)

Now we put \(x_m(t^m_{\alpha}) = x^m_{\alpha} \). To show that \(x_m \) is continuous at \(t^m_{\alpha} \) let \(\{s^m_p : p \geq 1\} \) be a sequence in \([0, t^m_{\alpha}] \) such that \(\lim_{p \to \infty} s^m_p = t^m_{\alpha} \) and \(t^m_p \leq s^m_p \leq t^m_{p+1} \) for every \(p \geq 1 \). We have

\[\|x_m(s^m_p) - x_m(t^m_{\alpha})\| \leq \|x_m(s^m_p) - x_m(t^m_p)\| + \|x_m(t^m_p) - x_m(t^m_{\alpha})\| \]

\[\leq (s^m_p - t^m_p)\|y^m_p\| + \frac{1}{2}(s^m_p - t^m_p)^2(M+1) + \|x^m_p - x^m_{\alpha}\|. \]

By taking the limit as \(p \to \infty \), we obtain

\[\lim_{p \to \infty} \|x_m(s^m_p) - x_m(t^m_{\alpha})\| = 0 \]

which prove that \(x_m \) is continuous at \(t^m_{\alpha} \). Hence \(x_m \) is continuous on \([-\sigma, t^m_{\alpha}] \). Consequently,

\[\lim_{p \to \infty} \tau(t^m_p)x_m = \tau(t^m_{\alpha}) x_m. \]

Note that from (vii), \(\tau(t^m_p)x_m \in K_0 \cap \overline{B_\sigma(\varphi_0, r)} \). Since the subset \(K_0 \cap \overline{B_\sigma(\varphi_0, r)} \) is closed, we obtain

\[\tau(t^m_p)x_m \in K_0 \cap \overline{B_\sigma(\varphi_0, r)} \].

Furthermore, by (ii) and the relation (3.1), the sequences \(\{z^m_p\}_{p \geq 1} \) and \(\{u^m_p\}_{p \geq 1} \) are bounded in \(\mathbb{R}^n \). So, there are two convergent subsequences, denoted again
by, \(\{z_p\}_{p \geq 1}, \{u_p\}_{p \geq 1} \). Thus there are two elements \(z^m_{\alpha}, u^m_{\alpha} \) of \(\mathbb{R}^n \) such that \(\lim_{p \to \infty} z^m_{\alpha} = z^m_{\alpha}, \lim_{p \to \infty} u^m_{\alpha} = u^m_{\alpha} \).

Now since \(F \) is upper semicontinuous on \(K_0 \times \Omega \) with compact values and since \(u^m_p \in F(\tau(t^m_p)x_m, y^m_p) \), for all \(p \geq 1 \), it follows that \(u^m_{\alpha} \in F(\tau(t^m_{\alpha})x_m, y^m_{\alpha}) \). Applying condition (H3),

\[
\lim_{h \to 0^+} d(x_m(t^m_{\alpha}) + hy^m_{\alpha} + \frac{h^2}{2}u^m_{\alpha}, P(x_m(t^m_{\alpha}))) = 0.
\]

Hence, there is \(h \in]0, T - t^m_{\alpha}[\) such that

\[
d(x_m^m + hy^m_{\alpha} + \frac{h^2}{2}u^m_{\alpha}, P(x_m^m)) \leq \frac{h^2}{16m}.
\]

We prove that \(h \) belongs to \(H^m_p \) for every \(p \) sufficient large. Since \(\{t^m_p\}_p \) is an increasing sequence to \(t^m_p \) and since \(\lim_{p \to \infty} x^m_p = x^m_{\alpha}, \lim_{p \to \infty} y^m_p = y^m_{\alpha} \) and \(\lim_{p \to \infty} u^m_p = u^m_{\alpha} \). Then we can find a natural number \(p_1 \) such that for every \(p > p_1 \) we have \(t^m_p < t^m_{\alpha} < t^m_{p} + h < t^m_{\alpha} + h, \)

\[
\|x^m_p - x^m_{\alpha}\| \leq \frac{h^2}{24m},
\]

\[
\|y^m_p - y^m_{\alpha}\| \leq \frac{h}{24m},
\]

\[
\|u^m_p - u^m_{\alpha}\| \leq \frac{1}{12m}.
\]

From the lower semicontinuity of \(F \) at \(x^m_{\alpha} \), there is a natural number \(p_2 \) such that \(P(x^m_{\alpha}) \leq P(x^m_{p}) + \frac{h^2}{16m}B(0,1), \) for all \(p \geq p_2 \). This gives that if \(z \in \mathbb{R}^n \), then

\[
d(z, P(x^m_{p})) \leq d(z, P(x^m_{\alpha})) + \frac{h^2}{16m}, \forall p > p_2.
\]

Now let \(p > \max(p_1, p_2) \). By (3.7)–(3.11), we have

\[
d(x^m_p + hy^m_p + \frac{h^2}{2}u^m_p, P(x^m_p))
\]

\[
\leq d(x^m_p + hy^m_p + \frac{h^2}{2}u^m_p, x^m_{\alpha} + hy^m_{\alpha} + \frac{h^2}{2}u^m_{\alpha})
\]

\[
+ d(x^m_{\alpha} + hy^m_{\alpha} + \frac{h^2}{2}u^m_{\alpha}, P(x^m_{\alpha})) + \frac{h^2}{16m}
\]

\[
\leq \|x^m_p - x^m_{\alpha}\| + h\|y^m_p - y^m_{\alpha}\| + \frac{h^2}{2}\|u^m_p - u^m_{\alpha}\| + \frac{h^2}{8m} + \frac{h^2}{16m}
\]

\[
\leq \frac{h^2}{24m} + \frac{h^2}{24m} + \frac{h^2}{24m} + \frac{h^2}{16m} + \frac{h^2}{16m}
\]

\[
= \frac{h^2}{8m} + \frac{h^2}{8m} = \frac{h^2}{4m}.
\]

Thus \(h \in H^m_p \), for all \(p \geq \max(p_1, p_2) \). From the choice of \(h^m_p \) we have

\[
\frac{1}{2} \sup_{p \geq 1} H^m_p \leq h^m_p \leq \sup_{p \geq 1} H^m_p.
\]

Hence, \(h^m_p \geq \frac{h}{2} > \frac{h}{4} \) for all \(p \geq \max(p_1, p_2) \). This means that \(\lim_{p \to \infty} h^m_p = \lim_{p \to \infty} (t^m_{p+1} - t^m_p) \) cannot equal to zero, which contradicts with the fact that the sequence \(\{t^m_p\}_{p \geq 1} \) is convergent. So, the process must be finite. \(\square \)
Theorem 3.2. In addition to the assumptions of lemma 3.1 we suppose that the graph of P is closed and the following condition is satisfied.

(H4) for all $x \in K$ and all $y \in P(x)$ we have $P(y) \subseteq P(x)$.

Then for all $(\varphi_0, y_0) \in K_0 \times \Omega$ there exist $T > 0$ and an absolutely continuous function $x : [0, T] \rightarrow K$, with absolutely continuous derivative such that

$$x''(t) \in F(\tau(t)x,x'(t)) \quad \text{a.e. on } [0, T]$$

$$x(t) = \varphi_0(t), \quad \forall t \in [-\sigma, 0]$$

$$x'(0) = y_0.$$

Moreover, x is monotone with respect to P in the sense that for all $t \in [0, T]$ and all $s \in [t, T]$ we have $x(s) \in P(x(t))$; i.e., $0 \leq t \leq s \leq T \Rightarrow x(t) \leq x(s)$.

Proof. According to the definition of x_m, for all $m \geq 1$, all $p = 0, 1, 2, \ldots, \nu_m - 1$ and all $t \in [t^m_p, t^m_{p+1}]$ we have

$$x'_m(t) = y^m_p + (t - t^m_p)z^m_p, \quad x''_m(t) = z^m_p \in F(\tau(t^m_p)x_m, y^m_p) + \frac{1}{m}B(0,1).$$

Then from (ii) and (v) of lemma 3.1 we get

$$\|x'_m(t)\| \leq \|y^m_p\| + h^m_{p+1}\|z^m_p\| \leq \|y_0\| + r + T(M + 1)$$

$$\leq \|y_0\| + r + \frac{r}{4}, \quad \forall t \in [0, T]$$

(3.12)

and

$$\|x''_m(t)\| \leq M + \frac{1}{m} \leq M + 1, \quad \forall t \in [0, T].$$

(3.13)

Then the sequences (x_m) and (x'_m) are equicontinuous in $C([0, T], \mathbb{R}^n)$. Applying Ascoli-Arzelà theorem, there is a subsequence of (x_m), denoted again by (x_m), and an absolutely continuous function $x : [0, T] \rightarrow \mathbb{R}^n$ with absolutely continuous derivative x' such that (x_m) converges uniformly to x on $[0, T]$ and (x'_m) converges uniformly to x' on $[0, T]$ and (x''_m) converges weakly to x'' in $L^2([0, T], \mathbb{R}^n)$. Furthermore, since all the functions x_m equal φ_0 on $[-\sigma, 0]$, we can say that x_m converges uniformly to x on $[-\sigma, T]$ where $x = \varphi_0$ on $[-\sigma, 0]$.

Now, for each $t \in [0, T]$ and each $m \geq 1$, let $\delta_m(t) = t^m_p$, $\theta_m(t) = t^m_{p+1}$, if $t \in [t^m_p, t^m_{p+1}]$ and $\delta_m(0) = \theta_m(0) = 0$. For $t \in [t^m_p, t^m_{p+1}]$ we get

$$x''_m(t) = z^m_p \in F(\tau(t^m_p)x_m, y^m_p) + \frac{1}{m}B(0,1).$$

$$= F(\tau(\delta_m(t))x_m, x'_m(t^m_p)) + \frac{1}{m}B(0,1).$$

Thus for all $m \geq 1$ and a.e. on $[0, T]$,

$$x''_m(t) \in F(\tau(\delta_m(t))x_m, x'_m(\delta_m(t))) + \frac{1}{m}B(0,1)$$

(3.14)

Also, for all $m \geq 1$ and all $t \in [0, T]$,

$$\tau(\theta_m(t))x_m \in B_\sigma(\varphi_0, r) \cap K_0$$

(3.15)

$$x_m(t) \in B(\varphi_0(0), r)$$

(3.16)

$$x_m(\theta_m(t)) \in P(x_m(\delta_m(t))) \subseteq K$$

(3.17)
Claim: For each $t \in [0, T]$, \(\lim_{m \to \infty} \tau(\theta_m(t))x_m = \tau(t)x \) in $C([-\sigma, 0], \mathbb{R}^n)$. Let $t \in [0, T]$. then
\[
\|\tau(\theta_m(t))x_m - \tau(t)x\|_\sigma \\
\leq \|\tau(\theta_m(t))x_m - \tau(t)x\|_\sigma + \|\tau(t)x_m - \tau(t)x\|_\sigma \\
\leq \sup_{-\sigma \leq s \leq 0} \|x_m(\theta_m(t) + s) - x_m(t + s)\| + \|\tau(t)x_m - \tau(t)x\|_\sigma \\
\leq \sup_{-\sigma \leq s_1 \leq s_2 \leq T, |s_2 - s_1| \leq \frac{\eta}{m}} \|x_m(s_2) - x_m(s_1)\| + \|\tau(t)x_m - \tau(t)x\|_\sigma \\
\leq \sup_{-\sigma \leq s_1 \leq s_2 \leq 0, |s_2 - s_1| \leq \frac{\eta}{m}} \|\varphi_0(s_2) - \varphi_0(s_1)\| \\
+ \sup_{-\sigma \leq s_1 \leq 0, |s_1| \leq \frac{\eta}{m}} \|x_m(0) - x_m(s_1)\| + \sup_{0 \leq s_2 \leq T, |s_2| \leq \frac{\eta}{m}} \|x_m(s_2) - x_m(0)\| \\
+ \sup_{0 \leq s_1 \leq T, |s_1| \leq \frac{\eta}{m}} \|x_m(s_2) - x_m(s_1)\| + \|\tau(t)x_m - \tau(t)x\|_\sigma \\
\leq 2 \sup_{-\sigma \leq s_1 \leq s_2 \leq 0, |s_2 - s_1| \leq \frac{\eta}{m}} \|\varphi_0(s_2) - \varphi_0(s_1)\| \\
+ 2 \sup_{0 \leq s_1 \leq T, |s_1| \leq \frac{\eta}{m}} \|x_m(s_2) - x_m(s_1)\| + \|\tau(t)x_m - \tau(t)x\|_\sigma.
\]
Using the continuity of φ_0, the fact that (x'_m) is uniformly bounded, the uniform convergence of (x_m) towards x and the preceding estimate, we get
\[
\lim_{m \to \infty} \|\tau(\theta_m(t))x_m - \tau(t)x\|_\sigma = 0.
\]
Similarly, for each $t \in [0, T]$, \(\lim_{m \to \infty} \tau(\delta_m(t))x_m = \tau(t)x \) in $C([-\sigma, 0], \mathbb{R}^n)$. Also, since \(\lim_{m \to \infty} \delta_m(t) = t \) and (x'_m) is uniformly bounded, then
\[
\lim_{m \to \infty} x'_m(\delta_m(t)) = x'(t) \quad \forall t \in [0, T].
\]
Thus by the upper semicontinuity of F, and by (3.12), we obtain
\[
x''(t) \in \overline{C}O F(\tau(t)x, x'(t)) \subseteq \partial V(x'(t)) \text{ a.e. on } [0, T].
\]
Our aim now is proving the relation
\[
x''(t) \in F(\tau(t)x, x'(t)) \quad \text{a.e. on } [0, T].
\]
Since F is upper semicontinuous with closed values, then by \cite[prop. 1.1.2]{1}, the graph of F is closed in $[0, T] \times \mathbb{R}^n \times \mathbb{R}^n$. So, if we prove that the sequence (x''_m) has a subsequence converges strongly point wise to x'' then the relation (3.14) assures that the relation (3.20) is true.
In order to show that (x''_m) has a subsequence converges strongly point wise to x'', we note that the condition (H2) and property (ii) of Lemma 3.1 give
\[
x'_p - w'_p \in F(\tau(t^m_p)x_p, y'_p) \subseteq \partial V(y'_p) = \partial V(x'_m(t^m_p)),
\]
for $p = 0, 1, 2, \ldots, \nu_m - 2$.
From the definition of the subdifferential of V, for $p = 0, 1, 2, \ldots, \nu_m - 2$, we have

$$V(x_m'(t_p^{m+1})) - V(x_m'(t_p^m)) \geq \langle x_p^m - w_p^m, x_m'(t_p^{m+1}) - x_m'(t_p^m) \rangle$$

$$= \langle x_p^m - w_p^m, \int_{t_p^m}^{t_p^{m+1}} x_m''(s) \, ds \rangle$$

$$= \langle z_p^m, \int_{t_p^m}^{t_p^{m+1}} x_m''(s) \, ds \rangle - \langle w_p^m, \int_{t_p^m}^{t_p^{m+1}} x_m''(s) \, ds \rangle$$

$$= h_{p+1}^m ||z_p^m||^2 - \langle w_p^m, \int_{t_p^m}^{t_p^{m+1}} x_m''(s) \, ds \rangle$$

$$= \int_{t_p^m}^{t_p^{m+1}} ||x_m''(s)||^2 \, ds - \langle w_p^m, \int_{t_p^m}^{t_p^{m+1}} x_m''(s) \, ds \rangle$$ \hspace{1cm} (3.22)

Analogously,

$$V(x_m'(T)) - V(x_m'(t_{\nu_m-1}^m)) \geq \langle x_{\nu_m-1}^m - w_{\nu_m-1}^m, \int_{t_{\nu_m-1}^m}^{T} x_m''(s) \, ds \rangle$$

$$= \int_{t_{\nu_m-1}^m}^{T} ||x_m''(s)||^2 \, ds - \langle w_{\nu_m-1}^m, \int_{t_{\nu_m-1}^m}^{T} x_m''(s) \, ds \rangle$$ \hspace{1cm} (3.23)

By adding the $\nu_m - 1$ inequalities from (3.22) and the inequality (3.23), we get

$$V(x_m'(T)) - V(x_m'(0))$$

$$= V(x_m'(T)) - V(x_m'(t_{\nu_m-1}^m)) + V(x_m'(t_{\nu_m-1}^m)) - V(x_m'(t_{\nu_m-2}^m)) + \ldots$$

$$+ V(x_m'(t_1^m)) - V(x_m'(0))$$

$$\geq \int_0^T ||x_m''(s)||^2 \, ds - \sum_{p=0}^{\nu_m-2} \langle w_p^m, \int_{t_p^m}^{t_{p+1}^m} x_m''(s) \, ds \rangle - \langle w_{\nu_m-1}^m, \int_{t_{\nu_m-1}^m}^{T} x_m''(s) \, ds \rangle$$ \hspace{1cm} (3.24)

Now,

$$\sum_{p=0}^{\nu_m-2} \langle w_p^m, \int_{t_p^m}^{t_{p+1}^m} x_m''(s) \, ds \rangle + \langle w_{\nu_m-1}^m, \int_{t_{\nu_m-1}^m}^{T} x_m''(s) \, ds \rangle$$

$$\leq \sum_{p=0}^{\nu_m-2} \|w_p^m\|(M + 1)(t_{p+1}^m - t_p^m) + \|w_{\nu_m-1}^m\|(M + 1)(T - t_{\nu_m-1}^m)$$

$$\leq \frac{T(M + 1)}{m}$$

Hence, by passing to the limit as $m \to \infty$ in (3.24) we obtain

$$V(x_m'(T)) - V(y_0) \geq \lim_{m \to \infty} \sup_{t \in [0,T]} \int_0^T ||x_m''(s)||^2 \, ds.$$ \hspace{1cm} (3.25)

On the other hand from relation (3.19) and [5, Lemma 3.3], we obtain

$$\frac{d}{dt} V(x'(t)) = ||x''(t)||^2, \quad \text{a.e. on } [0,T].$$
Thus, \(V(x'(T)) - V(x'(0)) = \int_0^T \|x''(s)\|^2 \, ds \), which yields directly that
\[
V(x'(T)) - V(y_0) = \int_0^T \|x''(s)\|^2 \, ds \tag{3.26}
\]
Therefore, by (3.25) and (3.26), we get
\[
\int_0^T \|x''(s)\|^2 \, ds \geq \limsup_{m \to \infty} \int_0^T \|x''_m(s)\|^2 \, ds \tag{3.27}
\]
Since \((x''_m) \) converges weakly to \(x'' \) in \(L^2([0,T], \mathbb{R}^n) \), hence
\[
\int_0^T \|x''(s)\|^2 \, ds \leq \liminf_{m \to \infty} \int_0^T \|x''_m(s)\|^2 \, ds \tag{3.28}
\]
By (3.27) and (3.28), we obtain
\[
\lim_{m \to \infty} \int_0^T \|x''_m(s)\|^2 \, ds = \int_0^T \|x''(s)\|^2 \, ds,
\]
this means that the sequences \((x''_m) \) converges strongly to \(x'' \) in \(L^2([0,T], \mathbb{R}^n) \). Consequenlty there is a subsequence of \((x''_m) \), denoted again by \((x''_m) \), converges point wise to \(x'' \). From the facts that the graph of \(F \) is closed, \(\tau(t)x_m \) converges uniformly to \(\tau(t)x \), \((x''_m) \) converges uniformly to \(x'' \) and \((x''_m) \) converges point wise to \(x'' \) the relation (18) is proved.

It remains to prove the following two properties:

1. \((x(t), x'(t)) \in K \times \Omega\), for all \(t \in [0,T] \).
2. \(x(s) \in P(x(t))\) for all \(t \leq s \).

To prove the first property we note that the property (iii) of Lemma 3.1 implies that \(x_m(\delta_m(t)) \in \overline{B}(\varphi_0(0), r) \cap K \) and \(x'_m(\delta_m(t)) \in \overline{B}(y_0, r) \cap \Omega \). Since \(\lim_{m \to \infty} x_m(\delta_m(t)) = x(t) \) and \(\lim_{m \to \infty} x'_m(\delta_m(t)) = x'(t) \) then \(x(t) \in \overline{B}(\varphi_0(0), r) \cap K \) and \(x'(t) \in \overline{B}(y_0, r) \cap \Omega \).

To prove the second property, let \(t, s \in [0,T] \) be such that \(t \leq s \). Then for \(m \) large enough, we can find \(p, q \in \{0, 1, 2, \ldots, \nu_m - 2\} \) such that \(p > q, t \in [t_p^m, t_{p+1}^m] \) and \(s \in [t_q^m, t_{p+1}^m] \). Assume that \(j = p - q \). Using property (v) of Lemma 3.1 and condition (H4) we get
\[
P(x_m(t_p^m)) \subseteq P(x_m(t_{p-1}^m)) \subseteq P(x_m(t_{p-2}^m)) \subseteq \cdots \subseteq P(x_m(t_q^m)).
\]
This implies \(P(x_m(\delta_m(s))) \subseteq P(x_m(\delta_m(t))) \). Since \(x_m(\delta_m(s)) \in P(x_m(\delta_m(t))) \), it follows that \(P(x_m(\delta_m(t))) \) and hence the second property is proved. \(\square \)

As an example, let \(K = \mathbb{R} \) and \(P(x) = [x, \infty) \). Then \(x \leq y \) if and only if \(y \in P(x) \); i.e., if and only if \(x \leq y \). Then the solution obtained above is monotone in the usual sense.

References

AHMED G. IBRAHIM
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CAIRO UNIVERSITY, EGYPT
E-mail address: agamal2000@yahoo.com

FERYAL A. AL-ADANSI
DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATIONS FOR WOMEN, KING FAISAL UNIVERSITY, SUDI ARABIA
E-mail address: faladsani@hotmail.com