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APPROXIMATE CONTROLLABILITY OF NEUTRAL
STOCHASTIC INTEGRODIFFERENTIAL SYSTEMS

IN HILBERT SPACES

RAVIKUMAR SUBALAKSHMI, KRISHNAN BALACHANDRAN

Abstract. In this paper sufficient conditions are established for the controlla-

bility of a class of neutral stochastic integrodifferential equations with nonlocal

conditions in abstract space. The Nussbaum fixed point theorem is used to
obtain the controllability results, which extends the linear system to the sto-

chastic settings with the help of compact semigroup. An example is provided

to illustrate the theory.

1. Introduction

Controllability is one of the fundamental concepts in mathematical control theory
and plays an important role in both deterministic and stochastic control systems. It
is well known that controllability of deterministic systems are widely used in many
fields of science and technology. The controllability of nonlinear deterministic sys-
tems represented by evolution equations in abstract spaces has been extensively
studied by several authors [2, 3]. Stochastic control theory is a stochastic general-
ization of classical control theory.

However, in many cases, the accurate analysis, design and assessment of sys-
tems subjected to realistic environments must take into account the potential of
random loads and randomness in the system properties. Randomness is intrinsic
to the mathematical formulation of many phenomena such as fluctuations in the
stock market, or noise in communication networks. Mathematical modelling of
such systems often leads to differential equations with random parameters. The
use of deterministic equations that ignore the randomness of the parameter or re-
place them by their mean values can result in gross errors. All such problems are
mathematically modelled and described by various stochastic systems described by
stochastic differential equations, stochastic delay equations and in some cases sto-
chastic integrodifferential equations which are mathematical models for phenomena
with irregular fluctuations.

The problem of controllability of the linear stochastic system of the form

dx(t) = [Ax(t) + Bu(t)]dt + σ̃(t)dw(t)
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x(0) = x0, t ∈ I = [0, T ]

in Hilbert spaces has been studied by Dubov and Mordukhovich [10], Mahmudov
[12].

The problem of controllability of nonlinear stochastic system in infinite dimen-
sional spaces have been studied by many authors. Sirbu and Tessitore [16] studied
null controllability of an infinite dimensional stochastic differential equations with
state and control dependent noise using Riccati equation approach. Mahmudov
[13] investigated the sufficient conditions for approximate controllability of nonlin-
ear systems in Hilbert spaces by using the Nussbaum fixed point theorem. Dauer
and Mahmudov [9], Mahmudov [14] studied controllability of semilinear stochastic
system by using the Banach fixed point technique. Sunahara et al [17] introduced
the concept of stochastic ε-controllability and controllability with probability and
established sufficient conditions for stochastic controllability of a class of nonlinear
systems. Sufficient conditions for stochastic ε-controllability have been established
by Klamka and Socha [11] using a stochastic Lyapunov-like approach.

Balachandran et al [6] discussed the controllability of neutral functional integrod-
ifferential systems in Banach spaces by using semigroup theory and the Nussbaum
fixed point theorem. Recently, Balachandran and Karthikeyan [4], Balachandran
et al [5] derived sufficient conditions for the controllability of stochastic integrodif-
ferential systems in finite dimensional spaces. This paper is different from previous
works in which dependence of the nonlinear map contain integrodifferential term
with nonlocal condition. Here we are interested to establish a set of sufficient
conditions for the approximate controllability of the following nonlinear neutral
stochastic integrodifferential systems with non-local condition

d[x(t)− q(t, x)]

= [Ax(t) + Bu(t) + f(t, x(t)) +
∫ t

0

g(t, s, x(s))ds]dt + σ(t, x(t))dw(t)

x(0) + h(x) = x0, t ∈ I = [0, T ].

(1.1)

in a Hilbert space H by using the Nussbaum fixed point theorem. Here (Ω,F , P )
is a probability space with a normal filtration

{Ft = σ(w(s) : s ≤ t), 0 ≤ t ≤ T}
generated by w; H,E, U are three separable Hilbert spaces, and w is a Q-Wiener
process on (Ω,F , P ), with the covariance operator Q ∈ L(E). We assume that
there exists a complete orthonormal system {ek} in E, a bounded sequence of
non-negative real numbers λk such that Qek = λkek and a sequence of real in-
dependent Brownian motions such that w(t) =

∑∞
k=1

√
λkβk(t)ek. Let L0

2 =
L2(Q

1
2 E,H) be the space of all Hilbert-Schmidt operators. The space L0

2 is a
separable Hilbert space, equipped with the norm ‖Ψ‖2Q = tr[ΨQΨ∗]. LF2 (I,H) is
the space of all Ft-adapted, H-valued measurable square integrable processes on
I × Ω. C(I, L2(Ω, F, P, H)) is the Banach space of continuous maps from I into
L2(Ω, F, P, H) satisfying the condition that supt∈I E‖x(t)‖2 < ∞. C(I, L2) is the
closed subspace of C(I, L2(Ω, F, P, H)) consisting of measurable and Ft-adapted
processes x(t) with norm ‖x‖2∗ = supt∈I E‖x(t)‖2.

Concerning the operators A, B, f , q, g, σ, h we assume the following hypotheses:
(H1) The operator A generates a compact semigroup S(·) and B is a bounded

linear operator from a Hilbert space U into H.
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(H2) The functions f : I × H → H, q : I × H → H, g : I × I × H → H,
σ : I ×H → L0

2 and h : C(I,H) → H, satisfy the Lipschitz condition and
there exist constants L1, L2, L3, l > 0 for x1, x2 ∈ H and 0 ≤ s < t ≤ T
such that

‖f(t, x1)− f(t, x2)‖2 + ‖σ(t, x1)− σ(t, x2)‖2Q ≤ L1‖x1 − x2‖2

‖g(t, s, x1(s))− g(t, s, x2(s))‖2 ≤ L2‖x1 − x2‖2

‖q(t, x1)− q(t, x2)‖2 ≤ L3‖x1 − x2‖2

‖h(x1)− h(x2)‖2 ≤ l‖x1 − x2‖2

(H3) The functions f, q, g, h and σ are continuous and there exist constants
L4, L5, L6, l1 > 0 for x ∈ H and 0 ≤ t ≤ T such that

‖f(t, x)‖2 + ‖σ(t, x)‖2Q ≤ L4

‖g(t, s, x(s))‖2 ≤ L5

‖q(t, x)‖2 ≤ L6

‖h(x)‖2 ≤ l1

It is clear that under these conditions the system (1.1) admits a mild solution
x(·) ∈ C(I, L2) for any x0 ∈ H, u(·) ∈ LF2 (I, U) in the following form (see [8]).

x(t) = S(t)[x0 − h(x)− q(0, x(0))] + q(t, x(t)) +
∫ t

0

AS(t− s)q(s, x(s))ds

+
∫ t

0

S(t− s)Bu(s)ds +
∫ t

0

S(t− s)f(s, x(s))ds

+
∫ t

0

S(t− s)σ(s, x(s))dw(s) +
∫ t

0

S(t− s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds.

(1.2)

To study the approximate controllability of the system (1.2), we consider the
approximate controllability of its corresponding linear part

d[x(t)− q(t)] =
[
Ax(t) + Bu(t) + f(t) +

∫ t

0

g(t, s)ds
]
dt + σ̃(t)dw(t)

x(0) + h(x) = x0, t ∈ I = [0, T ].
(1.3)

where σ̃ ∈ L0
2 and assume the approximate controllability of the system (1.3)

We need the Nussbaum fixed-point theorem (see [15]) to establish our results.

Theorem 1.1. Suppose that Y is a closed, bounded convex subset of a Banach
space H. Suppose that P1, P2 are continuous mappings from Y into H such that

(i) (P1 + P2)Y ⊂ Y ,
(ii) ‖P1x− P2y‖ ≤ k‖x− y‖ for all x, y ∈ Y where 0 ≤ k < 1 is a constant,
(iii) P2[Y ] is compact.

Then the operator P1 + P2 has a fixed point in Y .

2. Controllability Results for Linear Systems

In this section we find an optimal control for solving the stochastic linear reg-
ulator problem in terms of stochastic controllability operator which drives a point
x0 ∈ H to a small neighbourhood of an arbitrary point b ∈ L2(FT ,H). Further, we
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study the relation between controllability operator ΓT
0 and its stochastic analogue

ΠT
0 .
Define the linear regulator problem: minimize

J(u) = E‖xα(T )− b‖2 + αE
∫ T

0

‖u(t)‖2dt (2.1)

over all u(·) ∈ LF2 (I, U), where the solution x(·) of (1.3) is given by

x(t) = S(t)[x0 − h(x)− q(0)] + q(t) +
∫ t

0

AS(t− s)q(s)ds

+
∫ t

0

S(t− s)Bu(s)ds +
∫ t

0

S(t− s)f(s)ds

+
∫ t

0

S(t− s)σ̃(s)dw(s) +
∫ t

0

S(t− s)
[ ∫ s

0

g(s, τ)dτ
]
ds,

(2.2)

Here b ∈ L2(FT ,H) and α > 0 are parameters and f(·) ∈ LF2 (I,H), q(·) ∈
LF2 (I,H), g(·) ∈ LF2 (I, I,H), σ̃(·) ∈ LF2 (I, L2

0) and h(·) ∈ C(I,H).
It is convenient to introduce the relevant operators and the basic controllability

condition
(i) The operator LT

0 ∈ L(LF2 (I,H), L2(Ω,FT ,H)) is defined by

LT
0 u =

∫ T

0

S(T − s)Bu(s)ds.

Clearly the adjoint (LT
0 )∗ : L2(Ω,FT ,H) → LF2 (I,H) is defined by

[(LT
0 )∗z](t) = B∗S∗(T − t)E{z | Ft}.

(ii) The controllability operator ΠT
0 associated with (1.3) is defined by

ΠT
0 {·} = LT

0 (LT
0 )∗{·} =

∫ T

0

S(T − t)BB∗S∗(T − t)E{· | Ft}dt.

which belongs to L(L2(Ω,FT ,H), L2(Ω,FT ,H)) and the controllability op-
erator ΓT

s ∈ L(H,H) is

ΓT
s =

∫ T

s

S(T − t)BB∗S∗(T − t)dt, 0 ≤ s < t.

(iii) The resolvent operator

R(α, ΓT
0 ) := (αI + ΓT

0 )−1, R(α, ΠT
0 ) := (αI + ΠT

0 )−1.

(AC) αR(α, ΠT
0 ) := (αI + ΠT

0 )−1 → 0 as α → 0+ in the strong topology.
It is known that the assumption (AC) holds if and only if the linear stochastic

system(1.3) is approximately controllable on [0, T ] (see [12]). The following lemmas
whose proof can be found in [13] and lemma 2.2 give a formula for a control which
steers the system (2.2) from a point x0 ∈ H to a small neighbourhood of an arbitrary
point b ∈ L2(FT ,H).

Lemma 2.1. (a) For arbitrary z ∈ L2(FT ,H) there exists kz(·) ∈ LF2 (I, L0
2) such

that

E{z|Ft} = Ez +
∫ t

0

kz(s)dw(s), (2.3)
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ΠT
0 z = ΓT

0 Ez +
∫ t

0

ΓT
s kz(s)dw(s), (2.4)

R(α, ΠT
0 )z = R(α, ΓT

0 )Ez +
∫ T

0

R(α, ΓT
s )kz(s)dw(s), (2.5)

Πt
0S
∗(T − t)R(α, ΠT

0 )z

= Γt
0S
∗(T − t)R(α, ΓT

0 )Ez +
∫ t

0

Γt
rS
∗(T − t)R(α, ΓT

r )kz(r)dw(r).
(2.6)

(b) If f : I ×H → H, q : I ×H → H, g : I × I ×H → H, satisfies the condition
(H2) and x(·) ∈ LF

2 (I,H), then there exist kf (·, x(s)) ∈ LF
2 (I, L0

2), kq(·, x(s)) ∈
LF

2 (I, L0
2) and kg(·, ·, x(s)) ∈ LF

2 (I, I, L0
2) such that

E{
∫ T

0

S(T − s)f(s, x(s))ds|Ft}

= E
∫ T

0

S(T − s)f(s, x(s))ds +
∫ T

0

kf (s, x(s))dw(s)

(2.7)

E{
∫ T

0

AS(T − s)q(s, x(s))ds|Ft}

= E
∫ T

0

AS(T − s)q(s, x(s))ds +
∫ T

0

kq(s, x(s))dw(s)

(2.8)

E{
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds|Ft}

= E
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds +

∫ T

0

[ ∫ s

0

kg(s, τ, x(τ))dτ
]
dw(s)

(2.9)

and for all x(·), y(·) ∈ LF
2 (I, H)

E
∫ T

0

‖kf (s, x(s))− kf (s, y(s))‖2ds ≤ K2TL1

(
E

∫ T

0

‖x(s)− y(s)‖2ds
)

(2.10)

E
∫ T

0

‖kf (s, x(s))‖2ds ≤ K2T 2L4 (2.11)

E
∫ T

0

‖kq(s, x(s))− kq(s, y(s))‖2ds ≤ K2l20TL3

(
E

∫ T

0

‖x(s)− y(s)‖2ds
)

(2.12)

E
∫ T

0

‖kq(s, x(s))‖2ds ≤ K2l20T
2L6, (2.13)

E
∫ T

0

∥∥∫ s

0

[
kg(s, τ, x(τ))− kg(s, τ, y(τ))

]
dτ

∥∥2
ds

≤ K2T 2L2

(
E

∫ s

0

‖x(τ)− y(τ)‖2dτ
) (2.14)

E
∫ T

0

∥∥∫ s

0

[
kg(s, τ, x(τ))dτ

]∥∥2
ds ≤ K2T 3L5 (2.15)

where K = max{‖S(t)‖ : 0 ≤ t ≤ T} and l0 = ‖AS(t)q‖.
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Lemma 2.2. There exists a unique control uα(·) ∈ LF
2 (I, U) such that

uα(t) = B∗S∗(T − t)E
{

R(α, ΠT
0 )

(
b− S(T )[x0 − h(x)− q(0)]− q(T )

−
∫ T

0

AS(T − s)q(s)ds−
∫ T

0

S(T − s)f(s)ds

−
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ)dτ
]
ds−

∫ T

0

S(T − s)σ̃(s)dw(s)
)
|Ft

} (2.16)

and

xα(T )

= b− αR(α, ΓT
0 )

(
Eb− S(T )[x0 − h(x)− q(0)]− q(T )

−E
∫ T

0

AS(T − s)q(s)ds−E
∫ T

0

S(T − s)
[
f(s)ds +

∫ s

0

g(s, τ)dτ
]
ds

)
− α

∫ T

0

R(α, ΓT
s )

(
kb(s)− S(T − s)σ̃(s)− kf (s)− kq(s)−

∫ s

0

kg(s, τ)dτ
)
dw(s)

(2.17)
where

E{
∫ T

0

S(T − s)f(s)ds|Ft} = E
∫ T

0

S(T − s)f(s)ds +
∫ T

0

kf (s)dw(s),

E{
∫ T

0

AS(T − s)q(s)ds|Ft} = E
∫ T

0

AS(T − s)q(s)ds +
∫ T

0

Akq(s)dw(s),

E{
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ)dτ
]
ds|Ft}

= E
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ)dτ
]
ds +

∫ T

0

[ ∫ s

0

kg(s, τ)dτ
]
dw(s).

Proof. The problem of minimizing the functional (2.1) has a unique solution uα(·) ∈
LF2 (I, U) which is completely characterized by the stochastic maximum principle
(see [1]) and has the following form:

uα(t) = −α−1B∗S∗(T − t)E{xα(T )− b|Ft}.

Formula (2.17) shows that the linear system (2.2) is approximately controllable on
[0, T ] if and only if αR(α, ΠT

0 ) converges to zero operator as α → 0+ in the strong
topology [12]. �

3. Approximate Controllability

In this section sufficient conditions are established for the approximate con-
trollability of the stochastic control system (1.2) under the assumption that the
associated linear system is approximately controllable.
Definition. The stochastic system (1.2) is approximately controllable on the in-
terval I if

RT (x0) = L2(FT ,H),

where RT (x0) = {x(T ;x0, u) : u(·) ∈ LF2 (I, U)}.
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Define the control

uα(t) = B∗S∗(T − t)E
{

R(α, ΠT
0 )

(
b− S(T )[x0 − h(x)− q(0, x(0))]− q(T, x(T ))

−
∫ T

0

AS(T − s)q(s, x(s))ds−
∫ T

0

S(T − s)f(s, x(s))ds

−
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∫ T

0

S(T − s)σ(s, x(s))dw(s)
)∣∣∣Ft

}
.

(3.1)
To formulate the controllability problem in the form suitable for application of the
Nussbaum fixed-point theorem, we put the control uα(·) into the stochastic control
system (1.2) and obtain a nonlinear operator Pα : C(I, L2) → C(I, L2)

(Pαx)(t) = S(t)[x0 − h(x)− q(0, x(0))] + q(t, x(t)) +
∫ T

0

AS(T − s)q(s, x(s))ds

+
∫ t

0

S(t− s)f(s, x(s))ds +
∫ t

0

S(t− s)σ(s, x(s))dw(s)

+
∫ t

0

S(t− s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds + Πt

0S
∗(T − t)R(α, ΠT

0 )

×
(
b− S(T )[x0 − h(x)− q(0, x(0))]− q(t, x(t))

−
∫ T

0

AS(T − s)q(s, x(s))ds−
∫ T

0

S(T − s)f(s, x(s))ds

−
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds−

∫ T

0

S(T − s)σ(s, x(s))dw(s)
)
.

It will be shown that the stochastic control system (1.2) is approximately control-
lable if for all α > 0 there exists a fixed point of the operator Pα. To show that
Pα has a fixed point we employ the Nussbaum fixed-point theorem in C(I, L2).We
now define the operators Pα

1 : C(I, L2) → C(I, L2) and Pα
2 : C(I, L2) → C(I,H) as

follows:

(Pα
1 x)(t)

= S(t)[x0 − h(x)− q(0, x(0))] + q(t, x(t)) +
∫ T

0

AS(T − s)q(s, x(s))ds

+
∫ t

0

S(t− s)f(s, x(s))ds +
∫ t

0

S(t− s)σ(s, x(s))dw(s)

+
∫ t

0

S(t− s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds +

∫ t

0

Γt
sS
∗(T − t)R(α, ΓT

s )
[
kb(s)

− S(T − s)σ(s, x(s))− kf (s, x(s))−Akq(s, x(s))−
∫ s

0

kg(s, τ, x(τ))dτ
]
dw(s),

(3.2)
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and

(Pα
2 x)(t) = Γt

0S
∗(T − t)R(α, ΓT

0 )
(
Eb− S(T )[x0 − h(x)− q(0, x(0))]− q(T, x(T ))

−E
∫ T

0

AS(T − s)q(s, x(s))ds−E
∫ T

0

S(T − s)f(s, x(s))ds

−E
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
])

,

(3.3)
where kb(s), kf (s, x), kq(s, x) and kg(s, τ, x) are defined by (2.3), (2.7), (2.8) and
(2.9) respectively. By using (2.6) along with

z ≡ b− S(t)[x0 − h(x)− q(0, x(0))]− q(T, x(T )) +
∫ T

0

AS(T − s)q(s, x(s))ds

−
∫ T

0

S(T − s)f(s, x(s)ds−
∫ T

0

S(T − s)
∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∫ T

0

S(T − s)σ(s, x(s))dw(s),

it is easy to observe that Pαx = (Pα
1 + Pα

2 )x. Define the set

Yr = {x(·) ∈ C(I, L2) : E‖x(t)‖2 ≤ r},

where r is a positive constant. Let us take

M = ‖B‖, N = T max{‖S(t)BB∗S∗(t)‖ : 0 ≤ t < T}.

Theorem 3.1. Assume that (H1)-(H2), (AC) hold. Then the system (1.2) is ap-
proximately controllable on [0, T ].

Proof. The proof is done by the several steps.
Step 1. For arbitrary α > 0 there is a positive constant r0 = r0(α) such that

P : Yr0 → Yr0 . From the definition of Pα
1 and Pα

2 , for any x(·) ∈ Yr0 , we have

‖Pα
1 x‖∗

≤ K[‖x0‖+ l1 +
√

L6] +
√

L6 + l0KT
√

L6 + KT
√

L4 + K
√

TL4

+ KT
√

TL5 +
1
α

NK
( ∫ T

0

E‖kb(s)‖2ds +
∫ T

0

E‖A‖‖kq(s, x(s))‖2ds

+
∫ T

0

E‖kf (s, x(s))‖2ds +
∫ T

0

[ ∫ s

0

E‖kg(s, τ, x(τ))‖2dτ
]
ds + K2TL3

)1/2

≤ K‖x0‖+ Kl1 + (K + 1 + KTl0)
√

L6 + K(
√

T + 1)
√

TL4 + KT
√

TL5

+
1
α

NK
( ∫ T

0

E‖kb(s)‖2ds + K2T 2l20L6 + K2T 3L5 + K2T
(
T + 1

)
L4

)1/2

,

‖Pα
2 x‖ ≤ 1

α
NK

(
‖Eb‖+K(‖x0‖+ l1)+(K +1+KTl0)

√
L6 +KT (

√
L4 +

√
TL5)

)
,

which implies for sufficiently large r0 = r0(α)

‖Pαx‖∗ ≤ ‖Pα
1 x‖∗ + ‖Pα

2 x‖ ≤ r0(α).

Hence, Pα maps Yr0 into itself for some r0.
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Step 2. For arbitrary α > 0 the operator Pα
2 maps Yr0 into a relatively compact

subset of Yr0 . According to the infinite-dimensional version of the Ascoli-Arzela
theorem we have to show that

(1) for arbitrary t ∈ [0, T ] the set

V (t) = {(Pα
2 x)(t) : x ∈ Yr0} ⊂ X

is relatively compact.
(2) for arbitrary ε > 0 there exists δ > 0 such that

‖(Pα
2 x)(t + τ)− (Pα

2 x)(t)‖ < ε,

if ‖x‖ ≤ r, |τ | ≤ δ, t, t + τ ∈ [0, T ].

Notice that the uniform boundedness is proved in step 1.
Let us prove (1). In fact, the case where t = 0 is trivial, since V (0) = {x0}, so

let t, 0 < t ≤ T , be fixed and let η be a given real number satisfying 0 < η < t.
Define

(Pα,η
2 x)(t)

=
∫ t−η

0

S(t− r)BB∗S∗(T − r)drR(α, ΓT
0 )

(
Eb− S(T )[x0 − h(x)− q(0, x(0))]

− q(T, x(T ))−E
∫ T

0

AS(T − s)q(s, x(s))ds−E
∫ T

0

S(T − s)f(s, x(s))ds

−E
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
])

ds

= S(η)(Pα
2 x)(t− η).

Since S(η) is compact and (Pα
2 x)(t− η) is bounded on Yr0 the set

Vη(t) = {(Pα,η
2 x)(t) : x(·) ∈ Yr}

is relatively compact set in H, that is, we can find a finite set {yi, 1 ≤ i ≤ m} in H
such that

Vη(t) ⊂
m⋃

i=1

N(yi,
ε

2
).

On the other hand, there exists η > 0 such that

‖(Pα
2 x)(t)− (Pα,η

2 x)(t)‖

=
∥∥∫ t

t−η

S(t− r)BB∗S∗(T − r)drR(α, ΓT
0 )

(
Eb− S(T )[x0 − h(x)− q(0, x(0))]

− q(T, x(T ))−E
∫ T

0

AS(T − s)q(s, x(s))ds−E
∫ T

0

S(T − s)f(s, x(s)ds

−E
∫ T

0

S(T − s)
( ∫ s

0

g(s, τ, x(τ))dτ
)
ds

)∥∥
≤ 1

α
K2M2

(
‖Eb‖+ K(‖x0‖+ l1) + (K + 1 + KTl0)

√
L6 + KT (

√
L4 +

√
TL5)

)
η

≤ ε

2
.



10 R. SUBALAKSHMI, K. BALACHANDRAN EJDE-2008/162

Consequently,

V (t) ⊂
m⋃

i=1

N(yi, ε).

Hence, for each t ∈ [0, T ], V (t) is relatively compact in X.
Next, we prove (2). We have to show that V = {Pα

2 x)(·) : x ∈ Yr0} is equicon-
tinuous on [0, T ]. In fact, for 0 < t < t + τ ≤ T and 0 < η ≤ t.

‖(Pα
2 x)(t + τ)− (Pα

2 x)(t)‖
≤

∥∥Γt+τ
0 S∗(T − t− τ)− Γt

0S
∗(T − t)

∥∥∥∥R(α, ΓT
0 )

×
(
Eb− S(T )[x0 − h(x)− q(0, x(0))]− q(T, x(T ))−E

∫ T

0

AS(T − s)q(s, x(s))ds

−E
∫ T

0

S(T − s)f(s, x(s))−E
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds

)∥∥
≤

∥∥∫ t+τ

t

S(t + τ − s)BB∗S∗(T − s)ds− [S(τ)− I]
∫ t

0

S(t− s)BB∗S∗(T − s)ds
∥∥

× 1
α

(
‖Eb‖+ K[‖x0‖+ l1] + (K + 1 + KTl0)

√
L6 + KT

√
L4 + KT

√
TL5

)
≤ 1

α

(
τ + ‖S(τ)− I‖

)
K2M2

(
‖Eb‖+ K[‖x0 + l1]‖+ (K + 1 + KTl0)

√
L6

+ KT (
√

L4 +
√

TL5)
)
.

The right-hand side of the above inequality does not depend on particular choice of
x(·) and approaches zero as τ → 0+. The case 0 < t + τ < t ≤ T can be considered
in a similar manner. So, we obtain the equicontinuity of V . Thus, Pα

2 maps Yr0

into an equicontinuous family of deterministic functions which are also bounded.
By the Ascoli-Arzela theorem Pα

2 [yr0 ] is relatively compact in C(I, L2).
Step 3. Here we prove Pα

1 is a contraction mapping. In fact

‖Pα
1 x− Pα

1 y‖∗

≤
∥∥∫ t

0

S(t− s)
[
h(x(s))− h(y(s))

]
ds

∥∥
∗ +

∥∥q(t, x(t))− q(t, y(t)
∥∥
∗

+
∥∥∫ t

0

AS(t− s)
[
q(s, x(s))− q(s, y(s))

]
ds

∥∥
∗

+
∥∥∫ t

0

S(t− s)
[
f(s, x(s))− f(s, y(s))

]
ds

∥∥
∗

+
∥∥∫ t

0

S(t− s)
[
σ(s, x(s))− σ(s, y(s))

]
dw(s)

∥∥
∗

+
∥∥∫ t

0

S(t− s)
[ ∫ s

0

[
g(s, τ, x(τ))− g(s, τ, y(τ))

]
d(τ)

]
ds

∥∥
∗

+ NK
∥∥∫ t

0

R(α, ΓT
s )S(T − s)

[
σ(s, x(s))− σ(s, x(s))

]
dw(s)

∥∥
∗

+ NK
∥∥∫ t

0

R(α, ΓT
s )S(T − s)

[
kf (s, x(s))− kf (s, y(s))

]
dw(s)

∥∥
∗
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+ NK
∥∥∫ t

0

R(α, ΓT
s )AS(T − s)

[
kq(s, x(s))− kq(s, y(s))

]
dw(s)

∥∥
∗

+ NK
∥∥∫ t

0

R(α, ΓT
s )S(T − s)

[ ∫ s

0

[
kg(s, τ, x(τ))− kg(s, τ, y(τ))

]
dτ

]
dw(s)

∥∥
∗

≤ Kl + (1 + KTl0)
√

L3 + K
√

TL1(
√

T + 1) + KT
√

TL2

+
1
α

NK2
[
2
√

TL1 + l0
√

TL3 + T
√

L2

]
‖x(s)− y(s)‖∗ .

Here we used the inequality (2.11) and (2.12). So, if

Kl + (1 + KTl0)
√

L3 + K
√

TL1(
√

T + 1)

+ KT
√

TL2 +
1
α

NK2
[
2
√

TL1 + l0
√

TL3 + T
√

L2

]
< 1

(3.4)

Thus Pα
1 is a contraction mapping.

Step 4. Now we prove Pα
2 is continuous on C(I,H). To apply the Nussbaum

fixed-point theorem it remains to show that Pα
2 is continuous on C(I, L2). Let

{xn(·)} ⊂ C(I, L2) with xn(·) → x(·) ∈ C(I, L2). Then the Lebesgue-dominated
convergence theorem implies

‖Pα
2 xn(t)− Pα

2 x(t)‖

≤ 1
α

NK
[∥∥S(T )(h(xn)− h(x))

∥∥ +
∥∥q(t, xn(t))− q(t, x(t))

∥∥
+ E

∫ T

0

∥∥AS(T − s)
(
q(s, xn(s))− q(s, x(s)

)∥∥ds

+ E
∫ T

0

∥∥S(T − s)
(
f(s, xn(s))− f(s, x(s)

)∥∥ds

+ E
∫ T

0

∥∥S(T − s)
∫ s

0

(
g(s, τ, xn(τ))− g(s, τ, x(τ))

)
dτ

∥∥ds
]

≤ 1
α

NK(Kl +
√

L3) +
1
α

NK2
√

T
[
l20

∫ T

0

E‖q(s, xn(s))− q(s, x(s))‖2ds

+
∫ T

0

E‖f(s, xn(s))− f(s, x(s))‖2ds

+
∫ T

0

( ∫ s

0

E
∥∥g(s, τ, xn(τ))− g(s, τ, x(τ))

∥∥2
dτ

)
ds

]1/2

≤ 1
α

NK(Kl +
√

L3) +
1
α

NK2
√

T
(
l20L3 + L1 + TL2

)
×

[ ∫ T

0

E
(
‖xn(s)− x(s)‖2ds + ‖xn(s)− x(s)‖2ds + ‖xn(s)− x(s)‖2ds

)]1/2

≤ 1
α

NK(Kl +
√

L3) +
3
α

NK2T
(
l20L3 + L1 + TL2

)
‖xn − x‖ → 0

as n →∞. Thus Pα
2 is continuous on C(I, L2).

Step 5. From the Nussbaum fixed point theorem Pα has a fixed point provided
that the inequality (3.4) is satisfied. It is easily seen that this fixed point is a
solution of the system (1.2). The extra condition (3.4) can easily be removed by
considering (1.2) on intervals [0, T̃ ], [T̃ , 2T̃ ], . . . , with T̃ satisfying (3.4). Let x∗α(·)
be a fixed point of the operator Pα in Yr0 . Any fixed point of Pα is a mild solution
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of (1.1) on [0, T ] under the control uα(t) defined by (3.1), where x is replaced by
x∗α and, by Lemma 2.2 satisfies

(Pαx∗α)(T ) = x∗α(T )

= b + αR(α, ΠT
0 )

(
S(T )[x0 − h(x)− q(0, x(0))] + q(T, x(T ))

+
∫ T

0

AS(T − s)q(s, x∗α(s))ds +
∫ T

0

S(T − s)f(s, x∗α(s))ds

+
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x∗α(τ))dτ
]
ds

+
∫ T

0

S(T − s)σ(s, x∗α(s))dw(s)− b
)
.

(3.5)

Set

zα = S(T )[x0 − h(x)− q(0, x(0))] + q(T, x(T ))

+
∫ T

0

AS(T − s)q(s, x∗α(s))ds +
∫ T

0

S(T − s)f(s, x∗α(s))ds

+
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ, x∗α(τ))dτ
]
ds +

∫ T

0

S(T − s)σ(s, x∗α(s))dw(s)− b
)
.

By (H2), and then there is a subsequence, still denoted by

{f(s, x∗α(s)), q(s, x∗α(s)),
∫ s

0

g(s, τ, x∗α(τ))dτ, σ(s, x∗α)},

weakly converging to, say, (f(s, ω), (q(s, ω), σ(s, ω)) in H × L2
0 and g(s, τ, ω) in

H ×H × L2
0. The compactness of S(t), t > 0 implies

S(T − s)f(s, x∗α(s)) → S(T − s)f(s, ω),

S(T − s)q(s, x∗α(s)) → q(T − s)q(s, ω),

S(T − s)g(s, τ, x∗α(τ)) → S(T − s)g(s, τ, ω),

S(T − s)σ(s, x∗α(s)) → S(T − s)σ(s, ω) a.e. in I × Ω.

On the other hand

‖S(T − s)f(s, x∗α(s))‖2 + ‖S(T − s)σ(s, x∗α(s))‖2 ≤ K2L4,

‖S(T − s)g(s, τ, x∗α(τ))‖2 ≤ K2L5,

‖S(T − s)q(s, x∗α(s))‖2 ≤ K2L6 a.e. in I × Ω.

Thus by the Lebesgue-dominated convergence theorem

E‖zα − z‖2 → 0 as α → 0+,

where

z = S(T )[x0 − h(x)− q(0)] + q(T ) +
∫ T

0

AS(T − s)q(s)ds +
∫ T

0

S(T − s)f(s)ds

+
∫ T

0

S(T − s)
[ ∫ s

0

g(s, τ)dτ
]
ds +

∫ T

0

S(T − s)σ(s)dw(s)− b.
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Then having in mind that E‖αR(α, ΠT
0 )‖2 ≤ 1 and αR(α, ΠT

0 ) → 0 strongly by the
assumption (AC), from (3.5) we obtain√

E‖x∗α(T )− h‖2 ≤
√

E‖αR(α, ΠT
0 )(zα − z)‖2 +

√
E‖αR(α, ΠT

0 )(z)‖2

≤
√

E‖zα − z‖2 +
√

E‖αR(α, ΠT
0 )(z)‖2 → 0

as α → 0+. This gives the approximate controllability of (1.2). Hence the proof is
complete. �

Corollary 3.2. Assume that (H2) holds. If the semigroup S(t) is analytic and the
deterministic linear system corresponding to (1.1) is approximately controllable on
[0, T ] then the stochastic system (1.1) is approximately controllable on [0, T ].

Proof. It is known that (see [12, Theorem 4.3]) when the semigroup S(t) is analytic
the linear stochastic system (1.3) is approximately controllable on [0, T ] if and only
if the corresponding deterministic linear system is approximately controllable on
[0, T ]. Then by Theorem 3.1, the system (1.1) is approximately controllable on
[0, T ]. �

4. Applications

Consider the following stochastic classical heat equation for material with mem-
ory

d[z(t, θ)−m(t, z(t, θ))]

=
[
zθθ(t, θ) + Bu(t, θ) + p(t, z(t, θ)) +

∫ t

0

q(t, s, z(s, θ)ds
]
dt + k(t, z(t, θ)dw(t),

for (t, θ) ∈ I × [0, π] = Ω,

z(t, θ) = 0 for I × ∂Ω,

z(0, θ) +
p∑

i=1

ciz(ti, θ) = z0(θ) for θ ∈ Ω, 0 < ti ≤ T,

(4.1)
where Ω is an open bounded subset of Rn with smooth boundary ∂Ω, and B
is a bounded linear operator from a Hilbert space U into H. We assume that
p : I × H → H, m : I × H → H, k : I × H → L0

2, q : I × I × H → H, and
ci ∈ C(I,H) are all continuous and uniformly bounded, u(t) is a feedback control
and w is an Q-Wiener process. Let H = L2[0, π], and let A : H → H be an operator
defined by

Ax = xθθ

with domain

D(A) = {x ∈ H |x, xθ are absolutely continuous, xθθ ∈ H,x(0) = x(π) = 0}.

Let f : I ×H → H be defined by

f(t, x)(θ) = p(t, x(θ)), (t, x) ∈ I ×H, θ ∈ [0, π]

Let q : I ×H → H be defined by

q(t, x)(θ) = m(t, x(θ)),
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Let g : I × I ×H → H be defined by

g(t, s, x)(θ) = q(t, s, x(θ)),

Let h : C(I,H) → H be defined by

h(x)(θ) =
p∑

i=1

cix(ti)(θ),

Let σ : I ×H → L0
2 be defined by

σ(t, x)(θ) = k(t, x(θ)).

With this choice of A,B, f, q, g, h and σ, (1.2) is the abstract formulation of (4.1),
be such that the condition in (H2) is satisfied. Then

Ax =
∞∑

n=1

(
− n2

)
(x, en)en(θ), x ∈ D(A),

where en(θ) =
√

2
π sinnθ, 0 ≤ θ ≤ π, n = 1, 2, . . . It is known that A generates an

analytic semigroup S(t), t > 0 in H and is given by

S(t)x =
∞∑

n=1

e−n2t(x, en)en(θ), x ∈ H.

Now define an infinite-dimensional space

U =
{

u =
∞∑

n=2

unen(θ) :
∞∑

n=2

u2
n < ∞

}
with a norm defined by ‖u‖ = (

∑∞
n=2 u2

n)
1
2 and a linear continuous mapping B

from U to H as follows:

Bu = 2u2e1(θ) +
∞∑

n=2

unen(θ).

It is obvious that for u(t, θ, ω) =
∑∞

n=2 un(t, ω)en(θ) ∈ LF2 (I, U)

Bu(t) = 2u2(t)e1(θ) +
∞∑

n=2

un(t)en(θ) ∈ LF2 (I,H).

Moreover,

B∗v = (2v1 + v2)e2(θ) +
∞∑

n=3

vnen(θ),

B∗S∗(t)z =
(
2z1e

−t + z2e
−4t

)
e2(θ) +

∞∑
n=3

zne−n2ten(θ)

for v =
∑∞

n=1 vnen(θ) and z =
∑∞

n=1 znen(θ). Let

‖B∗S∗(t)z‖ = 0, t ∈ [0, T ],

it follows that ∥∥2z1e
−t + z2e

−4t
∥∥∥2

+
∞∑

n=3

∥∥zne−n2t
∥∥2 = 0, t ∈ [0, T ]

=⇒ zn = 0, n = 1, 2, . . . =⇒ z = 0.
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Thus, by [7, Theorem 4.1.7], the deterministic linear system corresponding to (4.1)
is approximately controllable on [0, T ] and by Corollary 3.1, the system (4.1) is
approximately controllable on [0, T ] provided that f , q, g, h and σ satisfies the
assumptions (H2).
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