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POSITIVE SOLUTIONS FOR SEMI-LINEAR ELLIPTIC
EQUATIONS IN EXTERIOR DOMAINS

HABIB MAAGLI, SAMEH TURKI, NOUREDDINE ZEDDINI

ABSTRACT. We prove the existence of a solution, decaying to zero at infinity,
for the second order differential equation

1 ’ ’ _
M(A(t)u ) + o) + f(t,u(t)) =0, te (a,00).

Then we give a simple proof, under some sufficient conditions which unify
and generalize most of those given in the bibliography, for the existence of a
positive solution for the semilinear second order elliptic equation

Au+ p(z,u) + g(|z|)z.Vu = 0,

in an exterior domain of the Euclidean space R™,n > 3.

1. INTRODUCTION

The semilinear elliptic equation
Au+ p(z,u) + g(|z))z.Vu=0, z€Gs={xeR":|z|>d>0}, (1.1)

constitutes the object of numerous investigations in the last few years (see [11 [ [5]
6, [, [8, [, 13, [14]). The function ¢ is nonnegative and locally Holder continuous
in Gs x R for which there exist two continuous functions ¢ : [9, 00) — [0,00) and
w : [0,00) — [0,00) such that

0 < p(z,t) < q(|z))w(t), te0,0), z€qGs.

So far, the optimal sufficient condition stated to ensure the existence of a positive
solution, decaying to zero at infinity, for (1.1)) in some Gp with B > 0 is

/6007“ [q(r) + gf(r)} dr < oo, (1.2)

where g~ (r) = max(—g(r),0) for r > 4.

To apply the method of sub-solutions and super-solutions developed in [13] and
other works, the scaling function |z| = r = 3(s) = (-%5)/("~? plays a capital role
in finding a radial super-solution for of the form u(x) = h(|z|) = h(r), where

h is chosen so that y(s) = sh(5(s)) satisfies a nonlinear differential equation

y"(s) + G(s,9(5),y'(s) =0 s>s9=(n—2)6""2 (1.3)

2000 Mathematics Subject Classification. 34A12, 35J60.

Key words and phrases. Positive solutions; nonlinear elliptic equations; exterior domain.
(©2009 Texas State University - San Marcos.

Submitted August 12, 2009. Published September 10, 2009.

1



2 H. MAAGLI, S. TURKI, N. ZEDDINI EJDE-2009/108

As a sub-solution of we understand any function w € C?(Gg) N C(Gp) such
that Aw(z) + ¢(z,w(x)) + g(|z])x - Vw(z) > 0 in Gp. For the super-solution, the
sign of the inequality should be reversed.

Our aim in this paper is twofold. Firstly, we study in section 2 the existence of
solutions, having a nonnegative limit at infinity, for the problem

T AOU ) + 000 + F(t.u(0) = 0. € (a.50) (1.4

where A and f satisfy some hypothesis stated in the next section. Secondly, in
section 3, we omit the scaling function 3 defined before and we give a simple proof
for the existence of positive solutions, decaying to zero at infinity, in some Gp,
B > ¢ for the semi-linear elliptic equation . This will be done under sufficient
conditions given by the hypotheses (A3)-(A4) below, which improve and generalize
(L.2). More precisely we will prove the existence of a positive solution to even
when [ r g~ (r)dr = cc.

2. POSITIVE SOLUTIONS OF SECOND-ORDER ODES

In this section, we are concerned with the existence of positive solutions for the
problem

! ")) = rt>a
m(A(f)u @)+ ¢(t) + f(t,u(t) =0, fort=a>1 o)
u'(a

Au'(a) = —a <0, tlimu(t):)\ZO, with a + A >0,

where A is a positive and differentiable function on [1,00), ¢ is a nonnegative
continuous function on [1,00) and f : [1,00) X [0,00) — [0,00) is continuous such
that f(z,0) = 0.

In the sequel we suppose that floo ﬁ dt < oo and we denote by

a() = A /t h Azs) ds)

for t > 1. The following hypotheses satisfied by A, ¢ and f throughout this section:
(A1) [ G(t)p(t)dt < oo;
(A2) For each ¢ > 0, there exists a continuous function & : [1,00) — [0, 00) such
that
|f(tau) - f(tav)| < k(t)|u - U| for any (tauvv) € [1700) X [O,C] X [O,C]
and [ G(t) k(t) dt < oo.
Our first existence result is the following.
Theorem 2.1. Let « > 0 and A > 0 with « + X > 0. Under the hypotheses

(A1)-(A2), there exists a > 1 such that (2.1) has a unique positive solution u €
C'([a,00), R).

Proof. Let

(oo} 1 o0
M = —_— .
c> )\—i-a/l A0 d?f—l—/1 G(t)o(t) dt
From (A2), there exists a k such that |f(s,u)—f(s,v)| < k(s)|u—v]| for any (s,u,v) €
[1,00) % [0,c] x [0,¢] and [~ G(t) k(t) dt < co. Let a > 1 such that

/‘X’ Gt)k(t)dt <1— % =o0.
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We denote by Cy([a, 00), R) the set of continuous bounded real valued functions on
[a, 00) and by

I':={uec C(a,0),R): A <u<c}.
Then I' endowed with the supremum norm is a Banach space. To apply a fixed
point argument, we define the operator T" on I' by

Tu(r) =X+ a/roo ﬁdt + /TOO Att)(/at A(s)[o(s) + f(s,u(s))]ds)dt. (2.2)

First, we claim that T(I') C I". Indeed, from (A2) and Fubini theorem, we get that
for each u € T any r > a,

)\STu(r)S)\—Fa/OOAit)dt—i—/ (t /A s) + ck(s ))ds}dt

>* 1
< —_— <
7)\+a/a A(t)dt—k/a G(s)o( ds+c/ G(s)k(s)ds < c.

Now, we have to show that T is a contraction on (I, ||.||ec). Indeed, let u,v € T
and 7 € [a,00). Then by the assumption (A2) and Fubini theorem we have

Tu(r) — To(r)| < /Too ﬁ ( /at A(s)k(8)|u(s) — v(s)] ds)dt
<lu=vl [ ARG [ 5 )

which implies that ||Tu — Tv||co < 0 ||t — v||oo. Thus, by the Banach fixed point
theorem, there exists a unique point u € (I, ||.||s) such that Tu = u. It is easy to
verify that u is the unique solution in C*([a,00),R) for (2.1]). This completes the
proof. O

It is worth pointing out that for any given u(a) > 0 and u'(a) < 0, the cor-
responding solution to the equation is unique and defined for all times (that is,
blowup is not possible), see [2 Bl 1I]. Also and under more restrictive conditions,
the asymptotic behavior of the solutions have been studied, see [12].

Example 2.2. Let 0 > 0 and 6 : [1,00) — R be a continuous function such that
limy o0 9( ) =0. Let A(t) =t exp (ft ) ds). Then lim;_ o t:(t()t) o+1>1.
So [* e )ds < oo and we have [
G(t) ~ L ast — oo.

Let g, p be respectively two nontrivial nonnegative continuous function on [1,00)
and [0,00) such that [ tq(t)dt < oo and put f(t,u) = q(t) [, p(s)ds. Then for
each nonnegative continuous functlon ¢ on [1,00) satisfying fl tp(t )dt < 00, there
exists a > 1 such that has a unique positive solution u € C*([a, 00), R).

A(s) ds ~ 0%@ as t — oo. Consequently

3. APPLICATIONS TO ELLIPTIC EQUATIONS

In this section, we are concerned with the nonlinear second order elliptic equation
in an exterior domain G5 = {z € R" : |z| > §}, where n > 3 and § > 0. We
prove, under some assumptions on the functions ¢, g, that has a positive
solution in Gg for B > § decaying to zero as |z| tends to infinity. More precisely,
we omit the function 3 defined in section 1 and we apply the result in section 2 to
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give a simple proof for the existence of positive solution, decaying to zero, for
in Gp with B large enough.
To this aim, we consider two continuous functions ¢ and g satisfying
(A3) ¢ € C(Gs x R,R,) and there exists a nonnegative continuous function f
on [0,00) X R such that f(¢,0) = 0 and a nonnegative continuous function
¢ on [§,00) such that 0 < p(z,u) < f(|z],u) + ¢(|z]). Moreover for each
¢ > 0, there exists a nontrivial nonnegative continuous function k defined
on [4,00) such that,

|f(t7u)_f(tvv)|ék(t”u_?}'» V’U,,'UG[O,C], Vit > 0;

> < 1
| o +owan( [ g

where A(t) = "~ exp (— [{ g7 (€)d€) and g~ = max(—g,0).

In the particular case when [;°rg~(r)dr < oo, hypothesis (A4) reduces to
J5St[k(t) + ¢(t)] dt < co. So hypothesis (A4) is weaker than the condition (L.2)
given in the introduction where ¢ = 0.

Next, we recall the following two lemmas needed to achieve the proof of our
second main result.

(A4)

)dt < 00,

Lemma 3.1 ([13]). If for some B > 4, there exists a nonnegative sub-solution w
and a nonnegative super-solution v to in Gp, such that w(z) < v(z) for all
x € Gg, then has a solution v in Gy, such that w <u <wv in Gg and u=1v
on Sp = {x € R"/|z| = B}.

Lemma 3.2 ([I0, Theorem 3.5]). Let £ be a uniformly elliptic operator on a domain
Q. Let u € C*() such that £u > 0 in Q. If there exists xg € Q satisfying
Sup,cq w(x) = u(xo), then u is constant in all Q.

Now, we give our main result in this section.

Theorem 3.3. Let § > 0 and assume (A3)-(A4). Then (L.1) has a positive solution
u in Gp for some B > §, such that lim, o, u(z) = 0.

Proof. We will apply Lemma[3.1} Clearly the trivial function w = 0 is a sub-solution

of (1.1) in Gs. Next, we try to find a positive radial super-solution y(r) = y(|z|) for
(1.1)) with lim, o y(r) = 0. Taking into account (A3), it suffices to find a function
y such that

'+ [nT_l +rg(r)ly' + f(r,y) + ¢(r) <0 forr>B >4
lim y(r) = 0.

T—00

Now, taking into account of Theorem [2.1] it suffices to find B > ¢ and a solution
for the problem

n—1

—rg” (MY + f(r,y) +6(r) =0, r>B
y'(r) <0, r> B, TILIEO y(r) =0.

Y+
T
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Or equivalently,

1 / !/ _ r
A A @) + [y + () =0, r>B -

y'(r)<0, r>B, limy(r)=0,
r—00

where .
A(r) = r”’lexp(—/é 59’(£)d€)-

So it follows from hypotheses (A3)-(A4) and Theorem that there exists B > §
such that (3.1) has a positive solution y(r) on [B,o0). Obviously y is a super-
solution fo in Gp. Hence, by Lemma problem has a solution u in
Gp such that 0 < u(z) < y(|z|]) in Gg and u =y > 0 on Sp.

Next, we prove that the solution wu is positive in Gg. Suppose that there exists
2o € Gp such that u(xg) = 0. Then, the uniformly elliptic operator £u := Au +
g(|z])z.Vu satisfies £(—u) > p(x,u) > 0in Gp and sup,cq, (—u(z)) = —u(zo) =
0. Hence by Lemma we obtain v = 0 in Gp. From the continuity of u in
G, this contradicts the fact that u > 0 on Sp and shows that u(x) > 0, for all
r € Gp. O

Example 3.4. In the sequel, we define by Log,t = ¢ and Log,,, t = Log(Log,,,_1 t)
for m € N* and ¢ large enough. Let §,,, > 0 such that Log,,(d,,) = 1 and let g be
a continuous function on [d,,, c0) such that
_ g
g~ (r) =max(—g(r),0) = —=m——, (3.2)
7 [Ti—o Logy(r)

where y >0ifmeN"and 0 <y<n—2if m=0. Then tg~(t) = vﬁ(LogmHt)
and so

exp (/675 sg~(s) ds) = (Log,, t)".

Thus, f;j r g~ (r)dr = oo and (A4) is satisfied if and only if

/ (1) + 6()]dt < oo.
Om
Indeed, this follows from Example [2.2| with 6(s) = —s?g~(s),0 = n — 2 if m € N*
and 0 =0,0=n—-2—~vif m=0.

Now, using this fact we deduce that if g is a function where g~ is given by
(3.2), if ¢ and k are two nonnegative continuous functions on [d,,,00) satisfying
fét[k(t) + ¢(t)]dt < oo and if 0 < p(x,u) < k(|z])u® + ¢(|z|) for & > 1, then
there exists B > §,, such that has a positive solution u on G decaying to
zero at infinity.
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