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ASYMPTOTIC BEHAVIOR OF ELLIPTIC BOUNDARY-VALUE
PROBLEMS WITH SOME SMALL COEFFICIENTS

SENOUSSI GUESMIA

Abstract. The aim of this paper is to analyze the asymptotic behavior of the

solutions to elliptic boundary-value problems where some coefficients become

negligible on a cylindrical part of the domain. We show that the dimension
of the space can be reduced and find estimates of the rate of convergence.

Some applications to elliptic boundary-value problems on domains becoming

unbounded are also considered.

1. Introduction

We study the asymptotic behavior of the solutions of elliptic boundary-value
problems, posed on bounded domains of Rn = Rp × Rn−p with cylindrical part,
where the coefficients and the domains depend on a parameter θ. We show under
certain conditions on the coefficients that the solution of such problems converges
towards a solution of another elliptic problem in Rn−p, faster than any power of θ
on the cylindrical part. More specifically, we are interested in problems invariant by
translations (cylindrical symmetry) arbitrary in p directions, and we compare the
solution of our problem with that of an ideal problem independent of the coordinates
associated with these p directions. This study was inspired to us, on one hand by
the theory of ”Singular Perturbation” of boundary problem, which is the framework
of this paper, and on the other hand by the ideas and the tools given in some works
of Chipot and Rougirel (see [3], [5]) where another study of the asymptotic behavior
of elliptic boundary-value problems on domains becoming unbounded is given. We
would like to note that is difficult to locate similar studies in the literature, except
some examples studied in [8] and recently some cases have been considered in [1]
and [7].

The paper is organized as follows: In the second section, we give some useful
lemmas which will be used in the following sections. We show the main theorem in
the third section where we investigate the rate of convergence estimates. Next, in
the fourth section, we apply this result to the asymptotic behavior of the solutions
of elliptic problems on domains becoming unbounded in one or several directions
and we extend some results of [3] and [5] for more general domains. In the last
section, we give the rate of convergence according to the size of the domain in all
directions.
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Let (Ωθ)θ>0 be a family of bounded Lipschitz domains of Rn, satisfying

∆× ω ⊂ Ωθ, ∆× ∂ω ⊂ ∂Ωθ, PX2Ωθ ⊂ ω0, (1.1)

where ω0 and ω are two bounded Lipschitz domains of Rn−p, ∆ is a bounded
Lipschitz domain of Rp, n and p two positive integers with n > p ≥ 1 and PXi

the projection on the Xi axis, such that for x = (x1, x2, . . . , xn) ∈ Rn, we set
X1 = (x1, . . . , xp) and X2 = (xp+1, . . . , xn).

Figure 1. The domain Ωθ.

We would like to consider the following three boundary-value problems
n∑

i,j=1

−∂i(aθ
ij∂ju) + a0u = f in Ωθ

u = 0 on ∂Ωθ,

(1.2)

n∑
i,j=p+1

−∂i(aij∂ju) + a0u = f in ω

u = 0 on ∂ω,

(1.3)

and
n∑

i,j=p+1

−∂i(aij∂ju) + a0u = h in ω0

u = 0 on ∂ω0

(1.4)

where θ is a positive parameter. Since we are interested in θ close to 0, we can take
θ < 1. Assume that

f, h ∈ L2(ω0). (1.5)

Consider then
aθ

ij ∈ L∞(PX1Ωθ × ω0), (1.6)

for all i, j = 1, . . . , n.
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Remark 1.1. We can only suppose that

aθ
ij ∈ L∞(Ωθ), for j = 1, . . . , n

and we extend the coefficients on PX1Ωθ × ω0, keeping the assumptions below.

Assume that the coefficients aθ
ij are independent of X1 for j ≥ p+ 1, and inde-

pendent of θ for i ≥ p+ 1 and j ≥ p+ 1, i.e.

aθ
ij(x) = aθ

ij(X2) for j ≥ p+ 1 (1.7)

aθ
ij(x) = aij(X2) for i ≥ p+ 1, j ≥ p+ 1. (1.8)

Furthermore, we assume the ellipticity condition; i.e., there exist a constant λ > 0,
such that

n∑
i,j=1

aθ
ij(x)ξiξj ≥ λθ|ξ1|2 + λ|ξ2|2, a.e. x ∈ PX1Ωθ × ω0, ∀ξ ∈ Rn, (1.9)

where ξ1 = (ξ1, . . . , ξp) and ξ2 = (ξp+1, . . . , ξn). Consequently,
n∑

i,j=p+1

aij(x)ξiξj ≥ λ|ξ|2, a.e. x ∈ ω0, ∀ξ ∈ Rn−p. (1.10)

In addition, we suppose that there exist constants α (0 < α ≤ 1/2) and C > 0,
such that

|aθ
ij(x)| ≤ Cθ

1
2+α for i ≤ p, j ≤ p (1.11)

|aθ
ij(x)| ≤ Cθα for i ≥ p+ 1, j ≤ p or i ≤ p, j ≥ p+ 1 (1.12)

a.e. x ∈ ∆ × ω. The existence of the term a0 does not have any influence on the
final result, then we put a0 = 0.

Remark 1.2. As a model example, we consider the singularly perturbed Laplacian
problem, defined on a cylindrical domain Ωθ = ∆× ω,

−θ∆X1u−∆X2u = f in Ωθ

u = 0 on ∂Ωθ.

The variational problems corresponding to (1.2), (1.3) and (1.4) are

a(u, v) =
∫

Ωθ

n∑
i,j=1

aθ
ij(x)∂juθ∂ivdx =

∫
Ωθ

fvdx,

u, v ∈ H1
0 (Ωθ),

(1.13)

aω(u, v) =
∫

ω

n∑
i,j=p+1

aij(X2)∂ju∞∂ivdX2 =
∫

ω

fvdX2,

u, v ∈ H1
0 (ω),

(1.14)

and

aω0(u, v) =
∫

ω0

n∑
i,j=p+1

aij(X2)∂juh∂ivdX2 =
∫

ω0

hvdX2,

u, v ∈ H1
0 (ω0).

(1.15)

According to the Lax-Milgram theorem, the existence and the uniqueness of the
solution uθ in H1

0 (Ωθ) of the problem (1.13), the solution u∞ in H1
0 (ω) of the
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problem (1.14) and the solution uh in H1
0 (ω0) of the problem (1.14) are assured.

First of all, we need to introduce some preliminary results.

2. Some estimates

We start with the following Lemmas which will be used frequently in this paper.

Lemma 2.1. Let v be an element of Hm
0 (Ωθ). Then

v(X1, .) ∈ Hm
0 (ω0) a.e. X1 ∈ PX1Ωθ, (2.1)

v(X1, .) ∈ Hm
0 (ω) a.e. X1 ∈ ∆. (2.2)

Proof. By the density of D(Ωθ) in Hm
0 (Ωθ), there exists a sequence φn of D(Ωθ),

such that ∫
Ωθ

∇(v − φn)dx→ 0 as n→∞.

We extend v and φn by 0 on PX1Ωθ × ω0 (Ωθ ⊂ PX1Ωθ × ω0), then we have
φn ∈ D(PX1Ωθ × ω0), v ∈ Hm

0 (PX1Ωθ × ω0) and∫
PX1Ωθ

∫
ω0

|∇(v − φn)|2dx→ 0 as n→∞.

We can extract a subsequence φnk
, such that as k →∞:∫

ω0

|∇X2(v − φnk
)|2dx→ 0 a.e. X1 ∈ PX1Ωθ,∫

ω

|∇X2(v − φnk
)|2dx→ 0 a.e. X1 ∈ ∆,

which give (2.1) and (2.2). �

Lemma 2.2. Under the preceding hypotheses, we assume that h = f ≥ 0 (resp.
h = f ≤ 0). Then we have

0 ≤ uθ ≤ uh, (resp. uh ≤ uθ ≤ 0).

Proof. We apply the weak maximal principle for elliptic problems (see [6]) to obtain
the inequalities uθ ≥ 0 and uh ≥ 0. For the second inequality, if we use (2.1) we
can take v ∈ H1

0 (Ωθ) in (1.15) and integrate on PX1Ωθ, to get∫
Ωθ

n∑
i,j=p+1

aij(x)∂juh∂ivdx =
∫

Ωθ

fvdx,

because v vanishes in the exterior of Ωθ. By comparison with (1.13), we deduce∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂juθ∂ivdx =

∫
Ωθ

n∑
i,j=p+1

aij(x)∂juh∂ivdx.

Taking into account the independence of u∞ on X1, we deduce∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂j(uθ − uh)∂ivdx =

∫
Ωθ

n∑
1≤i≤p

p+1≤j≤n

aθ
ij(x)∂juh∂ivdx

=
∫

Ωθ

n∑
1≤i≤p

p+1≤j≤n

∂i(aθ
ij(x)∂juhv)dx
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=
∫

∂Ωθ

n∑
1≤i≤p

p+1≤j≤n

aθ
ij(x)∂juhvνidx,

because aθ
ij is independent of X1 for 1 ≤ i ≤ p and p + 1 ≤ j ≤ n. Then, since v

vanishes on the boundary, we deduce that∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂j(uθ − uh)∂ivdx = 0, (2.3)

for all v ∈ H1
0 (Ωθ). On the other hand, Theorem 2.8 in [4] shows that

γ[(uθ − uh)+] = [γ(uθ − uh)]+.

Then since uθ ∈ H1
0 (Ωθ) and uh ≥ 0, we have

γ[(uθ − uh)+] = 0,

which allows us to take v = (uθ − uh)+ ∈ H1
0 (Ωθ) in (2.3), then we get∫

Ωθ

n∑
i,j=1

aθ
ij(x)∂j(uθ − uh)∂i(uθ − u∞)+vdx

=
∫

uθ−uh≥0

n∑
i,j=1

aθ
ij(x)∂j(uθ − uh)∂i(uθ − uh)+vdx = 0.

By the ellipticity assumption (1.9), it follows that

|∇(uθ − uh)+|2L2(Ωθ) ≤ 0.

Therefore, (uθ−uh)+ =const and (uθ−uh)+ ∈ H1
0 (Ωθ), then we have (uθ−uh)+ =

0, which gives the second inequality uθ ≤ u∞. For the second case when f ≤ 0, it
is enough to take −f in place of f above. �

Let u+ (resp. u−) be the solution of (1.15) replacing h by f+ (resp. −f−).

Lemma 2.3. Under the preceding assumptions, we have

u− ≤ uθ ≤ u+.

Proof. Let uθ,+ (resp. uθ,−) be the solution of (1.13) replacing f by f+ (resp.
−f−). Let us notice that

−f− ≤ f ≤ f+, f+ ≥ 0, −f− ≤ 0

a.e. x ∈ ω0, then applying the weak maximal principle for elliptic problems, we get

uθ,− ≤ uθ ≤ uθ,+.

If we use lemma 2.2, we obtain u− ≤ uθ,−, uθ,+ ≤ u+. This completes the proof. �

Next, we show the convergence of uθ to u∞ and we estimate the rate of this
convergence.
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3. Asymptotic behavior

According to Lemma 2.1, testing (1.14) with v ∈ H1
0 (∆× ω) and integrating on

∆ yields ∫
Ωθ

n∑
i,j=p+1

aθ
ij(x)∂ju∞∂ivdx =

∫
Ωθ

fvdx,

because v vanishes in the exterior of ∆× ω. By (1.13), we remark that∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂juθ∂iv dx =

∫
Ωθ

n∑
i,j=p+1

aij(x)∂ju∞∂ivdx.

Using the independence of u∞ on X1, it comes∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂j(uθ − u∞)∂ivdx =

∫
Ωθ

n∑
1≤i≤p

p+1≤j≤n

aθ
ij(x)∂ju∞∂ivdx. (3.1)

On the other hand, the independence of u∞ and of the coefficients aθ
ij on X1 for

1 ≤ i ≤ p and p+ 1 ≤ j ≤ n, gives∫
Ωθ

n∑
1≤i≤p

p+1≤j≤n

aθ
ij(x)∂ju∞∂ivdx =

n∑
1≤i≤p

p+1≤j≤n

∫
Ωθ

∂i(aθ
ij(x)∂ju∞v)dx

=
n∑

1≤i≤p
p+1≤j≤n

∫
∂Ωθ

aθ
ij(x)∂ju∞vνidx = 0,

because v vanishes on the boundary. Consequently, (3.1) becomes∫
Ωθ

n∑
i,j=1

aθ
ij(x)∂j(uθ − u∞)∂ivdx = 0 for all v ∈ H1

0 (∆× ω)). (3.2)

For ε > 0, we set
∆ε = {x ∈ ∆ : d(∂∆, x) > ε}.

Let (ρε)ε>0 be a family of smooth functions on Rp, such that

supp ρε ⊂ ∆ ε
2
, (∆ε ⊂ ∆ ε

2
),

ρε(x) = 1 for all x in ∆ε and for all x in ∆, ρε satisfies

0 ≤ ρε(x) ≤ 1.

If we take v = ρ2
ε(uθ − u∞) ∈ Hm

0 (∆× ω)) in (3.2), we deduce that∫
∆×ω

n∑
i,j=1

aθ
ij(x)∂j(uθ − u∞)∂i(ρ2

ε(uθ − u∞))dx = 0,

whence ∫
∆×ω

n∑
i,j=1

ρ2
εa

θ
ij(x)∂j(uθ − u∞)∂i(uθ − u∞)dx

= −2
∫

∆×ω

∑
1≤i≤p
1≤j≤n

aθ
ij(x)ρε∂j(uθ − u∞)(uθ − u∞)∂iρεdx.
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Using (1.9) and noting that ρε vanishes in the exterior of ∆ ε
2

and depends only on
X1, it follows that∫

∆ ε
2
×ω

λθ

p∑
i=1

ρ2
ε(∂i(uθ − u∞))2dx+

∫
∆ ε

2
×ω

λ′
n∑

i=p+1

ρ2
ε(∂i(uθ − u∞))2dx

≤ −2
∫

∆ ε
2
×ω

∑
1≤i≤p
1≤j≤p

aθ
ij(x)ρε∂j(uθ − u∞)(uθ − u∞)∂iρεdx

− 2
∫

∆ ε
2
×ω

∑
1≤i≤p

p+1≤j≤n

aθ
ij(x)ρε∂j(uθ − u∞)(uθ − u∞)∂iρεdx.

We estimate the second member using (1.11), (1.12) and the fact that the derivative
of ρε is bounded, we get∫

∆ ε
2
×ω

θ

p∑
i=1

(ρε∂i(uθ − u∞))2dx+
∫

∆ ε
2
×ω

n∑
i=p+1

(ρε∂i(uθ − u∞))2dx

≤ Cθ
1
2+α

[ ∫
∆ ε

2
×ω

∑
1≤j≤p

(ρε∂j(uθ − u∞))2dx
]1/2[ ∫

∆ ε
2
×ω

(uθ − u∞)2dx
]1/2

+ Cθα
[ ∫

∆ ε
2
×ω

∑
1≤j≤p

(ρε∂j(uθ − u∞))2dx
]1/2[ ∫

∆ ε
2
×ω

(uθ − u∞)2dx
]1/2

.

According to the Young inequality ab ≤ εa2 + b2

ε with ε = 1
2C θ

1
2−α in the first term

of the right hand side, and ε = 1
2C θ

−α in the second term of the right hind side,
we deduce

1
2

∫
∆ ε

2
×ω

θ

p∑
i=1

(ρε∂i(uθ − u∞))2dx+
1
2

∫
∆ ε

2
×ω

n∑
i=p+1

(ρε∂i(uθ − u∞))2dx

≤ Cθ2α

∫
∆ ε

2
×ω

(uθ − u∞)2dx.
(3.3)

Using Poincaré’s inequality and since uθ − u∞ vanishes on ∂ω for a.e. X1,

1
|ω|2

∫
ω

(uθ − u∞)2dX2 ≤
1
2

∫
ω

∑
p+1≤i≤n

(∂i(uθ − u∞))2dX2 a.e. X1 in ∆ ε
2
,

where |ω| is the diameter of ω, then (3.3) becomes

1
|ω|2

∫
∆ ε

2
×ω

(ρε(uθ − u∞))2dx+
∫

∆ ε
2
×ω

θ

p∑
i=1

(ρε∂i(uθ − u∞))2dx

+
∫

∆ ε
2
×ω

n∑
i=p+1

(ρε∂i(uθ − u∞))2dx

≤ Cθ2α

∫
∆ ε

2
×ω

(uθ − u∞)2dx.
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According to the definition of ρε, we obtain

1
|ω|2

∫
∆ε×ω

(uθ − u∞)2dx+
∫

∆ε×ω

θ

p∑
i=1

(∂i(uθ − u∞))2dx

+
∫

∆ε×ω

n∑
i=p+1

(∂i(uθ − u∞))2dx

≤ Cθ2α

∫
∆ ε

2
×ω

(uθ − u∞)2dx,

(3.4)

in particular ∫
∆ε×ω

(uθ − u∞)2dx ≤ C(θα|ω|)2
∫

∆ ε
2
×ω

(uθ − u∞)2dx. (3.5)

Choosing ε = ε
2k for k = 0, . . . , τ − 1 and ε > 0, we get∫

∆ ε
2k
×ω

(uθ − u∞)2dx ≤ C(θα|ω|)2
∫

∆ ε
2k+1

×ω

(uθ − u∞)2dx.

Iterating the above formula, leads to∫
∆ ε

2
×ω

(uθ − u∞)2dx ≤ C(θα|ω|)2(τ−1)

∫
∆ ε

2τ
×ω

(uθ − u∞)2dx.

Applying Lemma 2.3, we obtain∫
∆ ε

2
×ω

(uθ − u∞)2dx ≤ C(θα|ω|)2(τ−1)

∫
ω

(|u+|+ |u−|+ |u∞|)2dx,

whence ∫
∆ ε

2
×ω

(uθ − u∞)2dx ≤ Cωθ
2α(τ−1),

with

Cω = C|ω|2(τ−1)

∫
ω

(|u+|+ |u−|+ |u∞|)2dx. (3.6)

Using (3.4) with ε = ε, we get the estimates∫
∆ε×ω

p∑
i=1

(∂i(uθ − u∞))2dx ≤ Cωθ
2ατ−1, (3.7)

∫
∆ε×ω

n∑
i=p+1

(∂i(uθ − u∞))2dx ≤ Cωθ
2ατ . (3.8)

Finally, for any constant r > 0, choosing τ such that τα > r. Hence, we can state
the following theorem.

Theorem 3.1. Under conditions (1.5)–(1.9), (1.11) and (1.12), for any open subset
Φ of ∆× ω with boundary disjoint of ∂∆× ω, it holds that

uθ → u∞ in H1(Φ),

and for any r > 0, ∫
Φ

|∇X1uθ|2dx ≤ Cωθ
2r−1, (3.9)
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|∇X2(uθ − u∞)|2dx ≤ Cωθ
2r, (3.10)

where Cω is a constant given above and independent of θ.

Proof. It is sufficient to take ε = d(∂∆, PX1Φ). �

Remark 3.2. We can take f ∈ H−1(ω0) to show the same results. In this case we
can consider f as an element of H−1(Ωθ) by

< f̃(t), v >H−1(Ωθ)=
∫

PX1Ωθ

< f(t), ṽ(X1, .) >H−1(ω0) dX1, v ∈ H1
0 (Ωθ),

where ṽ is the extension of v by 0 on PX1Ωθ × ω0.

4. Application to the case of large size domains

We will see in this paragraph that the asymptotic behavior of the solution of
linear elliptic problems of order two on domain Ω` satisfied for `′ ≥ `

Ω` = (−`, `)p × ω or (−`, `)p × ω ⊂ Ω` ⊂ (−`′, `′)p × ω (4.1)

which is studied in the book of Chipot [3, Chapter 2 and 3], can be casted in
the preceding study without supposing any assumption on `′ (considering domains
more general than (4.1)), by giving a particular form to the coefficients aθ

ij . Indeed,
Let (Ω`)`>0 be a family of bounded Lipschitz domains of Rp×ω0 (see Figures 2 and
3), such that for any ` > 0, Ω` contains the cylinder (−`, `)p × ω and (−`, `)p × ∂ω
is a part of the boundary of Ω`, where ω0 and ω are defined in the first section.

We consider the two boundary-value problems defined by
n∑

i,j=1

−∂i(aij∂ju) + a0u = f in Ω`

u = 0 on ∂Ω`,

(4.2)

and
n∑

i,j=p+1

−∂i(aij∂ju) + a0u = f in ω

u = 0 on ∂ω.

(4.3)

We suppose that f ∈ L2(ω),

a0, aij ∈ L∞(Rp × ω0), (4.4)

and
a0(x) = a0(X2) ≥ 0, aij(x) = aij(X2) for j ≥ p+ 1. (4.5)

Moreover, we assume that there exists a constant λ > 0, such that
n∑

i,j=1

aij(x)ξiξj ≥ λ|ξ|2, a.e. x ∈ Rp × ω0, ∀ξ ∈ Rn. (4.6)

Then the solutions u` and u∞ of (4.2) and (4.3) respectively satisfy∫
Ω`

n∑
i,j=1

aij(x)∂ju`∂iv + a0(x)u`vdx =
∫

Ω`

fvdx, a.e. v ∈ H1
0 (Ω`), (4.7)
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Figure 2. The domain Ω`.

Figure 3. The domain Ω`1 has another form for `1 > `.

and∫
ω

n∑
i,j=p+1

aij(X2)∂ju∞∂iv+a0(X2)u∞vdX2 =
∫

ω

fvdX2, a.e. v ∈ H1
0 (ω). (4.8)

We take θ = 1
`2 and use the change of variable given by

ψ : (X1, X2) 7→ y =
(
Y1 =

X1

`
, Y2 = X2

)
, (4.9)

in (4.7), and we set ψ(Ω`) = Ωθ, thus we obtain∫
Ωθ

p∑
i,j=1

1
`2
aij(`Y1, Y2)∂ju`(`Y1, Y2)∂iv(`Y1, Y2)`pdy
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+
∫

Ωθ

∑
1≤i≤p, p+1≤j≤n

or
1≤j≤p, p+1≤i≤n

1
`
aij(`Y1, Y2)∂ju`(`Y1, Y2)∂iv(`Y1, Y2)`pdy

+
∫

Ωθ

p∑
i,j=p+1

aij(Y2)∂ju`(`Y1, Y2)∂iv(`Y1, Y2)`pdy

=
∫

Ωθ

f(Y2)v(`Y1, Y2)`pdy.

Setting

uθ(Y1, Y2) = u`(`Y1, Y2),

aθ
ij(Y1, Y2) =

1
`2
aij(`Y1, Y2) for i, j = 1, . . . , p,

aθ
ij(Y1, Y2) =

1
`
aij(`Y1, Y2) for 1 ≤ i ≤ p < j ≤ n or 1 ≤ j ≤ p < i ≤ n,

aθ
ij(Y2) = aij(Y2) for i, j = p+ 1, . . . , n.

In addition, it is clear that (Y1, Y2) 7→ v(`Y1, Y2) ∈ H1
0 (Ωθ) if and only if (X1, X2) 7→

v(X1, X2) ∈ H1
0 (Ω`). Consequently, the problem (4.7) is equivalent to∫

Ωθ

n∑
i,j=1

aθ
ij(x)∂juθ∂ivdx =

∫
Ωθ

f(X2)vdx, for all v ∈ H1
0 (Ωθ). (4.10)

Therefore, u` is a solution of (4.7) if and only if uθ is a solution of (4.10). More-
over we can examine the conditions of the first paragraph on the problem (4.10).
According to the definition of Ω`, the domain Ωθ satisfies the condition (1.1) with
∆ = (−1, 1)p. The conditions (1.6)–(1.8) are satisfied by definition, for the condi-
tion (1.9), we have

n∑
i,j=1

aθ
ij(y)ξiξj =

p∑
i,j=1

aij(`Y1, Y2)(
1
`
ξi)(

1
`
ξj) +

∑
1≤i≤p, p+1≤j≤n

aij(Y2)(
1
`
ξi)(ξj)

+
∑

1≤j≤p, p+1≤i≤n

aij(`Y1, Y2)(ξi)(
1
`
ξj) +

n∑
i,j=p+1

aij(`Y1, Y2)ξiξj ,

then using (4.6), we obtain
n∑

i,j=1

aθ
ij(y)ξiξj ≥ λθ|ξ1|2 + λ|ξ2|2,

a.e. y ∈ Ωθ and ∀ξ ∈ Rn, therefore we have (1.9). Finally, if we use (4.4), we get
the conditions (1.11) and (1.12) with α = 1

2 . Then, if we apply Theorem 3.1, we
deduce for r > 0 and for Φ = (−σ, σ)p × ω with 0 < σ < 1, that there exists C > 0
independent of `, such that∫

(−σ,σ)p×ω

|∇X1uθ|2dy ≤ Cθr+p−2,∫
(−σ,σ)p×ω

|∇X2(uθ − u∞)|2dy ≤ Cθr+p.
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Again, we use the change of variable (4.9) to obtain

‖u` − u∞‖H1((−σ`,σ`)p×ω) ≤
C

`r
.

5. Estimate according to all directions

In the applications, we say that the size of the domain is large specifically in
some directions if we take into account the size ratio between all the directions, for
instance in the domain (0, 1) × (0, ε), the size of (0, 1) is considered large when ε
become negligible. However all the estimates of u`−u∞ given in [2], [3] and [5], only
show an estimate of the error of convergence with respect to `. In the following, we
investigate this estimate with respect to the size ratio between ` and |ω|. Then, we
suppose in this section that ω = ω0 and a bounded domain Ω` satisfies

(−`, `)p × ω ⊂ Ω` ⊂ Rp × ω; (5.1)

in addition, we assume that
f ∈ L∞(ω). (5.2)

First, we show the following estimate.

Figure 4. The domain Ω`.

Lemma 5.1. Let u+ (resp. u−) be the solution of (1.14) replacing h by f+ (resp.
−f−). It holds that

|u+|L2(ω), |u−|L2(ω), |u∞|L2(ω) ≤ C [measω)]1/2 |ω|2 (5.3)

where C is a constant independent of ω and measω) denotes the measure of ω.

Proof. We give the proof for u+, the proof for u− and u∞ are similar. Taking
v = u+ in (1.14) and using the ellipticity condition (1.10), we obtain

λ′
∫

ω

|∇u+|2dX2 ≤ |f+|L2(ω)|u+|L2(ω).

Using (5.2) and applying Poincaré’s inequality, then there exists a constant C in-
dependent of ω, such that

1
|ω|2

|u+|2L2(ω) ≤ C[measω)]1/2|u+|L2(ω),

which gives (5.3). �

This enables us to state the following corollary.
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Corollary 5.2. Let u` be the solution of (4.7) where Ω` is given by (5.1). If we
suppose that (4.4), (4.5), (4.6) and (5.2) hold, then for any τ > 0 and any 0 < σ < 1
there exists a constant Cσ > 0 independent of ` and ω, such that

|∇(u` − u∞)|L2((−σ`,σ`)p×ω) ≤ Cσ`
p meas(ω)|ω|2

( |ω|
`

)2τ
. (5.4)

Proof. If we use the change of variable (4.9) in (3.7) and (3.8), and we apply the
lemma above to estimate the constant Cω defined in (3.6), then we deduce (5.4). �
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