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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
FRACTIONAL DIFFERENTIAL EQUATIONS

TINGTING QIU, ZHANBING BAI

Abstract. In this article, we establish the existence of a positive solution to

a singular boundary-value problem of nonlinear fractional differential equa-

tion. Our analysis rely on nonlinear alternative of Leray-Schauder type and
Krasnoselskii’s fixed point theorem in a cone.

1. Introduction

Many papers and books on fractional calculus differential equation have ap-
peared recently. Most of them are devoted to the solvability of the linear frac-
tional equation in terms of a special function and to problems of analyticity in
the complex domain(see, for example [2, 8]). Moreover, Delbosco and Rodino [3]
considered the existence of a solution for the nonlinear fractional differential equa-
tion Dα

0+u = f(t, u), where 0 < α < 1, and f : [0, a] × R → R, 0 < a ≤ +∞ is a
given function,continuous in (0, a)×R. They obtained results for solutions by using
the Schauder fixed point theorem and the Banach contraction principle. Recently,
Zhang [11] considered the existence of positive solution for equation Dα

0+u = f(t, u),
where 0 < α < 1, and f : [0, 1]× [0,+∞) → [0,+∞), is a given continuous function,
by using the sub-and super-solution method.

In this article, we discuss the existence of a positive solution to boundary-value
problems of the nonlinear fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0 ,
(1.1)

where 2 < α ≤ 3, Dα
0+ is the Caputo’s differentiation, and f : (0, 1]×[0,∞) → [0,∞)

with lim
t→0+

f(t, ·) = +∞ (that is f is singular at t = 0). We obtain two results

about this boundary-value problem, by using Krasnoselskii’s fixed point theorem
and nonlinear alternative of Leray-Schauder type in a cone.

For existence theorems for fractional differential equation and applications, we
refer the reader to the survey by Kilbas and Trujillo [6]. Concerning the definitions
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of fractional integral and derivative and related basic properties, we refer the reader
to Samko, Kilbas, and Marichev [5] and Delbosco and Rodino [3].

2. Preliminaries

For the convenience of the reader, we present here the necessary definitions from
fractional calculus theory. These definitions and properties can be found in the
literature.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,∞) → R is given by

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous
function f : (0,∞) → R is given by

Dα
0+f(t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

ds,

where n − 1 < α ≤ n, provided that the right-hand side is pointwise defined on
(0,∞).

Lemma 2.3 ([10]). Let n− 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα
0+Dα

0+u(t) = u(t)− C1 − C2t− · · · − Cntn−1,

where Ci ∈ R, i = 1, 2, . . . n.
Lemma 2.4 ([10]). The relation

Iα
a+Iβ

a+ϕ = Iα+β
a+ ϕ

is valid in following case

Reβ > 0, Re(α + β) > 0, ϕ(x) ∈ L1(a, b).

Lemma 2.5. Given f ∈ C[0, 1], and 2 < α ≤ 3, the unique solution of

Dα
0+u(t) + f(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0.
(2.1)

is

u(t) =
∫ 1

0

G(t, s)f(s)ds

where

G(t, s) =

{
(α−1)t(1−s)α−2−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
t(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1.
(2.2)

Proof. We may apply Lemma2.3 to reduce Eq.(2.1) to an equivalent integral equa-
tion

u(t) = −Iα
0+f(t) + C1 + C2t + C3t

2

for some Ci ∈ R, i = 1, 2, 3. By Lemma2.4 we have

u′(t) = −D1
0+Iα

0+f(t) + C2 + 2C3t = −D1
0+I1

0+Iα−1
0+ f(t) + C2 + 2C3t

= −Iα−1
0+ f(t) + C2 + 2C3t
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u′′(t) = −D1
0+Iα−1

0+ f(t) + 2C3 = −D1
0+I1

0+Iα−2
0+ f(t) + 2C3 = −Iα−2

0+ f(t) + 2C3.

From u(0) = u′(1) = u′′(0) = 0, one has

C1 = 0, C2 =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2f(s)ds, C3 = 0.

Therefore, the unique solution of problem (2.1) is

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds +
1

Γ(α− 1)

∫ 1

0

t(1− s)α−2f(s)ds

=
∫ t

0

[
t(1− s)α−2

Γ(α− 1)
− (t− s)α−1

Γ(α)

]
f(s)ds +

∫ 1

t

t(1− s)α−2

Γ(α− 1)
f(s)ds

=
∫ 1

0

G(t, s)f(s)ds

For G(t, s), since 2 < α ≤ 3, 0 ≤ s ≤ t ≤ 1 we can obtain

(α− 1)t(1− s)α−2 ≥ t(1− s)α−2 ≥ t(t− s)α−2 ≥ (t− s)α−1

obviously,we get G(t, s) > 0. The proof is complete. �

Lemma 2.6 ([7]). Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 are
two bounded open balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose that
A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \ Ω1).

Lemma 2.7 ([4]). Let E be a Banach space with C ⊆ E closed and convex. Assume
U is a relatively open subset of C with 0 ∈ U and A : U → C is a continuous
compact map. Then either

(1) A has a fixed point in U ; or
(2) there exists u ∈ ∂U and λ ∈ (0, 1) with u = λAu.

3. Main Results

For our construction, we let E = C[0, 1] and ‖u‖ = max
0≤t≤1

|u(t)| which is a Banach

space. We seek solutions of (1.1) that lie in the cone

P = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1} .

Define operator T : P → P , by

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds .

Lemma 3.1. Let 0 < σ < 1, 2 < α ≤ 3, F : (0, 1] → R is continuous and
lim

t→0+
F (t) = ∞. Suppose that tσF (t) is continuous function on [0, 1]. Then the

function

H(t) =
∫ t

0

G(t, s)F (s)ds

is continuous on [0, 1].
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Proof. By the continuity of tσF (t) and H(t) =
∫ t

0
G(t, s)s−σsσF (s)ds It is easily

to check that H(0) = 0. The proof is divided into three cases:
Case 1: t0 = 0,∀t ∈ (0, 1]. Since tσF (t) is continuous in [0, 1], there exists a
constant M > 0, such that

∣∣tσF (t)
∣∣ ≤ M , for t ∈ [0, 1]. Hence∣∣H(t)−H(0)

∣∣ =
∣∣∣ ∫ t

0

(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
s−σsσF (s)ds

+
∫ 1

t

t(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

t(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds−

∫ t

0

(t− s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣
≤

∣∣∣ ∫ 1

0

t(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds

∣∣∣ +
∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣
≤ M

∫ 1

0

t(1− s)α−2

Γ(α− 1)
s−σds + M

∫ t

0

(t− s)α−1

Γ(α)
s−σds

=
Mt

Γ(α− 1)
B(1− σ, α− 1) +

M

Γ(α)
tα−σB(1− σ, α)

=
Γ(1− σ)Mt

Γ(α− σ)
+

Γ(1− σ)Mtα−σ

Γ(1 + α− σ)
→ 0 (as t → 0)

where B denotes the beta function.
Case 2: t0 ∈ (0, 1), for all t ∈ (t0, 1]∣∣H(t)−H(t0)

∣∣
=

∣∣∣ ∫ t

0

(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
s−σsσF (s)ds

+
∫ 1

t

t(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds−

∫ 1

t0

t0(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds

−
∫ t0

0

(α− 1)t0(1− s)α−2 − (t0 − s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

t(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds−

∫ t

0

(t− s)α−1

Γ(α)
s−σsσF (s)ds

−
∫ 1

0

t0(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds +

∫ t0

0

(t0 − s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣
=

∣∣∣ ∫ 1

0

(t− t0)(1− s)α−2

Γ(α− 1)
s−σsσF (s)ds

−
∫ t0

0

(t− s)α−1 − (t0 − s)α−1

Γ(α)
s−σsσF (s)ds−

∫ t

t0

(t− s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣
≤ M(t− t0)

Γ(α− 1)

∫ 1

0

(1− s)α−2s−σds +
M

Γ(α)

∫ t0

0

[
(t− s)α−1 − (t0 − s)α−1

]
s−σds

− M

Γ(α)

∫ t

t0

(t− s)α−1s−σds

≤ M(t− t0)
Γ(α− 1)

B(1− σ, α− 1) +
Mtα−σ

Γ(α)
B(1− σ, α)− Mtα−σ

0

Γ(α)
B(1− σ, α)
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=
Γ(1− σ)M(t− t0)

Γ(α− σ)
+

Γ(1− σ)Mtα−σ

Γ(1 + α− σ)
− Γ(1− σ)Mtα−σ

0

Γ(1 + α− σ)
→ 0 (as t → t0).

Case 3: t0 ∈ (0, 1], for all t ∈ [0, t0). The proof is similar to that of Case 2; we
omitted it. �

Lemma 3.2. Let 0 < σ < 1, 2 < α ≤ 3, f : (0, 1] × [0,+∞) → [0,+∞) is
continuous and lim

t→0+
f(t, ·) = +∞, tσf(t, u(t)) is continuous function on [0, 1] ×

[0,+∞), then the operator T : P → P is completely continuous.

Proof. For each u ∈ P , let Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds. By Lemma3.1 and the

fact that f,G(t, s) are non-negative, we have T : P → P .
Let u0 ∈ P and ‖u0‖ = C0, if u ∈ P and ‖u− u0‖ < 1, then ‖u‖ < 1 + C0 = C.

By the continuity of tσf(t, u(t)), we know that tσf(t, u(t)) is uniformly continuous
on [0, 1]× [0, C].

Thus for all ε > 0, there exists δ > 0(δ < 1), such that |tσf(t, u2)−tσf(t, u1)| < ε,
for all t ∈ [0, 1], and u1, u2 ∈ [0, C] with |u2 − u1| < δ. Obviously, if ‖u− u0‖ < δ,
then u(t), u0(t) ∈ [0, C] and ‖u(t)− u0(t)‖ < δ, for all t ∈ [0, 1]. Hence,

|tσf(t, u(t))− tσf(t, u0(t))| < ε, for all t ∈ [0, 1]. (3.1)

u ∈ P , with ‖u− u0‖ < δ. It follows from (3.1) that

‖Tu− Tu0‖ = max
0≤t≤1

∣∣Tu(t)− Tu0(t)
∣∣

≤ max
0≤t≤1

∫ 1

0

G(t, s)s−σ
∣∣sσf(s, u(s))− sσf(s, u0(s))

∣∣ds

< ε

∫ 1

0

G(t, s)s−σds

= ε

∫ 1

0

(α− 1)(1− s)α−2 − (1− s)α−1

Γ(α)
s−σds

≤ ε

Γ(α− 1)

∫ 1

0

(1− s)α−2s−σds

=
ε

Γ(α− 1)
B(1− σ, α− 1) =

Γ(1− σ)ε
Γ(α− σ)

.

By the arbitrariness of u0, T : P → P is continuous. Let M ⊂ P be bounded; i.e.,
there exists a positive constant b such that ‖u‖ ≤ b, for all u ∈ p.

Since tσf(t, u) is continuous in [0, 1]× [0,+∞), let

L = max
0≤t≤1,u∈M

tσf(t, u) + 1, ∀u ∈ M.

Then∣∣Tu(t)
∣∣ ≤ ∫ 1

0

G(t, s)s−σ|sσf(s, u(s))|ds ≤ L

∫ 1

0

G(1, s)s−σds =
Γ(1− σ)L
Γ(α− σ)

;

thus

‖Tu‖ = max
0≤t≤1

∣∣Tu(t)
∣∣ ≤ Γ(1− σ)L

Γ(α− σ)
.

So, T (M) is equicontinuous. For ε > 0 set

δ = min
{ ε

Γ(1−α)L
Γ(α−σ) + Γ(1−α)L

Γ(1+α−σ)

,
εΓ(α− σ)
2LΓ(1− σ)

,
ε

Γ(1−α)L
Γ(α−σ) + Γ(1−α)L2α

Γ(1+α−σ)

}
.
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For u ∈ M , t1, t2 ∈ [0, 1], with t1 < t2, for 0 < t2 − t1 < δ, we have∣∣Tu(t2)− Tu(t1)
∣∣

=
∣∣∣ ∫ 1

0

G(t2, s)f(s, u(s))ds−
∫ 1

0

G(t1, s)f(s, u(s))ds
∣∣∣

=
∣∣∣ ∫ 1

0

[
G(t2, s)−G(t1, s)

]
s−σsσf(s, u(s))ds

∣∣∣
≤ L

∫ 1

0

∣∣∣G(t2, s)−G(t1, s)
∣∣∣s−σds

≤ L
∣∣∣ ∫ t2

0

(α− 1)t2(1− s)α−2 − (t2 − s)α−1

Γ(α)
s−σds +

∫ 1

t2

t2(1− s)α−2

Γ(α− 1)
s−σds

−
∫ t1

0

(α− 1)t1(1− s)α−2 − (t1 − s)α−1

Γ(α)
s−σds−

∫ 1

t1

t1(1− s)α−2

Γ(α− 1)
s−σds

∣∣∣
≤ L

[
(t2 − t1)

∫ 1

0

(1− s)α−2

Γ(α− 1)
s−σds +

∫ t2

0

(t2 − s)α−1

Γ(α)
s−σds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
s−σds

]
= L

(t2 − t1)
Γ(α− 1)

∫ 1

0

s−σ(1− s)α−2ds +
L

Γ(α)

∫ t2

0

s−σ(t2 − s)α−1ds

− L

Γ(α)

∫ t1

0

s−σ(t1 − s)α−1ds

≤ L
(t2 − t1)Γ(1− σ)

Γ(α− σ)
+

LΓ(1− σ)
Γ(1 + α− σ)

(tα−σ
2 − tα−σ

1 ).

Case 1: t1 = 0, t2 < δ.∣∣Tu(t2)− Tu(t1)
∣∣ = L

t2Γ(1− σ)
Γ(α− σ)

+
LΓ(1− σ)

Γ(1 + α− σ)
tα−σ
2

< L
δΓ(1− σ)
Γ(α− σ)

+
LΓ(1− σ)

Γ(1 + α− σ)
δ < ε .

Case 2: δ ≤ t1 < t2 < 1.∣∣Tu(t2)− Tu(t1)
∣∣ < L

δΓ(1− σ)
Γ(α− σ)

+
LΓ(1− σ)

Γ(1 + α− σ)
δα−σ

=
LδΓ(1− σ) + LΓ(1− σ)δα−σ

Γ(α− σ)

<
2LδΓ(1− σ)

Γ(α− σ)
< ε .

Case 3: 0 < t1 < δ, t2 < 2δ.∣∣Tu(t2)− Tu(t1)
∣∣ < L

δΓ(1− σ)
Γ(α− σ)

+
LΓ(1− σ)

Γ(1 + α− σ)
2αδ < ε .

Therefore, T (M) is equicontinuous. The Arzela-Ascoli theorem implies that T (M)
is compact. Thus, the operator T : P → P is completely continuous. �
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Theorem 3.3. Let 0 < σ < 1, 2 < α ≤ 3, f : (0, 1] × [0,+∞) → [0,+∞)
is continuous and lim

t→0+
f(t, ·) = +∞, tσf(t, y) is continuous function on [0, 1] ×

[0,+∞). Assume that there exist two distinct positive constant ρ, µ(ρ > µ) such
that

(H1) tσf(t, ω) ≤ ρΓ(α−σ)
Γ(1−σ) , for (t, ω) ∈ [0, 1]× [0, ρ];

(H2) tσf(t, ω) ≥ µΓ(α−σ)
Γ(1−σ) , for (t, ω) ∈ [0, 1]× [0, µ].

Then (1.1) has at least one positive solution.

Proof. From Lemma 3.2 we have T : P → P is completely continuous. We divide
the proof into the following two steps.
Step1: Let Ω1 = {u ∈ P : ‖u‖ < α−σ−1

α−σ µ}, for u ∈ K ∩ ∂Ω1 and all t ∈ [0, 1], we
have 0 ≤ u(t) ≤ α−σ−1

α−σ µ. It follows from (H2) that

Tu(1) =
∫ 1

0

G(1, s)f(s, u(s))ds =
∫ 1

0

G(1, s)s−σsσf(s, u(s))ds

≥ µ
Γ(α− σ)
Γ(1− σ)

∫ 1

0

G(1, s)s−σds

= µ
Γ(α− σ)
Γ(1− σ)

[ ∫ 1

0

(α− 1)(1− s)α−2 − (1− s)α−1

Γ(α)
s−σds

]
= µ

Γ(α− σ)
Γ(1− σ)

[ ∫ 1

0

(1− s)α−1

Γ(α− 1)
s−σds−

∫ 1

0

(1− s)α−1

Γ(α)
s−σds

]
= µ

Γ(α− σ)
Γ(1− σ)

[B(1− σ, α− 1)
Γ(α− 1)

− B(1− σ, α− 1)
Γ(α)

]
≥ α− σ − 1

α− σ
µ = ‖u‖ .

Hence,

‖Tu‖ = max
0≤t≤1

|Tu(t)| ≥ α− σ − 1
α− σ

µ = ‖u‖,

for u ∈ P ∩ ∂Ω1.
Step 2: Let Ω2 = {u ∈ P : ‖u‖ < ρ}, for u ∈ K ∩ ∂Ω2 and all t ∈ [0, 1], we have
0 ≤ u(t) ≤ ρ. By assumption (H1),

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds

=
∫ 1

0

G(t, s)s−σsσf(s, u(s))ds

≤ ρ
Γ(α− σ)
Γ(1− σ)

[ ∫ t

0

(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
s−σds

+
∫ 1

t

t(1− s)α−2

Γ(α− 1)
s−σds

]
≤ ρ

Γ(α− σ)
Γ(1− σ)

[ ∫ 1

0

t(1− s)α−2

Γ(α− 1)
s−σds−

∫ t

0

(t− s)α−1

Γ(α)
s−σds

]
≤ ρ

Γ(α− σ)
Γ(1− σ)

[ t

Γ(α− 1)

∫ 1

0

s−σ(1− s)α−2ds
]
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≤ ρ
Γ(α− σ)
Γ(1− σ)

B(1− σ, α− 1)
Γ(α− 1)

= ρ
Γ(α− σ)
Γ(1− σ)

Γ(1− σ)
Γ(α− σ)

= ρ .

So ‖Tu(t)‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. Therefore, by (ii) of Lemma 2.6, we complete
the proof. �

Theorem 3.4. Let 0 < σ < 1, 2 < α ≤ 3, f : (0, 1] × [0,+∞) → [0,+∞)
is continuous and lim

t→0+
f(t, ·) = +∞, tσf(t, y) is continuous function on [0, 1] ×

[0,+∞). Suppose the following conditions are satisfied:

(H3) there exists a continuous, nondecreasing function ϕ : [0,+∞) → (0,∞)
with tσf(t, ω) ≤ ϕ(ω), for (t, ω) ∈ [0, 1]× [0,+∞)

(H4) there exists r > 0, with r
ϕ(r) > Γ(α−σ)

Γ(1−σ)

Then (1.1) has one positive solution.

Proof. Let U = {u ∈ P : ‖u‖ < r}, we have U ⊂ P . From Lemma 3.2, we know
T : U → P is completely continuous. If there exists u ∈ ∂U , λ ∈ (0, 1) such that

u = λTu, (3.2)

By (H3) and (3.2), for t ∈ [0, 1] we have

u(t) = λTu(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

G(t, s)s−σsσf(s, u(s))ds

≤
∫ 1

0

G(t, s)s−σϕ(u(s))ds

≤ ϕ(‖u‖)
∫ 1

0

G(t, s)s−σds

≤ ϕ(‖u‖)
∫ 1

0

G(1, s)s−σds

= ϕ(‖u‖)
∫ 1

0

(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
s−σds

≤ ϕ(‖u‖) tB(1− σ, α− 1)
Γ(α− 1)

≤ ϕ(‖u‖) Γ(1− σ)
Γ(α− σ)

.

Consequently, ‖u‖ ≤ ϕ(‖u‖) Γ(1−σ)
Γ(α−σ) ; namely,

‖u‖
ϕ(‖u‖)

≤ Γ(1− σ)
Γ(α− σ)

.

Combining (H4) and the above inequality, we have ‖u‖ 6= r, which is contradiction
with u ∈ ∂U . According to Lemma 2.7, T has a fixed point u ∈ U , therefore, (1.1)
has a positive solution. �
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As an example, consider the fractional differential equation

Dα
0+u(t) +

(t− 1
2 )2 ln(2 + u)

tσ
= 0, 0 < t < 1

u(0) = u′(1) = u′′(0) = 0,

(3.3)

where 0 < σ < 1, 2 < α ≤ 3. Then (3.3) has a positive solution.
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