Mario Cavani, Teodoro Lara, Sael Romero
Abstract:
 In this article we consider a chemostat-like model for a
 simple food chain where there is a well stirred nutrient substance
 that serves as food for a prey population of microorganisms,
 which in turn, is the food for a predator population of microorganisms.
 The nutrient-uptake of each microorganism is of Holling type I
 (or Lotka-Volterra) form.
 We show the existence of a global attractor for solutions of this
 system. Also we show that the positive globally asymptotically stable
 equilibrium point of the system undergoes a Hopf bifurcation when
 the dynamics of the microorganisms at the bottom of the chain depends
 on the history of the prey population by means of a distributed
 delay that takes an average of the microorganism in the middle of
 the chain.
 
 Submitted May 11, 2009. Published June 16, 2009.
Math Subject Classifications: 34D99
Key Words: Simple food chain model; Hopf bifurcation; 
           Holling type I; attractor.
Show me the PDF file (213 KB), TEX file for this article.
![]()  | 
  Mario Cavani  Departamento de Matemáticas, Núcleo de Sucre Universidad de Oriente, Cumaná 6101, Venezuela email: mcavani@sucre.udo.edu.ve  | 
|---|---|
![]()  | 
  Teodoro Lara  Departamento de Física y Matemáticas, Universidad de los Andes Núcleo Univeristario Rafael Rangel, Trujillo, Venezuela email: tlara@ula.ve  | 
![]()  | 
  Sael Romero Departamento de Matemáticas, Núcleo de Sucre Universidad de Oriente, Cumaná 6101, Venezuela email: sromero@sucre.udo.edu.ve  | 
Return to the EJDE web page