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A NOTE ON RADIAL NONLINEAR SCHRODINGER SYSTEMS
WITH NONLINEARITY SPATIALLY MODULATED

JUAN BELMONTE-BEITIA

ABSTRACT. First, we prove that for Schrodinger radial systems the polar angu-
lar coordinate must satisfy ¢/ = 0. Then using radial symmetry, we transform
the system into a generalized Ermakov-Pinney equation and prove the exis-
tence of positive periodic solutions.

1. INTRODUCTION

This note concerns the existence of solutions for the nonlinear Schrodinger sys-
tems with nonlinearity spatially modulated and radial symmetry in 1D

uy (z) + a(z)ur (z) = b(x) f(ui + u3)u (1.1a)
uz (@) + a(@)us(z) = b(x) f(u + uj)us (1.1b)

where f(u? +u3) is a positive continuous function with radial symmetry, and a and
b are positive, continuous and L-periodic functions; i.e.,

a(z) =a(x+ L), blx)=>blx+L). (1.2)

Such solutions satisfy the boundary conditions
| l‘im up(z) = | llim us(z) =0, (1.3a)
‘ llim uy(z) = | l‘im up(z) =0 (1.3b)

The study of the existence of positive solutions for systems like , with
one coupled lineal term has gained the interest of many mathematicians in recent
years. We refer to the surveys [Il, 2l B]. In these papers, the authors show the
existence of positive solutions for different systems, using critical point theory or
a variational approach. Another different approximation to this kind of problems
can be found in Ref. [4].

From of physical point of view, this kind of systems has gained a lot of interest in
the last years, in particular in the context of systems for the mean field dynamics of
Bose-Einstein condensates [I2] and in applications to fields as nonlinear and fibers
optics [13].
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On the other hand, the existence of positive solutions for the nonlinear Schrédinger
equation
W + a(w)u = b(z) f(u()) (1.4)
was proved in Ref. [I0]. Thus, the existence of semitrivial solutions (u1,0) and

(0,us2) of the system (1.1a)) is guaranteed by the Ref. [I0].
We can transform the system (1.1a)) in a equation, doing y = (uq, u2)

y" +a(@)y =b(x)f(I)y (1.5)

with I = u? + u3.
With the change of variable

u; = pcosf, uy = psinb. (1.6)
equation becomes
(0" = p(0')? + a(x)p] cos O — [2p'0" + p8”]sin 6 = b(z) f(p*)p cos b (1.7)

The aim of this paper is to show that for Schrédinger radial systems, as ,
with conditions 7 , can only exist solutions with 8’ = 0, specifi-
cally, we are thinking in the semitrivial solutions (u1,0) and (0,uz). On the other
hand, for 6’ # 0, there not exist solutions of the system , with condi-
tions (I.3a)), (L.3b).

Moreover, we can transform the system, by using the radial symmetry, to a
generalized Ermakov-Pinney equation and study positive periodic solutions for this
equation.

The rest of the papers is organized as follows. In section 2 we prove that the

only solutions of system ([1.1a)), (1.1b]) with conditions (|1.3a)), , if they exist,

are given by solutions which verify #’ = 0. In section 3, we prove the existence of
positive periodic solutions of the system (|1.1a)), (L.1b]), with periodic conditions.
In this note, || - || denotes the supremum norm.

2. NONEXISTENCE OF SOLUTIONS FOR 6’ # (0 AND EXISTENCE FOR 6’ = (

Physically, when a physical system possesses a symmetry, it means that a phys-
ical quantity is conserved. As the system (1.1a]), (1.1b)) has radial symmetry, the
conserved quantity is the angular momentum. In polar coordinates, the conserva-
tion of the angular momentum is given by

p*0" = p, (2.1)
where p is a constant. Using this fact, (1.7)) becomes
1
P+ a(x)p = b(x) f(p*)p + i (2.2)
which can be taken as a generalized Ermakov-Pinney [5] [9].

Now, it is easy to prove that, if there exist solutions of the system ((1.1al), (1.1b)),
with the boundary conditions (1.3a)), (1.3b)), they must satisfy the condition 6" = 0:
for these solutions, € is constant and these solutions can be solutions of (1.5). In
fact, we can find two examples of solutions for this case: the semitrivial solutions
(u1,0) and (0, uz) are solutions of the system (1.1al), (1.1b]), with conditions (1.3a)),
(1.3b) (see Ref. [10]).

On the other hand, for one solution (u1,us) with 6’ # 0, one has p # 0. Thus,
if would exist a solution (u1,us) of the system (l.1a]), (1.1b) with the boundary
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conditions (|1.3a)), (1.3b)) it would exist a solution p that would verify p — 0 as
|x] — oco. But it is impossible, by the singularity of (2.2]).
Thus, we are in disposition to formulate the following theorem.

Theorem 2.1. Let system be with conditions where a(x) and b(x) are
positive, continuous and L-periodic functions. Then, if there exist solutions of the
system , with the conditions , different of the trivial solution, they must
satisfy the condition ' = 0, where 0 is the polar angular coordinate in .

Remark 2.2. Specifically, for § = km or 6 = §7r, for any k € 7Z, we obtain
the semitrivial solutions. These solutions are called bright solitons in the physical
literature. The dark solitons are also solutions of the system , but with
different boundary conditions [7]. It is straightforward to prove that, for this case,
the only solutions are the former with 8’ = 0, provided that a(x) is different to
b(x).

Remark 2.3. We can use another approximation, where one can see the univer-
sality of the method exposed here. Thus, let the nonlinear Schrodinger equation be

ity + Uy + b() f(Ju]?)u+ V(2)u =0 (2.3)

with V(z) a L-periodic function. If we have the change of variable wu(t,z) =
(v(z) + iw(x)) e and if we separate in real and imaginary part, we obtain

v+ (V(z) = N v+ b(z)f(v? +w?)v =0
w’ + (V(z) = N)w + b(x)f(v? +w*)w =0

which is similar to the system (1.1a]), (L.1b]) for a(z) = V(z) — A.

3. PERIODIC SOLUTIONS

As we showed in the previous section, system , or equation ,
can be reduced to . Thus, we can describe the behaviour of solutions of ([1.1a))—
([LID) (or (2.3)) using

Then, the aim of this section is to provide some existence result for the periodic
boundary-value problem

2
P+ alx)p = b(@)f(*)p + jj—?, (3.1)

with p(0) = p(L), p'(0) = p'(L), where a(z) and b(z) are positive, continuous and
L-periodic functions. To do it, we will use the following fixed-point theorem for a
completely continuous operator in a Banach space, due to Krasnoselskii [g].

Theorem 3.1. Let X be a Banach space, and let P C X be a cone in X. Assume
01, are open subsets of X with 0 € Q1,91 C Qg and let T : PN (Q2\Qy) — P
be a completely continuous operator such that one of the following conditions is
satisfied

(1) |Tul|l < Jull, if w e PN, and | Tull > ||ull, if u € PN OQs.

(2) |Tull = Jull, if w € PN O, and | Tull < ||ull, if u € PN OQs.

Then, T has at least one fized point in PN (Q2\Q1).
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From the physical explanation, (3.1) has a repulsive singularity at « = 0. In
order to apply Theorem we need some information about the properties of the
Green’s function. Thus, let us consider the linear equation

" +a(z)p =0, (3.2)
with periodic conditions

p(0) = p(L), p'(0)=p'(L) (3.3)
In this section, we assume conditions under which the only solution of problem
— is the trivial one. As a consequence of Fredholm’s alternative, the non-
homogeneous equation
p" +alw)p = h(x), (3.4)
admits a unique T-periodic solution which can be written as

L
p(x):/o G(z, s)h(s)ds, (3.5)

where G(z,s) is the Green’s function of problem (3.2)-(3.3). Following [6], we
assume that problem satisfies that the Green function, G(z,s), associated
with problem (3.4)), is positive for all (z,s) € [0,L] x [0,L]. Moreover, following
[11], we denote

M = Gz, s), = min G(z, 3.6
,max (z,8), m , oin (z,5) (3.6)

where M > m > 0.

Theorem 3.2. Let us assume the following hypotheses

(i) a(z) and b(x) are continuous and L-periodic functions with a > 0,b > 0.
(ii) f(s) >0 for every s > 0.
(iii) There exists r > 0 such that

L L
A, max / G(z,s)b(s)ds + B, max / G(z,s)ds <r
ze0,L] Jo w€l0,L] Jo

for A, = max¢(o,) f(s*)s and B, = maxe(o, ] u?/s3.
(iv) There exist R > r > 0 such that

L L
M
Ap min / G(z,5)b(s)ds + Br min / G(z,s)ds > —R

z€[0,L] 0 z€[0,L] 0 m

fOT’ AR = minse[R(M/m)R] f(SQ)S and BR = minse[R7(M/m)R] ,U'Q/SS'
Then, (3.1) has a positive periodic solution p with J3r < p(x) < %R.
Proof. Let X = C[0, L] with the supremum norm || - ||. We define the open sets
M ={peX:|pll <r}

M
Qo = X —
2={peX:|pl < mR}

Define the cone

m
P={peX:p>0 min p>—|p|}.
{r p20 min p> a7 Pl

]
It is easy to prove that if p € PN (22\Q4), then

m M
—r << < —
r<pz) < mR7 Vx
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Let us define the operator

Tp= [ Gla.s) B (F6)pls) + ] (37)

We note that such operator is completely continuous. Clearly, a solution of problem
(3-1) is just a fixed point of this operator.

If p < PN (ﬁg\Ql), then

L 2
m 1 m
Tp> — b 2 ds = —||T
p= 5 | i Glas) M) (P )0s) + ] ds = T

that is, T (P N (Q2\Q1)) C P

Now, if p € 9Q; N P, then ||p|| = r and (m/M)r < p(xz) < r for all . Therefore,
using (iii),

ITpl| = max Tp(x) < A, max/ G(z,5)b(s)ds + B, max/ G(z,s)ds <r
z€[0,L] z€[0,L] z€[0,L]

Similarly, if € 0 N P, then ||p|]| = (M/m)R and R < p(z) < (M/m)R, for all
x. Then, using the hypotheses (iv),

ITpl = m[aX]Tp(x)

= max/ Gz, s)[b(s)f(p*(s))p(s) + a |ds

x€[0,L] p3(s)
g M
> Apr min / G(z,s)b(s)ds + Br min / G(z,s)ds > —R
z€[0,L] 0 z€[0,L] 0 m

Now, from Theorem [3.1|there exists p € PN (Q2\€2;) which is a solution of problem
(3.1). Therefore,

=

Tr<p(e) < R

3

O

Corollary 3.3. Under the conditions of Theorem 2, system (1.1a))—(1.1b)) and equa-
tion (2.3)), with periodic conditions, have positive periodic solutions.

In the framework of Bose-Einstein condensates [12] or nonlinear optics [13], such
positive periodic solutions are called periodic matter waves.
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