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DISSIPATIVE INITIAL BOUNDARY VALUE PROBLEM FOR
THE BBM-EQUATION

NIKOLAI A. LARKIN, MIKHAIL P. VISHNEVSKII

Abstract. This paper concerns a dissipative initial boundary value problem

for the Benjamin-Bona-Mahony (BBM) equation. We prove the existence and
uniqueness of global solutions and the decay of the energy as time tends to

infinity.

1. Introduction

This paper concerns the dissipative initial boundary value problems for the
Benjamin-Bona-Mahoney (BBM) equation

ut − utxx + uux = 0 (1.1)

which was derived by Benjamin-Bona-Mahony, [2, 3], and usually is called the
alternative Korteweg-de Vries (KdV) equation. In spite of the fact that both (1.1)
and the KdV equation,

ut + auxxx + uux = 0 (1.2)

are dispersive equations and have almost the same names, formulations of initial
boundary value problems for them are completely different. Considering (1.1) and
(1.2) in a rectangle Q = (0, 1)× (0, T ), T > 0, one must put for (1.1) one condition
at x = 0 and one condition at x = 1. On the other hand, for (1.2) one must
put three conditions at the ends of the interval (0, 1). A number of conditions at
x = 0 and x = 1 depends on a sign of the coefficient a: if a > 0, then we pose
one condition at x = 0 and two conditions at x = 1. If a < 0, then we pose two
conditions at x = 0 and one condition at x = 1.

Historically, interest in dispersive-type evolution equations dates from the 19th
century when Russel [20], Airy [1], Boussinesq [9] and later Korteweg and de Vries
[15] studied propagation of waves in dispersive media. Due to physical reasons, these
and posterior studies mostly dealt with one-dimensional problems posed on the
entire real line, see [2, 4, 7, 8, 14, 21] and references therein. Moreover, the emphasis
in these works was mainly focused on the existence and qualitative structure of
the solitary, cnoidal and other specific types of waves, whereas correctness of the
corresponding mathematical problems attracted minor interest.
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Initial boundary value problems for (1.1) with Dirichlet boundary conditions
were considered in [8, 11, 13, 19, 18, 6]. Bubnov in [10] studied general boundary
conditions and proved existence of local solutions to a corresponding mixed problem.
Mixed problems for multi-dimensional versions of (1.1) were considered in [13,
19, 18]. It is easy to see that mixed problems for (1.1) with Dirichlet boundary
conditions imply conservation of the energy:

d

dt
E(t) =

d

dt

∫ 1

0

{u(x, t)2 + ux(x, t)2}dx = 0.

It means that the energy can not decay with time. Differently, the KdV equation
itself has dissipative properties and solutions of initial boundary value problems for
it decay with time see [12, 16, 17].

The goal of our paper is to find such boundary conditions which guarantee ex-
istence of global regular solutions and decay of the energy for the BBM equation.
For this purpose we pose dissipative nonlinear boundary conditions (2.2). From
the physical point of view, if to consider dynamics of a fluid in a cylinder, the
Dirichlet boundary conditions mean that the walls of a cylinder are impermeable:
a fluid cannot enter or exit the cylinder. On the other hand, nonlinear boundary
conditions (2.2) allow a fluid to exit, for a example, when a cylinder has porous
walls. This effect stabilizes the system and dissipates the energy.

This paper has the following structure: in Chapter 2 we formulate a nonlinear
problem and consider decay properties of linearized problems. In Chapter 3, first
we prove local existence of regular solutions to the nonlinear problem, using the
theory of elliptic equations with a parameter t, then global existence and uniqueness
of regular solutions. In Chapter 4, decay properties of the energy, as t → ∞, are
proved.

2. Formulation of the problem

In Q = (0, 1)× (0, T ) we consider the following initial boundary value problem:

ut − utxx + uux = 0, x ∈ (0, 1), t ∈ (0, T ), (2.1)

u(0, t) = 0, utx(1, t) =
1
3
u2(1, t)− u(1, t), t > 0, (2.2)

u(x, 0) = u0(x), x ∈ (0, 1). (2.3)

2.1. Linear problem. First we study the linearized version of (2.1)-(2.3):

ut − utxx = 0, (x, t) ∈ Q, (2.4)

u(0, t) = 0, utx(1, t) = −u(1, t), t > 0, (2.5)

u(x, 0) = u0(x), x ∈ (0, 1). (2.6)

We also assume that the initial data admits the compatibility condition u0(0) = 0.
It is easy to see that problem (2.4)-(2.6) has a unique solution.

Considering solutions of the form u(x, t) = v(x)w(t), we obtain

wt(t)(v(x)− v(x)xx) = 0, x ∈ (0, 1), t ∈ R+, (2.7)

v(0)w(t) = 0, wt(t)vx(1) = −w(t)v(1). (2.8)

This problem has two type of solutions:

λ1 = 0, w1(t) = C1 exp(λ1t), v1(x) ∈ C2[0, 1], v1(0) = v1(1) = 0
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and

λ2 = −e2 − 1
e2 + 1

, w2(t) = C2 exp(λ2t), v2(x) =
ex − e−x

2
.

Since u0(0) = 0,

φ(x) = u0(x)− C
ex − e−x

2
,

where

C =
2eu0(1)
e2 − 1

,

is a stationary solution of (2.7),(2.8) corresponding to λ1 = 0. This implies that

u(x, t) = φ(x) +
2eu0(1)
e2 − 1

[
ex − e−x

2
] exp(−e2 − 1

e2 + 1
t)

is a unique solution of (2.4)-(2.6) and

|u(x, t)− φ(x)| ≤ |u0(1)| exp(−e2 − 1
e2 + 1

t).

These results can be summarized as follows.

Theorem 2.1. Problem (2.4)-(2.6) has a continuum of stationary solutions and
any nonstationary solution converges to a stationary one exponentially as t →∞.

Remark 2.2. Consider the linearized problem with the Dirichlet boundary condi-
tions,

ut − utxx = 0, (x, t) ∈ Q, (2.9)

u(0, t) = u(1, t) = 0, , t > 0, (2.10)

u(x, 0) = u0(x), (2.11)

it is easy to show that this problem has only stationary solutions.

3. Nonlinear Problem

3.1. Local Solutions. We start with the linear problem

ut − utxx = f(x, t), (x, t) ∈ Q, (3.1)

u(0, t) = 0, utx(1, t) = g(t), t > 0, (3.2)

u(x, 0) = u0(x), x ∈ (0, 1). (3.3)

Denote w(x, t) = ut(x, t), then the problem becomes

w − wxx = f(x, t), x ∈ (0, 1), t > 0, (3.4)

w(0, t) = 0, wx(1, t) = g(t), t > 0 (3.5)

which is an elliptic problem with a parameter t.

Lemma 3.1. Regular solutions of (3.4)–(3.5) satisfy the inequality

‖w(t)‖H2(0,1) ≤ C(‖f(t)‖L2(0,1) + |g(t)|). (3.6)

Here and in the sequel the constants C do not depend on g(t), f(x, t).
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Proof. Considering
w(x, t) = z(x, t)− g(t)(1− x)x, (3.7)

we rewrite (3.4)-(3.5) as the following elliptic problem with a parameter t:

z − zxx = f1(x, t) ≡ f(x, t) + g(t)x(1− x)− g(t), x ∈ (0, 1), (3.8)

z(0, t) = zx(1, t) = 0, t > 0. (3.9)

Standard elliptic estimates [5] give

‖z(., t)‖H2(0,1) ≤ C‖f1(t)‖L2(0,1) ≤ C(‖f(., t)‖L2(0,1) + |g(t)|).
This and (3.7) imply (3.6). �

Remark 3.2. Let u(x, t) be a solution to the problem

ut − utxx = f(x, t), (x, t) ∈ Q,

u(0, t) = ut(0, t) = 0, utx(1, t) =
1
3
u2(1, t)− u(1, t), t > 0,

u(x, 0) = u0(x).

Then (3.4)-(3.6) imply

‖ut(., t)‖H2(0,1) ≤ C(‖f(., t)‖L2(0,1) + |u(1, t)|+ |u(1, t)|2). (3.10)

Lemma 3.3. Regular solutions of (3.1)-(3.3) in the cylinder QT = (0, 1)× (0, T ),
T > 0, satisfy the inequality
‖u‖C([0,T ];H1(0,1))

≤ ‖u0‖H1(0,1) + CT
(
‖f‖C([0,T ];L2(0,1)) + |u(1, t)|C[0,T ] + |u(1, t)|2C[0,T ]

)
.

(3.11)

Proof. Because

u(x, t) = u0(x) +
∫ t

0

us(x, s)ds,

we have

‖u(t)‖H1(0,1) ≤ ‖u0‖H1(0,1) +
√

t(
∫ t

0

‖us(., s)‖2H1(0,1)ds)1/2,

‖u(x, t)‖C([0,T ];H1(0,1)) ≤ ‖u0(x)‖H1(0,1) + T‖ut(x, t)‖C([0,1];H1(0,1)).

Using (3.10), we obtain

max
(x,t)∈QT

(|ut(x, t)|) ≤ ‖ut(x, t)‖C([0,T ];H1(0,1))

≤ C(‖f(x, t)‖C([0,T ];L2(0,1)) + |u(1, t)|C[0,T ] + |u(1, t)|2C[0,T ])

and

‖u‖C(0,t;H1(0,1)) ≤ ‖u0‖H1(0,1)+TC{‖f‖C(0,t;L2(0,1))+|u(1, t)|C(0,t)+|u(1, t)|2C(0,t)}.
(3.12)

This completes the proof. �

Using the estimates of Lemmas 3.1 and 3.3, we can solve locally in t the nonlinear
problem (2.1)-(2.3).

Theorem 3.4. Let u0 ∈ H1(0, 1). Then there is T0 > 0 such that for all t ∈ (0, T0)
there exists u(x, t) such that u ∈ C(0, T0;H1(0, 1)), ut ∈ C(0, T0;H2(0, 1)), utt ∈
C(0, T0;H2(0, 1)), which is a unique regular solution of (2.1)-(2.3).
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Remark 3.5. If u0 ∈ H2(0, 1), then u ∈ C(0, T0;H2(0, 1)).

Proof of Theorem 3.4. We use the contraction mapping theorem. Let ‖u0‖H1(0,1) <
R, R > 1 and BR be a ball of functions w(x, t) such that

w ∈ C(0, T0;H1(0, 1)), T0 > 0, ‖w‖C(0,T0;H1(0,1)) < 2R,

w(x, 0) = u0(x), w(0, t) = 0, t ∈ (0, T0),

where the constant T0 will be defined later. For w ∈ BR consider the linear problem

vt − vtxx = −wwx, (x, t) ∈ (0, 1)× (0, T0), (3.13)

v(0, t) = 0, vtx =
1
3
w2(1, t)− w(1, t), t ∈ (0, T0), (3.14)

v(x, 0) = u0(x), x ∈ (0, 1). (3.15)

Since (3.13)-(3.15) is a linear, elliptic problem for vt, solvability of this prob-
lem follows from Lemmas 3.1 and 3.3. Therefore, we can define the operator
P : v(x, t) = P (w(x, t)) in BR. The proof will be completed after proving the
following two propositions. �

Proposition 3.6. The operator P maps BR into BR for T0 > 0 sufficiently small.

Proof. Fixing 1 < R < ∞ and taking into account (3.6),(3.10),(3.12) and the
obvious inequality

‖w(1, t)‖C[0,T0) ≤ ‖w‖C[0,T0;H1(0,1)) ,

we find

‖wwx‖C(0,T0;L2(0,1)) ≤ max
[0,T0]

(
∫ 1

0

w2(x, t)w2
x(x, t)dx)1/2

≤ ‖w‖C[0,T0;H1(0,1))‖wx‖C[0,T0;L2(0,1))

≤ ‖w‖2C[0,T0;H1(0,1)).

Using Lemma 3.3, we obtain

‖v‖C[0,T0;H1(0,1)) ≤ ‖u0‖H1(0,1) + C0T0{1 + ‖w‖C[0,T0;H1(0,1))}
≤ ‖u0‖H1(0,1) + C0T0‖w‖2C[0,T0;H1(0,1))

≤ ‖u0‖H1(0,1) + C0T0R
2.

Taking 0 < T0 < 1/(4C0R
2), we get

‖v‖C[0,T0;H1(0,1)) ≤ R +
R

4
< 2R

which completes the proof. �

Proposition 3.7. For T0 > 0 sufficiently small the operator P is a contraction
mapping in BR.

Proof. For any w1, w2 ∈ BR denote vi = P (wi), i = 1, 2; s = w1 −w2, z = v1 − v2.
From (3.13)-(3.15), we obtain

zt − ztxx = −(w2sx + w1xs), (x, t) ∈ (0, 1)× (0, T0),

z(0, t) = 0, ztx(1, t) = −1
3
(w1(1, t) + w2(1, t))− 1)s(1, t), t ∈ (0, T0),

z(x, 0) = 0, x ∈ (0, 1).
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By Lemma 3.3,

‖z‖C(0,T0;H1(0,1)) ≤ C0T0R‖s‖C(0,T0;H1(0,1)),

where the constant C0 does not depend on s. Taking 0 < T0 < 1/(C0R), we obtain

‖z‖C(0,T0;H1(0,1)) ≤ γ‖s‖C(0,T0;H1(0,1))

with 0 < γ < 1. This completes the proof. �

Propositions 3.6 and 3.7 imply that the operator P : BR → BR is a contraction
mapping provided T0 > 0 sufficiently small. Hence, there exists a unique function
u(x, t) : u ∈ C(0, T0;H1(0, 1)) such that u = Pu. More regularity follows directly
from (2.1)-(2.3) and estimates of elliptic problems for ut, utt, see Lemmas 3.1 and
3.3. This proves Theorem 3.4.

3.2. Global Solutions.

Theorem 3.8. Let u0 ∈ H1(0, 1). Then there exists a function u(x, t) such that

u ∈ L∞(0,∞;H1(0, 1)), ut ∈ L∞(0,∞;H2(0, 1)), utt ∈ L∞(0,∞;H2(0, 1))

which is a unique solution of (2.1)-(2.3).

Proof. Due to Theorem 2.1, it is sufficient to extend local solutions to any finite
interval (0, T ). For this purpose we need a priori estimate independent of t.

Multiplying (2.1) by u and integrating over (0, 1)× (0, t), t ∈ (0, T0), we get

E(t) =
1
2

∫ 1

0

(u2(x, t) + u2
x(x, t))dx = E(0)−

∫ t

0

u2(1, s)ds ≤ E(0). (3.16)

This estimate guarantees prolongation of local solutions, provided by Theorem 2.1,
for any finite interval (0, T0). Moreover, since it does not depend on T0, the interval
of the existence is (0,∞) : u ∈ L∞(0,∞;H1(0, 1)). Returning to (2.1)-(2.4), we
rewrite it as an elliptic problem for ut:

(I − ∂2
xx)ut = −uux ∈ L∞(0,∞;L2(0, 1)), (3.17)

u(0, t) = 0, utx =
1
3
u2(1, t)− u(1, t) ∈ L∞(0,∞;L2(0, 1)). (3.18)

By Lemmas 3.1 and 3.3,

ut ∈ L∞(0,∞;H2(0, 1)). (3.19)

Differentiating (3.17), (3.18) with respect to t, we get

(I − ∂2
xx)utt = −uutx − utux ∈ L∞(0,∞;L2(0, 1)),

utt(0, t) = 0, uttx(1, t) =
2
3
u(1, t)ut(1, t)− ut(1, t) ∈ L∞(0,∞;L2(0, 1)).

Hence,

utt ∈ L∞(0,∞;H2(0, 1)). (3.20)

This proves the existence part of Theorem 3.8.
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To prove uniqueness of solutions, assume that there exist two different solutions
u1, u2 of (2.1)-(2.3). For z = u1 − u2 we have the following problem:

Lz = zt − ztxx = −1
2
(u1x + u2x)z − 1

2
(u1 + u2)zx, (x, t) ∈ (0, 1)× (0,∞),

z(0, t) = 0, ztx(1, t) =
1
3
(u1(1, t) + u2(1, t))z(1, t)− z(1, t), t > 0,

z(x, 0) = 0, x ∈ (0, 1).

Multiplying Lz by z and integrating over (0, 1)× (0, t), we obtain∫ 1

0

(z2(x, t) + z2
x(x, t))dx = −

∫ t

0

∫ 1

0

{(u1x(x, s) + u2x(x, s))z2(x, s)

− 1
2
(u1(x, s) + u2(x, s))z(x, s)zx(x, s)}dxds

− 2
∫ t

0

{1
3
[u1(1, s) + u2(1, s)]z2(1, s) + z2(1, s)}ds.

Since |z(1, s)|2 ≤ ‖zx(s)‖2L2(0,1), we arrive to the inequality∫ 1

0

(z2(x, t) + z2
x(x, t))dx

≤ C

∫ t

0

(1 + ‖u1x(s)‖L2(0,1) + ‖u2x(s)‖L2(0,1))‖zx(s)‖2L2(0,1)ds.

Because ui ∈ L∞(0,∞;H1(0, 1)), i = 1, 2,∫ 1

0

(z2(x, t) + z2
x(x, t))dx ≤ C

∫ t

0

∫ 1

0

(z2(x, s) + z2
x(x, s))dxds.

By the Gronwall lemma,∫ 1

0

(z2(x, t) + z2
x(x, t))dx = 0, t > 0.

Then
z(x, t) = 0, (x, t) ∈ (0, 1)× (0,∞)

that completes the proof. �

4. Uniform Decay of Solutions as t →∞

Lemma 4.1. For regular solutions of (2.1)-(2.3), limt→+∞ u(1, t) = 0.

Proof. From (3.16),∫ t

0

u2(1, s)ds ≤ E(0), and E(t) ≤ E(0) for all t > 0. (4.1)

Due to (3.19),

sup
t>0

‖ut(t)‖H2(0,1) ≤ C1, sup
t>0

| d
dt

u2(x, t)| ≤ C2. (4.2)

Assume that
lim

t→+∞
u2(x, t) 6= 0.
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This implies that there exist a positive number ε1 > 0 and a sequence of tn → +∞
such that u2(1, tn) ≥ ε1 for all n ∈ N . Since

sup
t>0

| d
dt

u2(x, t)| ≤ C2,

it follows that

u2(1, t) >
1
2
ε1 for t ∈ [tn −

ε1

2C2
, tn +

ε1

2C1
] and all n ∈ N.

We may assume that tn − ε1
2C2

> 0. Therefore,∫ tn+
ε1

2C1

0

u2(1, s)ds ≥
n∑

i=1

∫ ti+
ε1

2C1

ti− ε1
2C2

u2(1, s)ds > ε1
nε1

C2
→ +∞.

Thus we have a contradiction with (4.1) which completest the proof. �

Theorem 4.2. For regular solutions of (2.1)-(2.3), limt→+∞E(t) = 0.

Proof. Let τ > 0 and tn → +∞. Consider a sequence

un(x, t) = u(x, tn + t), (x, t) ∈ Q̄τ = [0, 1]× [0, τ ].

It follows from (3.16), (3.19), (3.20) that from the sequence un(x, t) we can extract
a subsequence, which we again denote by un(x, t), such that

un(x, t) → w(x, t) in Cα1(Q̄τ ), α1 ∈ (0,
1
2
); (4.3)

un
t (x, t) → wt(x, t) in Cα1(Q̄τ ); (4.4)

un
x(x, t) ⇀ wx(x, t) weakly in L2(0, τ ;L2(0, 1)), (4.5)

un
txx(x, t) ⇀ wtxx(x, t) weakly in L2(0, τ ;L2(0, 1)). (4.6)

We will return to this proof after the following proposition.

Proposition 4.3. It holds

un(x, t)un
x(x, t) ⇀ w(x, t)wx(x, t) weakly in L2(0, τ ;L2(0, 1)).

Proof. Writing
unun

x − wwx = un
x(un − w) + w(un

x − wx),
from (4.3), we have

lim
n→∞

‖un
x(un − w)‖L2(Qτ ) = 0.

A function w(x, t) is bounded in Cα1(Q̄τ ), whence by (4.5),

w(un
x − wx) ⇀ 0 weakly in L2(0, τ ;L2(0, 1)).

This completes the proof of Proposition 4.3 �

Due to (4.4), (4.6), Proposition 4.3 implies

wt − wtxx + wwx = 0, (x, t) ∈ Qτ andw(0, t) = 0. (4.7)

By Lemma 4.1 and (4.3), w(1, t) = 0, but since

wtx(1, t) =
1
3
w2(1, t)− w(1, t),

we have
w(1, t) = wtx(1, t) = 0.
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Denoting v(x, t) = wt(x, t), from (4.7), we get

v − vxx + wwx = 0, x ∈ (0, 1),

v(0) = v(1) = vx(1) = 0.

Let g(x, y) be a Green function of the problem

zxx − z = 0, x ∈ (0, 1), z(0) = z(1) = 0.

It is known that

g(x, y) =
1

D(0)

{
v1(x)v2(y), 0 ≤ x ≤ y;
v1(y)v2(x), y ≤ x ≤ 1,

where

v1xx − v1 = 0, v1(0) = 0, v1x(0) = 1;

v2xx − v2 = 0, v2(1) = 0, v2x(1) = −1;∣∣∣∣ v1(x) v2(x)
v1x(x) v2x(x)

∣∣∣∣ = D(x).

Simple calculations give

v1(x) =
ex − e−x

2
, v2(x) =

e2−x − ex

2e

and

v(x, t) = −
∫ 1

0

g(x, y)w(y, t)wy(y, t)dy =
1
2

∫ 1

0

gy(x, y)w2(y, t)dy.

From here,

vx(x, t) =
1
2

∫ 1

0

gxy(x, y)w2(y, t)dy.

The function gxy(x, y) is negative for 0 < x, y < 1. On the other hand,

vx(1, t) =
1
2

∫ 1

0

gxy(1, y)w2(y, t)dy =
1
2

∫ 1

0

(
−e2−y − ey

2
)w2(y, t)dy = 0.

Hence, ∫ 1

0

(
e2−y + ey

2
)w2(y, t)dy = 0

and, consequently, w2(y, t) = 0. It implies that E(t) tends to zero when t ∈
[tn, tn + τ ] and n →∞. Due to monotonicity of E(t), we have limt→+∞E(t) = 0.
This completes the proof of Theorem 4.2. �
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