SOME NONLINEAR INTEGRAL INEQUALITIES ARISING IN DIFFERENTIAL EQUATIONS

KHALED BOUKERRIOUA, ASSIA GUEZANE-LAKOUD

Abstract. The aim of this paper is to obtain estimates for functions satisfying some nonlinear integral inequalities. Using ideas from Pachpatte [3], we generalize the estimates presented in [2, 4].

1. Introduction and main results

Integral inequalities are a necessary tools in the study of properties of the solutions of linear and nonlinear differential equations, such as boundedness, stability, uniqueness, etc. This justifies the intensive investigation on integral inequalities; see for example [1] [3] [5]. The aim of this paper is to establish some new generalizations of integral inequalities that have a wide applications in the study of differential equations. More precisely, using some ideas from [3], we give further generalizations of the results presented in [2, 4].

We begin by giving some material necessary for our study. We denote by \(\mathbb{R} \) the set of real numbers, and by \(\mathbb{R}_+ \) the nonnegative real numbers.

Lemma 1.1. For \(x, y \in \mathbb{R}_+ \), \(1/p + 1/q = 1 \), we have \(x^{1/p}y^{1/q} \leq x/p + y/q \).

Now we state the main results of this work.

Theorem 1.2. Let \(u, a, b, g \) and \(h \) be real valued nonnegative continuous functions defined on \(\mathbb{R}_+ \), \(p, r, q \) be real non negative constants. Assume that the functions

\[
\frac{a(t) + p/r}{b(t)}, \quad \frac{a(t) + r/p}{b(t)}, \quad \frac{a(t) + \min(r/p, q/p)}{b(t)}
\]

are nondecreasing and that

\[
u^p(t) \leq a(t) + b(t) \int_0^t [g(s)u^q(s) + h(s)u^r(s)]ds. \tag{1.1}
\]

(1) If \(0 < r < p < q \), then

\[
u(t) \leq \left(a(t) + \frac{p}{r} \right)^{1/p} \left(1 - \left(\frac{q}{p} - 1 \right) \int_0^t \left(b(s)g(s) + \frac{r}{p}h(s) \right)^{\frac{r}{p} - 1}ds \right)^{1/\left(\frac{r}{p} - 1 \right)} \tag{1.2}
\]
for \(t \leq \beta_{p,q,r} \), where

\[
\beta_{p,q,r} = \sup \{ t \in \mathbb{R}_+ : (q - 1) \int_0^t b(s)(g(s) + \frac{r}{p}) \frac{g}{s}^{-1} ds < 1 \}.
\]

(2) If \(0 < p < r < q \), then

\[
u(t) \leq (a(t) + \frac{r}{p})^{1/p} \left(1 - (q - 1) \int_0^t b(s)(g(s) + h(s))(a(s) + \frac{r}{p}) \frac{g}{s}^{-1} ds \right)^{-\frac{1}{q-1}}
\]

for \(t \leq \beta_{p,q,r} \), where

\[
\beta_{p,q,r} = \sup \{ t \in \mathbb{R}_+ : (q - 1) \int_0^t b(s)(g(s) + h(s))(a(s) + \frac{r}{p}) \frac{g}{s}^{-1} ds < 1 \}.
\]

(3) If \(0 < p < q \) and \(p < r \), then

\[
u(t) \leq (a(t) + \min\left(\frac{r}{p}, \frac{q}{p}\right))^{1/p} \left(1 - (\max\left(\frac{q}{p}, \frac{r}{p}\right) - 1) \int_0^t b(s)(g(s) + h(s))(a(s) + \frac{r}{p}) \frac{g}{s}^{-1} ds \right)^{\frac{1}{p(1-\max\left(\frac{q}{p}, \frac{r}{p}\right))}}
\]

for \(t \leq \beta_{p,q,r} \), where

\[
\beta_{p,q,r} = \sup \{ t \in \mathbb{R}_+ : \left(\max\left(\frac{q}{p}, \frac{r}{p}\right) - 1 \right) \int_0^t b(s)(g(s) + h(s))(a(s) + \frac{r}{p}) \frac{g}{s}^{-1} ds < 1 \}.
\]

Theorem 1.3. Suppose that the hypothesis of Theorem 1.2 hold and the function \(b(t) \) is decreasing. Let \(c \) be a real valued nonnegative continuous and nondecreasing function for \(t \in \mathbb{R}_+ \). Also assume that

\[
u^p(t) \leq c^p(t) + b(t) \int_0^t [g(s)u^q(s) + h(s)u^r(s)] ds.
\]

(1) If \(0 < r < p < q \), then

\[
u(t) \leq c(t)(1 + \frac{p}{r})^{1/p} \left(1 - (q - 1) \int_0^t (1 + \frac{p}{r}) \frac{g}{s}^{-1} b(s)K(s) ds \right)^{\frac{1}{q-1}}
\]

for \(t \leq \beta_{p,q,r} \), where

\[
\beta_{p,q,r} = \sup \{ t \in \mathbb{R}_+ : \left(\frac{q}{p} - 1 \right) \int_0^t (1 + \frac{p}{r}) \frac{g}{s}^{-1} b(s)K(s) ds < 1 \},
\]

\[K(s) = g(s)c(s)^{q-p} + \frac{r}{p} h(s)c(s)^{r-p}.
\]

(2) If \(t \in \mathbb{R}_+ \) and \(0 < p < r < q \), then

\[
u(t) \leq c(t)(1 + \frac{r}{p})^{1/p} \left(1 - (q - 1) \int_0^t b(s)K(s)(1 + \frac{r}{p}) \frac{g}{s}^{-1} ds \right)^{\frac{1}{q-1}}
\]

for \(t \leq \beta_{p,q,r} \), where

\[
\beta_{p,q,r} = \sup \{ t \in \mathbb{R}_+ : \left(\frac{q}{p} - 1 \right) \int_0^t b(s)K(s)(1 + \frac{r}{p}) \frac{g}{s}^{-1} ds < 1 \},
\]

\[K(s) = (g(s)c(s)^{q-p} + h(s)c(s)^{r-p}).
\]
(3) If \(t \in \mathbb{R}^+ \) and \(0 < p < q, \ p < r, \) then

\[
\begin{align*}
u(t) & \leq (1 + \min\left(\frac{r}{p}, \frac{q}{p}\right))^{1/p} \left(1 - (\max\left(\frac{q}{p}, \frac{r}{p}\right) - 1) \int_0^t b(s)K(s)\,ds\right) \\
& \quad \times (1 + \min\left(\frac{r}{p}, \frac{q}{p}\right))^{\max\left(\frac{q}{p}, \frac{r}{p}\right)-1} \int_0^t b(s)K(s)\,ds < 1
\end{align*}
\]

for \(t \leq \beta_{p,q,r} \), where

\[\beta_{p,q,r} = \sup\left\{ t \in R_+ : \left(\max\left(\frac{q}{p}, \frac{r}{p}\right) - 1\right) \int_0^t b(s)K(s)\,ds < 1 \right\} \]

and \(K(s) = (g(s)c(s)^q + h(s)c(s)^r)^{-1} \).

Note that in Theorems 1.2 and 1.3, we have studied the case \(p < q \). For the case \(p > q \), similar results are given in [2].

Proof of Theorem 1.2. (1) Define a function

\[v(t) = \int_0^t \left[g(s)a^q(s) + h(s)a^r(s)\right]\,ds. \]

then from inequality (1.1) and Lemma 1.1 we deduce that

\[
\begin{align*}
u^q(t) & \leq (a(t) + b(t)v(t))^{q/p}, \\
u^r(t) & \leq (a(t) + b(t)v(t))^{r/p},
\end{align*}
\]

(1.5) (1.6)

\[
\begin{align*}
u^r(t) & \leq \frac{r}{p}(a(t) + b(t)v(t)) + \frac{p - r}{p}, \\
u^r(t) & \leq \frac{r}{p}(a(t) + b(t)v(t) + \frac{p - r}{r}),
\end{align*}
\]

(1.7) (1.8)

Since \(\frac{q}{p} > 1 \), which implies

\[
\begin{align*}
v'(t) & \leq \left[g(t) + \frac{r}{p}h(t)\right][a(t) + b(t)v(t)]^{q/p}.
\end{align*}
\]

(1.10)

Taking into account that the function \(\frac{a(t) + \frac{p}{r}}{b(t)} \) is nondecreasing for \(0 \leq t \leq \tau \), we have

\[v'(t) \leq M(t)\left(\frac{a(\tau) + \frac{p}{r}}{b(\tau)} + v(t)\right), \]

where

\[M(t) = b(t)(g(t) + \frac{r}{p}h(t))(a(t) + b(t)v(t) + \frac{p}{r})^{\frac{q-1}{r}}, \]

consequently

\[v(t) + \frac{a(\tau) + \frac{p}{r}}{b(\tau)} \leq \frac{a(\tau) + \frac{p}{r}}{b(\tau)} \exp \int_0^t M(s)\,ds. \]

For \(\tau = t \), we can see that

\[a(t) + b(t)v(t) + \frac{p}{r} \leq (a(t) + \frac{p}{r}) \exp \int_0^t M(s)\,ds, \]

(1.11)
then the function $M(t)$ can be estimated as

$$M(t) \leq b(t)(g(t) + \frac{r}{p} h(t))(a(t) + \frac{p}{r})^{\frac{q}{p} - 1} \exp \int_0^t (\frac{q}{p} - 1)M(s)ds. \quad (1.12)$$

Let

$$L(t) = (\frac{q}{p} - 1)M(t). \quad (1.13)$$

Now we estimate the expression $L(t) \exp(- \int_0^t L(s)ds)$ by using (1.12) to obtain

$$L(t) \exp(\int_0^t -L(s)ds) \leq (\frac{q}{p} - 1)b(t)(g(t) + \frac{r}{p} h(t))(a(t) + \frac{p}{r})^{\frac{q}{p} - 1}.$$

Observing that

$$L(t) \exp(\int_0^t -L(s)ds) = \frac{d}{dt}(- \exp(\int_0^t -L(s)ds)),$$

$$\leq (\frac{q}{p} - 1)b(t)(g(t) + \frac{r}{p} h(t))(a(t) + \frac{p}{r})^{\frac{q}{p} - 1}.$$

Then integrate from 0 to t to obtain

$$(1 - \exp(\int_0^t -L(s)ds)) \leq \exp(\int_0^t (\frac{q}{p} - 1)b(s)(g(s) + \frac{r}{p} h(s))(a(s) + \frac{p}{r})^{\frac{q}{p} - 1} ds).$$

Replacing $L(t)$ by its value in (1.13), we obtain

$$(1 - \exp(\int_0^t (1 - \frac{q}{p})M(s)ds) \leq \int_0^t (\frac{q}{p} - 1)b(s)(g(s) + \frac{r}{p} h(s))(a(s) + \frac{p}{r})^{\frac{q}{p} - 1} ds,$$

then

$$\exp(\int_0^t M(s)ds \leq \left\{ 1 - \left[\int_0^t (\frac{q}{p} - 1)b(s)(g(s) + \frac{r}{p} h(s))(a(s) + \frac{p}{r})^{\frac{q}{p} - 1} ds \right] \right\}^{\frac{p}{q}}.$$

Using this inequality, (1.11), and (1.1) we obtain (1.2). This completes the proof of statement (1).

(2) for $t \in \mathbb{R}^+$ and $0 < p < r < q$, from (1.3) we have

$$u^{\alpha}(t) \leq (a(t) + b(t)v(t)) + \frac{r}{p}^{\alpha/p},$$

$$v^{\alpha}(t) \leq (g(t) + h(t))(a(t) + b(t)v(t)) + \frac{r}{p}^{\alpha/p}.$$
(3) For \(t \in \mathbb{R}^+ \) and \(p < r, p < q \), we have
\[
u^q(t) \leq (a(t) + b(t)v(t) + \min\left(\frac{r}{p}, \frac{q}{p}\right)\max(r/p, q/p),
\]
which gives
\[
v'(t) \leq (g(t) + h(t))(a(t) + b(t)v(t) + \min\left(\frac{r}{p}, \frac{q}{p}\right)\max(r/p, q/p)
\]
\[
v'(t) \leq M(t)(a(\tau) + \min\left(\frac{r}{p}, \frac{q}{p}\right) + v(t),
\]
where
\[
M(t) = b(t)(g(t) + h(t))(a(t) + b(t)v(t) + \min\left(\frac{r}{p}, \frac{q}{p}\right)\max(r/p, q/p)-1.
\]
Using the proof of the first part of Theorem 1.2, we get the desired result. \(\square \)

Proof of Theorem 1.3. Since \(c(t) \) is nonnegative, continuous and nondecreasing, it follows that (1.3) can be written as
\[
\left(\frac{u(t)}{c(t)}\right)^p \leq 1 + b(t)\int_0^t \left[g(s)\left(\frac{u(s)}{c(s)}\right)^q c(s)^{q-p} + h(s)\left(\frac{u(s)}{c(s)}\right)^r c(s)^{r-p}\right] ds.
\]
Then a direct application of the inequalities established in Theorem 1.2 gives the required results. \(\square \)

2. Application

As an application of Theorem 1.2, consider the nonlinear differential equation
\[
u^{p-1}(t)u'(t) + g(t)u^q(t) = l(t, u(t)). \tag{2.1}
\]
Assume that \(p < q, u : \mathbb{R}^+ \to \mathbb{R}, g : \mathbb{R}^+ \to \mathbb{R}^+, l : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}, \)
\[
|l(t, u(t))| \leq \alpha(t) + h(t)|u(t)|^r, \tag{2.2}
\]
\(\alpha : \mathbb{R}^+ \to \mathbb{R}^+, h : \mathbb{R}^+ \to \mathbb{R}^+ \) are continuous functions.

Integrating (2.1) from 0 to \(t \), we have
\[
\frac{u^p(t)}{p} - \frac{u^p(0)}{p} + \int_0^t g(s)u^q(s)ds = \int_0^t l(s)ds.
\]
From this equality and (2.2), we obtain
\[
|u(t)|^p \leq \alpha(t) + p\int_0^t [g(s)|u(s)|^q + h(s)|u(s)|^r]ds,
\]
where \(\alpha(t) = |u_0|^p + p\int_0^t \alpha(s)ds \). Applying Theorem 1.2, we find explicit bounds of the solution \(u(t) \) of the equation (2.1) in different cases where \(p < r \) and \(p > r \).

References

Khaled Boukerrioua
University of Guelma, Guelma, Algeria
E-mail address: khaledV2004@yahoo.fr

Assia Guezane-Lakoud
Badj-Mokhtar University, Annaba, Algeria
E-mail address: a_guezane@yahoo.fr