EXISTENCE OF SOLUTIONS FOR SECOND-ORDER
NONLINEAR IMPULSIVE BOUNDARY-VALUE PROBLEMS

BASHIR AHMAD

Abstract. We prove the existence of solutions for a second-order nonlinear
impulsive boundary-value problem by applying Schaefer’s fixed point theorem.
Results for periodic and anti-periodic impulsive boundary-value problems can
be obtained as special cases of the results in this article.

1. Introduction

Impulsive boundary-value problems have been extensively studied in recent years.
The study of impulsive differential equations provide a natural description of ob-
served evolution processes of several real world problems in biology, physics, engi-
neering, etc. For the general theory of impulsive differential equations, we refer the
reader to [6, 11, 12, 16]. Some recent results for periodic and anti-periodic nonlinear
impulsive boundary-value problems can be found in [1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 15].

Bai and Yang [2] applied Schaefer’s fixed point theorem to establish the existence of
solutions for second-order nonlinear impulsive differential equations with periodic
boundary conditions. Motivated by the studies in [2], we study the existence of
solutions for the impulsive nonlinear boundary-value problem
\[u''(t) = f(t, u(t), u'(t)), \quad t \in [0, T], \quad t \neq t_1, \]
\[u(t_1^+) - u(t_1^-) = I(u(t_1)), \quad u'(t_1^+) - u'(t_1^-) = J(u(t_1)), \]
\[u(0) = \mu u(T), \quad u'(0) = \mu u'(T), \]
where \(f : [0, T] \setminus \{t_1\} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) is continuous, \(I, J : \mathbb{R}^n \to \mathbb{R}^n \) are con-
tinuous functions defining the impulse at \(t_1 \in (0, T) \) and \(\mu \) is a fixed real number
with \(|\mu| \geq 1 \). We assume that \(f(t_1^+, x, y) = \lim_{t \to t_1^+} f(t, x, y) \) and \(f(t_1^-, x, y) = \lim_{t \to t_1^-} f(t, x, y) \) both exist with \(f(t_1^-, x, y) = f(t_1^-, x, y) \). For the sake of simplicity
(as in [2]), we consider only one impulse at \(t = t_1 \in (0, T) \). An arbitrary finite
number of impulses can be addressed similarly.

We remark that the impulsive boundary-value problem (1.1) reduces to a periodic
boundary-value problem [2] for \(\mu = 1 \) and anti-periodic boundary-value problem
for \(\mu = -1 \). Thus, problem (1.1) can be regarded as a generalization of periodic
and anti-periodic boundary-value problems.

2000 Mathematics Subject Classification. 34B10, 34B15.
Key words and phrases. Impulsive differential equations; Schaefer’s theorem;
periodic and anti-periodic boundary conditions; existence of solutions.
©2009 Texas State University - San Marcos.
Let us define the Banach spaces
\[PC([0, T], \mathbb{R}^n) = \{ u \in C([0, T] \setminus \{ t_1 \} \times \mathbb{R}^n), \ u \text{ is left continuous at } t = t_1, \]
and the right hand limit \(u(t^+_1) \) exists \},
\[PC^1([0, T], \mathbb{R}^n) = \{ u \in PC([0, T], \mathbb{R}^n), \ u' \text{ is left continuous at } t = t_1, \]
and the right hand limit \(u'(t^+_1) \) exists \},
with the norms \(\| u \|_{PC} = \sup_{t \in [0, T]} |u(t)| \) and \(\| u \|_{PC^1} = \max \{ \| u \|_{PC}, \| u' \|_{PC} \} \), respectively.
A function \(u \in PC^1([0, T], \mathbb{R}^n) \cap C^2([0, T] \setminus \{ t_1 \} \times \mathbb{R}^n) \) is a solution to (1.1) if it satisfies (1.1) for all \(t \in [0, T] \).
For \(\sigma \in PC([0, T], \mathbb{R}^n) \), \(p \geq 0, q > 0 \), consider the linear impulsive problem
\[
\begin{align*}
&u''(t) - pu'(t) + qu(t) + \sigma(t) = 0, \quad t \in [0, T], \ t \neq t_1, \\
&u(t_1^+) - u(t_1^-) = I(u(t_1)), \quad u'(t_1^+) - u'(t_1^-) = J(u(t_1)), \quad (1.2)
\end{align*}
\]
whose associated auxiliary equation has the roots
\[
r_1 = \frac{p + \sqrt{p^2 + 4q}}{2}, \quad r_2 = \frac{p - \sqrt{p^2 + 4q}}{2}.
\]
In view of \(p \geq 0, q > 0 \), it is clear that \(r_1 \) and \(r_2 \) are respectively positive and negative real numbers. We need the following lemma for the sequel. The proof of this lemma is omitted as it can be obtained by direct computations.

Lemma 1.1. \(u \in PC^1([0, T], \mathbb{R}^n) \cap C^2([0, T] \setminus \{ t_1 \} \times \mathbb{R}^n) \) is a solution of (1.2) if and only if it satisfies the following impulsive integral equation
\[
\begin{align*}
u(t) &= \int_0^T G(t, s) \sigma(s) ds - G(t, t_1)J(u(t_1)) + W(t, t_1)I(u(t_1)), \quad (1.3)\end{align*}
\]
where
\[
\begin{align*}
G(t, s) &= \frac{1}{r_1 - r_2} \begin{cases}
\frac{e^{r_1(s-t)}}{\mu e^{r_1(T-t)} - 1} + \frac{e^{r_2(s-t)}}{\mu e^{r_2(T-t)} - 1}, & 0 \leq s < t \leq T, \\
\frac{e^{r_1(T-s)} - 1}{\mu e^{r_1(T-t)} - 1} + \frac{e^{r_2(T-s)} - 1}{\mu e^{r_2(T-t)} - 1}, & 0 \leq t \leq s \leq T,
\end{cases} \\
W(t, s) &= \frac{1}{r_1 - r_2} \begin{cases}
\frac{e^{r_1(s-t)}}{\mu e^{r_1(T-t)} - 1} + \frac{e^{r_2(s-t)}}{\mu e^{r_2(T-t)} - 1}, & 0 \leq s < t \leq T, \\
\frac{\mu e^{r_1(s-t)} - 1}{\mu e^{r_1(T-t)} - 1} + \frac{\mu e^{r_2(s-t)} - 1}{\mu e^{r_2(T-t)} - 1}, & 0 \leq t \leq s \leq T,
\end{cases}
\end{align*}
\]
with \((\mu e^{r_1T} - 1) \neq 0 \) and \((1 - \mu e^{r_2T}) \neq 0 \).
As \(r_1 \geq -r_2 > 0 (p \geq 0, q > 0) \), we find that
\[
|G(t, s)| \leq |G_1|, \quad |W(t, s)| \leq r_1 |G_1|, \quad |G(t, s)| \leq r_1 |G_1|, \quad |W(t, s)| \leq r_1^2 |G_1|,
\]
where
\[
G_1 = \frac{\mu (e^{r_1T} - e^{r_2T})}{(r_1 - r_2)(\mu e^{r_1T} - 1)(1 - \mu e^{r_2T})}.
\]
Let
\[
H = \max \{|G_1|, r_1 |G_1|, r_1^2 |G_1|\}.
\]
Define an operator $\Lambda : PC^1([0, T], \mathbb{R}^n) \to PC([0, T], \mathbb{R}^n)$ by

$$Au(t) = \int_0^T G(t, s)[-f(s, u(s), u'(s)) + pu'(s) + qu(s)]ds$$

$$- G(t, t_1)J(u(t_1)) + W(t, t_1)I(u(t_1)), \quad t \in [0, T].$$

(1.6)

It follows by Lemma 1.1 that u is a fixed point of the operator Λ if and only if u is a solution of (1.1).

In view of the continuity of f, I, J, the operators Λ_1, Λ_2 defined by

$$\Lambda_1 u(t) = \int_0^T G(t, s)[-f(s, u(s), u'(s)) + pu'(s) + qu(s)]ds, \quad t \in [0, T],$$

$$\Lambda_2 u(t) = -G(t, t_1)J(u(t_1)) + W(t, t_1)I(u(t_1)), \quad t \in [0, T],$$

are compact. Thus, $\Lambda = \Lambda_1 + \Lambda_2$ is a compact operator.

2. Existence of solutions

Theorem 2.1. Let $f : [0, T]\setminus\{t_1\} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and $I, J : \mathbb{R}^n \to \mathbb{R}^n$ be continuous functions. If there exist nonnegative constants $\alpha, \beta_1, \beta_2, \gamma_1, \gamma_2, M$ such that

(A1) For all $(t, x, y) \in ([0, T]\setminus\{t_1\}) \times \mathbb{R}^n \times \mathbb{R}^n$,

$$\|f(t, x, y) - py - qx\| \leq 2\alpha (\langle x + y, f(t, x, y) \rangle + \|y\|^2) + M,$$

(A2) $\|I(x)\| \leq \beta_1 \|x\| + \gamma_1$, $\|J(x)\| \leq \beta_2 \|x\| + \gamma_2$ with $r_1\beta_1 + \beta_2 < 1/H$, for all $x \in \mathbb{R}^n$.

Then problem (1.1) has at least one solution.

Proof. From the preceding section, we know that u is a fixed point of the operator Λ if and only if u is a solution of (1.1). Thus we need to show that the operator Λ (indeed compact) has at least one fixed point. For that, we apply Schaefer’s theorem to show that all the solutions to the following equation are bounded a priori with the bound independent of λ,

$$u = \Lambda \lambda u, \quad \lambda \in (0, 1).$$

(2.1)

Letting u to be a solution of (2.1), we have

$$u''(t) - pu'(t) - qu(t) = \lambda [f(t, u(t), u'(t)) - pu'(t) - qu(t)], \quad t \in [0, T], ~ t \neq t_1,$$

$$u(t_1^+) - u(t_1^-) = \lambda J(u(t_1)), \quad u'(t_1^+) - u'(t_1^-) = \lambda J(u(t_1)),$$

$$u(0) = \mu u(T), \quad u'(0) = \mu u'(T), \quad \mu \in \mathbb{R} \quad (|\mu| \geq 1).$$
Using (A1)-(A2) and (1.4)-(1.5), we have
\[
\|u(t)\| = \lambda\|\Lambda u(t)\|
\]
\[
= \| \int_0^T \lambda G(t, s) \left[f(s, u(s), u'(s)) - pu'(s) - qu(s) \right] ds \\
- \lambda G(t, t_1)J(u(t_1)) + \lambda W(t, t_1)I(u(t_1)) \|
\]
\[
\leq |G_1| \left[\int_0^T \lambda \| f(s, u(s), u'(s)) - pu'(s) - qu(s) \| ds \\
+ \lambda (|J(u(t_1))| + r_1 |I(u(t_1))|) \right]
\leq |G_1| \left[\int_0^T (2\alpha \langle u(s) + u'(s), \lambda f(s, u(s), u'(s)) \rangle + \|u'\|^2 + M)ds \\
+ (r_1 \beta_1 + \beta_2)\|u(t_1)\| + r_1 \gamma_1 + \gamma_2 \right]
\]
\[
= |G_1| \left[\int_0^T (2\alpha \langle u(s) + u'(s), \lambda f(s, u(s), u'(s)) \rangle + (1 - \lambda)pu'(s) \\
+ (1 - \lambda)qu(s)) + \|u'\|^2 + M)ds - \int_0^T 2\alpha(u(s) + u'(s), (1 - \lambda)pu'(s) \\
+ (1 - \lambda)qu(s))ds + (r_1 \beta_1 + \beta_2)\|u(t_1)\| + r_1 \gamma_1 + \gamma_2 \right].
\]

In view of the fact that |\mu| \geq 1, we have
\[
- 2\alpha \int_0^T \langle u(s) + u'(s), (1 - \lambda)pu'(s) + (1 - \lambda)qu(s) \rangle ds
\]
\[
= -2\alpha(1 - \lambda)q \int_0^T \|u(s)\|^2 ds - 2\alpha(1 - \lambda)p \int_0^T \|u'(s)\|^2 ds \\
+ 2\alpha(1 - \lambda)(p + q) \int_0^T \langle u(s), u'(s) \rangle ds
\]
\[
\leq 2\alpha(1 - \lambda)(p + q) \int_0^T \langle u(s), u'(s) \rangle ds
\]
\[
= \alpha(1 - \lambda)(p + q) \int_0^T \frac{d}{ds}(\|u(s)\|^2) ds
\]
\[
= \alpha(1 - \lambda)(p + q)(\|u(T)\|^2 - \|u(0)\|^2)
\]
\[
\leq \alpha(1 - \lambda)(p + q)(1 - \mu^2)\|u(T)\|^2 \leq 0.
\]

Using (2.3) in (2.2), we obtain
\[
\|u(t)\| = \lambda\|\Lambda u(t)\|
\]
\[
\leq |G_1| \left[\int_0^T (2\alpha\langle u(s) + u'(s), \lambda f(s, u(s), u'(s)) \rangle + (1 - \lambda)pu'(s) \\
+ (1 - \lambda)qu(s)) + \|u'(s)\|^2 + M)ds + (r_1 \beta_1 + \beta_2)\|u(t_1)\| + r_1 \gamma_1 + \gamma_2 \right].
\]
Thus, we have
\[
EJDE-2009/68 \text{ EXISTENCE OF SOLUTIONS 5}
\]
\begin{align*}
\text{problem (1.1) has at least one solution. This completes the proof.} \\
\end{align*}
\begin{align*}
\text{ theorem [7], the operator } \Lambda \text{ has at least one fixed point which implies that the } \\
\text{ which is the desired bound independent of } \\
\text{Consider the scalar nonlinear impulsive problem} \\
\text{Example.} \text{ Consider the scalar nonlinear impulsive problem}
\end{align*}

\begin{align*}
= |G_1| \left[\int_0^T (2\alpha((u(s) + u'(s), u''(s)) + \langle u(s) + u'(s), u'(s) \rangle \\
- \langle u(s), u'(s) \rangle) + M)ds + (r_1\beta_1 + \beta_2)\|u(t_1)\| + r_1\gamma_1 + \gamma_2 \right] \\
\leq |G_1| \left[\int_0^T (2\alpha((u(s) + u'(s), u''(s)) + u'(s)) + M)ds \\
+ (r_1\beta_1 + \beta_2)\|u(t_1)\| + r_1\gamma_1 + \gamma_2 \right] \\
= |G_1| \left[\int_0^T \alpha \frac{d}{ds} \|(u(s) + u'(s))\|^2 + M)ds + (r_1\beta_1 + \beta_2)\|u(t_1)\| + r_1\gamma_1 + \gamma_2 \right] \\
= |G_1| \left[\alpha(\|u(T) + u'(T)\|^2 - \|u(0) + u'(0)\|^2) + MT \\
+ (r_1\beta_1 + \beta_2)\|u(t_1)\| + r_1\gamma_1 + \gamma_2 \right] \\
= |G_1| \left[MT + (r_1\beta_1 + \beta_2)\|u(t_1)\| + r_1\gamma_1 + \gamma_2 \right],
\end{align*}

where we have used the fact that \(\alpha(1 - \mu^2)\|u(T) + u'(T)\|^2 \leq 0\) (by the assumption \(|\mu| \geq 1\)). Taking supremum on \([0, T]\), we obtain
\[
sup_{t \in [0, T]} \|u(t)\| \leq \frac{|G_1|MT + r_1\gamma_1 + \gamma_2}{1 - |G_1|(r_1\beta_1 + \beta_2)}.
\]
Similarly, it can be shown that
\[
sup_{t \in [0, T]} \|u'(t)\| \leq \frac{H[MT + r_1\gamma_1 + \gamma_2]}{1 - H(r_1\beta_1 + \beta_2)}.
\]
Thus, we have
\[
\|u\|_{PC^1} = \max \left\{ \frac{|G_1|MT + r_1\gamma_1 + \gamma_2}{1 - |G_1|(r_1\beta_1 + \beta_2)}, \frac{H[MT + r_1\gamma_1 + \gamma_2]}{1 - H(r_1\beta_1 + \beta_2)} \right\} \\
= \frac{H[MT + r_1\gamma_1 + \gamma_2]}{1 - H(r_1\beta_1 + \beta_2)},
\]
which is the desired bound independent of \(\lambda\). Hence, by Schaefer’s fixed point theorem [7], the operator \(\Lambda\) has at least one fixed point which implies that the problem (1.1) has at least one solution. This completes the proof. \(\square\)

Example. Consider the scalar nonlinear impulsive problem
\begin{align*}
\quad \nu''(t) = (u(t) + u'(t))^3 + u'(t)\nu(t) + 2u(t) + 2t, \quad t \in [0, 1], \quad t \neq t_1, \\
\quad u(t_1^+) - u(t_1^-) = \frac{1}{6}u(t_1), \quad u'(t_1^+) - u'(t_1^-) = \frac{1}{8}u(t_1), \\
\quad u(0) = \mu u(T), \quad u'(0) = \mu u'(T), \quad \mu \in \mathbb{R} \quad (|\mu| \geq 1).
\end{align*}

Here, \(T = 1\), \(f(t, x, y) = (x + y)^3 + y + 2x + 2t, \quad p = 1, \quad q = 2, \quad r_1 = 2, \quad r_2 = -1, \quad \beta_1 = 1/6, \quad \beta_2 = 1/8, \quad \gamma_1 = \gamma_2 = 0, \quad 1/H = 0.3\). Moreover, for \(\alpha = 2/3, \quad M = 8/3\), we find that
\begin{align*}
2\alpha[(x + y)f(t, x, y) + y^2] + M \\
= \frac{4}{3}(x + y)^4 + (x + y)^2 + x(x + y) + 2t(x + y) + y^2 + \frac{8}{3}
\end{align*}
Thus, for all \((t, x, y)\),
\[
\|f(t, x, y)\| \leq 2\alpha(x, f(t, x)) + M, \quad (t, x) \in ([0, T] \setminus \{t_1\}) \times \mathbb{R}^n.
\]

For example, consider a scalar function
\[
f(t, x) = x^5 + x + 2t, \quad (t, x) \in ([0, 1] \setminus \{t_1\}) \times \mathbb{R}.
\]

For \(\alpha = 1/2, M = 2\), we obtain
\[
2\alpha(x, f(t, x)) + M = x^6 + x^2 + 2tx + 2
\]
\[
\geq x^6 + x^2 - 2|x| + 2
\]
\[
= x^6 + (|x| - 1)^2 + 1
\]
\[
\geq |x|^5 + 1, \quad \forall (t, x) \in ([0, 1] \setminus \{t_1\}) \times \mathbb{R}.
\]

Thus, \(|f(t, x) - x| \leq 2\alpha(x, f(t, x)) + M\), for all \((t, x) \in [0, 1] \times \mathbb{R}\).

(2) A similar proof follows for a modified form of Theorem 2.1 obtained by replacing the assumption \((A1)\) by the condition
\[
\|f(t, x, y) - py - qx\| \leq 2\alpha(y, f(t, x, y)) + M, \quad (t, x, y) \in ([0, T] \setminus \{t_1\}) \times \mathbb{R}^n \times \mathbb{R}^n.
\]

(3) The results presented in this paper are new and a variety of special cases can be recorded by fixing the value of \(\mu\). For instance, if we take \(\mu = 1\) in the problem \([1.1]\), the results for impulsive periodic boundary-value problems \([2]\) appear as a special case while \(\mu = -1\) in \([1.1]\) yields the existence results for anti-periodic second order boundary-value problems.

Acknowledgments. The author is grateful to the anonymous reviewer and the editor for their valuable suggestions and comments that led to the improvement of the original manuscript.

References

Bashir Ahmad
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box. 80203, Jeddah 21589, Saudi Arabia
E-mail address: bashir_qau@yahoo.com