A CLASS OF GENERALIZED INTEGRAL OPERATORS

SAMIR BEKKARA, BEKKAI MESSIRDI, ABDERRAHMANE SENOUSSAOUI

Abstract. In this paper, we introduce a class of generalized integral operators that includes Fourier integral operators. We establish some conditions on these operators such that they do not have bounded extension on $L^2(\mathbb{R}^n)$. This permits us in particular to construct a class of Fourier integral operators with bounded symbols in $S_{0,1}^0(\mathbb{R}^n \times \mathbb{R}^n)$ and in $\bigcap_{0 < \rho < 1} S_{\rho,1}^0(\mathbb{R}^n \times \mathbb{R}^n)$ which cannot be extended to bounded operators in $L^2(\mathbb{R}^n)$.

1. Introduction

The integral operators of type

$$A\phi(x) = \int e^{iS(x,\theta)}a(x, \theta)\mathcal{F}\phi(\theta)d\theta$$

appear naturally for solving the hyperbolic partial differential equations and expressing the C^∞-solution of the associate Cauchy problem’s (see e.g. [10, 11]).

If we write formally the expression of the Fourier transform $\mathcal{F}\phi(\theta)$ in (1.1), we obtain the following Fourier integral operators, so-called canonical transformations,

$$A\phi(x) = \int \int e^{i(S(x,\theta)-y\theta)}a(x, y, \theta)\phi(y)dyd\theta$$

in which appear two C^∞-functions, the phase function $\phi(x, y, \theta) = S(x, \theta) - y\theta$ and the amplitude a called the symbol of the operator A. In the particular case where $S(x, \theta) = x\theta$, one recovers the notion of pseudodifferential operators (see e.g. [6, 15]).

Since 1970, many of Mathematicians have been interested to these type of operators: Duistermaat [3], Hörmander [6, 7] Kumano-Go [8], and Fujiwara [2]. We mention also the works of Hasanov [4], and the recent results of Messirdi Senoussaoui [12] and Aiboudi-Messirdi-Senoussaoui [11].

In this paper we study a general class of integral operators including the class of Fourier integral operators, specially we are interested in their continuity on $L^2(\mathbb{R}^n)$.

The continuity of the operator A on $L^2(\mathbb{R}^n)$ is guaranteed if the weight of the symbol a is bounded, if this weight tends to zero then A is compact on $L^2(\mathbb{R}^n)$ (see e.g. [12]).

2000 Mathematics Subject Classification. 35S30, 35S05, 47A10, 35P05.
Key words and phrases. Integral operators; L^2-boundedness; unbounded Fourier integral operators.

©2009 Texas State University - San Marcos.
If the symbol \(a \) is only bounded the associated Fourier integral operator \(A \) is not necessary bounded on \(L^2(\mathbb{R}^n) \). Indeed, in 1998 Hasanov [4] constructed an example of unbounded Fourier integral operators on \(L^2(\mathbb{R}) \).

Aiboudi-Messirdi-Senoussaoui [1] constructed recently in a class of Fourier integral operators with bounded symbols in the Hörmander class \(\bigcap_{0 < \rho < 1} S^{0,1}_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n) \) that cannot be extended to be a bounded operator in \(L^2(\mathbb{R}^n), n \geq 1 \).

These results of unboundedness was obtained by using the properties of the operators \(B\varphi(x) = \int_{\mathbb{R}^n} k(z)\varphi((b(x)z + a(x))dz \) (1.3) on \(L^2(\mathbb{R}^n), n \geq 1 \), where \(k(z) \in S(\mathbb{R}^n) \) (the space of \(C^\infty \)-functions on \(\mathbb{R}^n \), whose derivatives decrease faster than any power of \(|x| \) as \(|x| \to +\infty \)), \(a(x) \) and \(b(x) \) are real-valued, measurable functions on \(\mathbb{R}^n \). Operators of type (1.3) was considered by Hasanov [4] and a slightly different way by Aiboudi Messirdi Senoussaoui [1].

We also give in this paper a generalization of these results since we consider a class of integral operators which is general than thus of type (1.3):

\[C\varphi(x) = \int_{\mathbb{R}^n} K(x,z)\varphi(F(x,z))dz \]

(1.4)

where \(K(x,z) \) and \(F(x,z) \) are real-valued, measurable functions on \(\mathbb{R}^{2n} \). The generalized integral operator \(C \) includes Hilbert, Mellin and the Fourier-Bros-Iagolnitzer transforms which they has been used by many authors and for many purposes, in particular respectively by Hörmander [5] for the analysis of linear partial differential operators, Robert [13] about the functional calculus of pseudodifferential operators, Sjöstrand [14] in the area of microlocal and semiclassical analysis and Stein [15] for the study of singular integral operators.

The operators \(C \) appears also in the study of the width of the quantum resonances (see e.g. [9]).

We shall discuss in the second section bounded extension problems for the class of operators type \(C \). We give some technical conditions on the functions \(K(x,z) \) and \(F(x,z) \) such that \(C \) do not admit a bounded extension on \(L^2(\mathbb{R}^n) \). We also indicate a connection between transformations \(C \) and Fourier integral operators.

In the third section, we construct an example of Fourier integral with bounded symbols belongs respectively to \(S^{0,1}_{1,1}(\mathbb{R}^n) \), (the case \(n = 1 \) is given in [4] and generalized for \(n \geq 2 \) in [1]), and \(\bigcap_{0 < \rho < 1} S^{0,1}_{\rho} \) that cannot be extended as a bounded operator on \(L^2(\mathbb{R}^n), n \geq 2 \). In the case of the Hörmander symbolic class \(S^{0,1}_{1,1}(\mathbb{R}^n) \) our constructions are direct and technical.

2. Unboundedness of the generalized integral operators

In this section we construct a class of operators \(C \) that cannot be extended to be a bounded operator in \(L^2(\mathbb{R}^n), n \geq 1 \). We have first an easy boundedness criterion of the operator \(C \).
Proposition 2.1. Let $F(x,.) \in C^1(\mathbb{R}^n)$, and $K(x,.) \in L^2(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$. Suppose that there exists a function $g(x)$ such that
\[g(x) > 0, \quad \forall x \in \mathbb{R}^n \]
\[|\det \left(\frac{\partial F(x, z)}{\partial z} \right) | \geq g(x), \quad \forall x, z \in \mathbb{R}^n \]
\[\|K(x,.)\|_{L^2(\mathbb{R}^n)}/\sqrt{g(x)} \in L^2(\mathbb{R}^n) \]
then C is a bounded operator on $L^2(\mathbb{R}^n)$.

Proof. Using Hölder inequality and the change of variable $y = F(x, z)$, it’s inverse is denoted $z = G(x, y)$, we obtain for all $\varphi \in L^2(\mathbb{R}^n)$,
\[
\|C\varphi\|_{L^2(\mathbb{R}^n)}^2 = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} K(x, z)\varphi(F(x, z))dz \right|^2 dx \\
\leq \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |K(x, z)\varphi(F(x, z))|dz \right]^2 dx \\
\leq \int_{\mathbb{R}^n} \left[\|K(x,.)\|_{L^2(\mathbb{R}^n)}^2 \int_{\mathbb{R}^n} |\varphi(F(x, z))|^2 dz \right] dx \\
= \int_{\mathbb{R}^n} \left[\|K(x,.)\|_{L^2(\mathbb{R}^n)}^2 \int_{\mathbb{R}^n} |\varphi(y)|^2 \left| \det(\frac{\partial F(x, z)}{\partial z})(z=G(x,y)) \right|^{-1} dy \right] dx \\
\leq \|\varphi\|_{L^2(\mathbb{R}^n)}^2 \int_{\mathbb{R}^n} \frac{\|K(x,.)\|_{L^2(\mathbb{R}^n)}}{\sqrt{g(x)}} dx \tag{2.1}
\]

hence C is bounded operator on $L^2(\mathbb{R}^n)$ with $\|C\| \leq \frac{\|K(x,.)\|_{L^2(\mathbb{R}^n)}}{\sqrt{g(x)}}$.

Now we give the main result of this paper. We proof that under some conditions the operator C do not admit a bounded extension on $L^2(\mathbb{R}^n)$.

Theorem 2.2. Let $\delta \in]0,1[\,$ and the operator C defined by (1.4) on $L^2(\mathbb{R}^n)$ for $x = (x_1, \ldots, x_n) \in]0, \delta[^n$ such that:

(H1) For $\varepsilon > 0$ and for all $x \in \mathbb{R}^n$
\[\{ z \in \mathbb{R}^n : |F(x, z)| \leq \varepsilon \} = \prod_{i=1}^{n} [a_i^-(x, \varepsilon), a_i^+(x, \varepsilon)] \]
where $a_i^\pm(x,t)$ are real-measurable functions on $\mathbb{R}^n \times]0, +\infty[$ satisfying 1- for any $p \in \mathbb{N}^*$ and $i \in \{1, \ldots, n\}$,
\[\lim_{x_i \to 0^+} a_i^+(px, x_i) = +\infty \]
2- for any $\lambda \in]0,1[, i \in \{1, \ldots, n\}$ and $p \in \mathbb{N}^*$, the functions $a_i^+(px, \lambda)$ and $a_i^-(px, \lambda)$ are respectively decreasing and increasing with respect to x in $]0, \delta[^n$.

(H2) There exists a constant $R > 0$ such that for any $r \geq R$ and for all $x \in]0, \delta[^n$
\[|\int_{[-r,r]^n} K(x, z)dz| \geq \delta \]
Then the operator C cannot be extended to a bounded operator on $L^2(\mathbb{R}^n)$.
Proof. Let us define the generalized sequence of functions
\[
\varphi_\varepsilon(x) = \begin{cases}
1, & \text{if } x \in [-\varepsilon, \varepsilon]^n \\
0, & \text{otherwise}
\end{cases}
\] (2.2)
then \(\varphi_\varepsilon \in L^2(\mathbb{R}^n) \) for all \(\varepsilon > 0 \) and we have
\[
C\varphi_\varepsilon(x) = \int_{\prod_{i=1}^n [a_i^-(x,\varepsilon), a_i^+(x,\varepsilon)]]} K(x, z) dz
\]
Consequently,
\[
C\varphi_\varepsilon(x) = \int_{\prod_{i=1}^n [a_i^-(x,\varepsilon_j), a_i^+(x,\varepsilon_j)]]} K(x, z) dz
\] (2.3)
where \(\varepsilon_j \geq 0 \) and \(\lim_{j \to +\infty} \varepsilon_j = 0 \).

By condition 1 of the the assumption \((H1)\), for any \(p \in \mathbb{N}^* \) there exists a number \(\varepsilon_p \geq 0 \) such that
\[
a_i^+(p\Lambda_p, \varepsilon_p) \geq R
\] (2.4)
and
\[
a_i^-(p\Lambda_p, \varepsilon_p) \leq -R
\] (2.5)
for \(\Lambda_p = (\varepsilon_p, \varepsilon_p, \ldots, \varepsilon_p) \), \(p\varepsilon_p \leq \delta < 1 \) and \(i \in \{1, \ldots, n\} \).

It follows from (2.4), (2.5) and condition 2 of the assumption \((H1)\) that for \(x \in [0, p\varepsilon_p]^n \) and \(i \in \{1, \ldots, n\} \) we have
\[
a_i^+(x, \varepsilon_p) \geq a_i^+(p\Lambda_p, \varepsilon_p) \geq R;
\] (2.6)
\[
a_i^-(x, \varepsilon_p) \leq a_i^-(p\Lambda_p, \varepsilon_p) \leq -R.
\] (2.7)
Finally using (H2), (2.3), (2.6) and (2.7) we deduce
\[
\|C\varphi_\varepsilon_p\|_{L^2(\mathbb{R}^n)} \geq \int_{[0, p\varepsilon_p]^n} |C\varphi_\varepsilon_p(x)|^2 dx \geq \delta^2 p^n \varepsilon_p^n
\] (2.8)
If we consider that \(C \) has a bounded extension to \(L^2(\mathbb{R}^n) \), then by virtue of (2.1) we obtain for \(\varphi = \varphi_\varepsilon_p \in L^2(\mathbb{R}^n) \)
\[
\delta^2 p^n \varepsilon_p^n \leq \|C\varphi_\varepsilon_p\|_{L^2(\mathbb{R}^n)} \leq M^2 \varepsilon_p^n
\]
and for any \(p \in \mathbb{N}^* \)
\[
p^n \leq \frac{M^2}{\delta^2}
\]
This is a contradiction. Consequently \(A \) cannot be a bounded operator in \(L^2(\mathbb{R}^n) \). □

Remark 2.3. (1) If in particular \(K(x, z) = K(z) \) is independent on \(x \) and \(F(x, z) = b(x) \circ z + a(x) \), where \(K(z) \) is a real-valued measurable function, \(b(x), a(x) \in \mathbb{R}^n \) are measurable functions on \(\mathbb{R}^n \), we obtain the so-called generalized Hilbert transforms introduced in [4]

(2) The operator \(C \) is an Fourier integral operator for an appropriate choice of the functions \(K(x, z) \) and \(F(x, z) \).
\[
C\varphi(x) = \int_{\mathbb{R}^n} K(x, z) \varphi(F(x, z)) dz = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{iz\cdot \xi} F K(x, \xi) \varphi(F(x, z)) d\xi dz,
\]
where $\mathcal{F}K(x, \xi)$ is the Fourier transform of the partial function $z \rightarrow K(x, z)$. Setting $y = F(x, z)$ and $z = G(x, y)$, we have

$$C\varphi(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{iG(x,y)\cdot \xi} \mathcal{F}K(x, \xi)\varphi(y)|\det(\frac{\partial G}{\partial y})|d\xi dy$$

which is a Fourier integral operator with the phase function $\phi(x, y, \xi) = G(x, y)\xi$ and the symbol $p(x, y, \xi) = \mathcal{F}K(x, \xi)|\det(\frac{\partial G}{\partial y})|$ if K and G are infinitely regular with respect to x, y and ξ.

3. A class of unbounded Fourier integral operators on $L^2(\mathbb{R}^n)$

It follows from theorem 2.2 that with an appropriate choice of $K(x, z)$ and $F(x, z)$ we can construct a class of Fourier integral operators which cannot be extended as bounded operators on $L^2(\mathbb{R}^n)$.

An example of unbounded Fourier integral operator with a symbol in $S^0_{\rho, 1}(\mathbb{R}^n \times \mathbb{R}^n)$ and $\bigcap_{0 < \rho < 1} S^0_{\rho, 1}(\mathbb{R}^n \times \mathbb{R}^n)$ was given respectively in [4] and [1], where if $\rho \in \mathbb{R}$,

$$S^0_{\rho, 1}(\mathbb{R}^n \times \mathbb{R}^n) = \{ p \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n) : \forall (\alpha, \beta) \in \mathbb{N}^n \times \mathbb{N}^n \exists C_{\alpha, \beta} > 0 ; \quad |\partial^\alpha_x \partial^\beta_\xi p(x, \theta)| \leq C_{\alpha, \beta} \lambda^{-\rho|\beta| + |\alpha|}(\theta) \} \quad (3.1)$$

3.1. A class with symbols in $S^0_{1, 1}(\mathbb{R}^n \times \mathbb{R}^n)$. Here, we generalize the example given by Hasanov on \mathbb{R} to high dimensions. Namely, in the same spirit of [8], we have easily if we get $K(z) \in S(\mathbb{R}^n)$ and $b \in C^\infty(\mathbb{R}^n, \mathbb{R})$.

Proposition 3.1. If $K(z) \in S(\mathbb{R}^n)$ and $b \in C^\infty(\mathbb{R}^n, \mathbb{R})$, then for all $\alpha, \beta \in \mathbb{N}^n$ there exists $C_{\alpha, \beta} > 0$ such that

$$|\partial^\alpha_x \partial^\beta_\xi K(b(x)\xi)| \leq C_{\alpha, \beta}(1 + |\xi|)|\alpha| - |\beta| \quad (3.2)$$

for all $(x, \xi) \in [-1, 1]^n \times \mathbb{R}^n$.

Proof. It suffices to use the fact that $K \in S(\mathbb{R}^n)$ and β is bounded on $[-1, 1]^n$. □

Let also $a = (a_1, a_2, \ldots, a_n) \in C^\infty(\mathbb{R}^n, \mathbb{R}^n)$ such that a, b, K satisfy (H1) and (H2), with

$$b(x) > 0$$

$$a_i^\pm(x, t) = \frac{\pm t + a_i(x)}{b(x)}, \quad t > 0, \quad x \in \mathbb{R}^n \quad (3.3)$$

Then, for $q(x, \xi) = K(b(x)\xi)$ defined on $[-1, 1]^n \times \mathbb{R}^n$, we have

$$|\partial^\alpha_x \partial^\beta_\xi q(x, \xi)| \leq C_{\alpha, \beta}(1 + |\xi|)|\alpha - |\beta|$$

on $[-1, 1]^n \times \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$, $C_{\alpha, \beta}$ being constants.

Thus, $q \in S^0_{1, 1}([-1, 1]^n \times \mathbb{R}^n)$, in particular $q(x, \xi)$ is a well bounded symbol. Take a function $\eta \in C^\infty(\mathbb{R}^n)$ with supp $\eta \subset [-\delta, \delta]^n$ and $\eta(x) = 1$ for $x \in [-\delta, \delta]^n$, $\delta < 1$.

It is now obvious to see that the function $p(x, \xi) = \eta(x)q(x, \xi) \in S^0_{1, 1}(\mathbb{R}^n \times \mathbb{R}^n)$.

Now the Fourier integral operator defined by

$$C\varphi(x) = \int_{\mathbb{R}^n} e^{-i(a(x), \xi + p(x, \xi))} p(x, \xi)\varphi(\xi)dyd\xi$$

$$= \int_{\mathbb{R}^n} e^{-i(a(x), \xi + p(x, \xi))} \eta(x)K(b(x)\xi)\varphi(\xi)dyd\xi$$
is of the type \([1.4]\). Indeed, for \(s = b(x)\xi\) and \(x \in [0, \delta]^n\)
\[
C\varphi(x) = \int_{\mathbb{R}^{2n}} e^{-i\frac{a(x)+y}{b(x)}} K(s) \frac{1}{b^n(x)} \varphi(y) dy ds
\]
Finally, if we pose \(\frac{a(x)+y}{b(x)} = z\), we have
\[
C\varphi(x) = \int \mathcal{F}K(z)\varphi(b(x)z-a(x))dz
\]
By theorem \([2.2]\) we conclude that the operator \(C\) cannot be extended as a bounded operator on \(L^2(\mathbb{R}^n)\).

3.2. **A class with symbols in** \(\bigcap_{0 < \rho < 1} S^0_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n)\). We describe in this section the results of Aiboudi-Messirdi-Senoussaoui \([1]\), they constructed a class of unbounded Fourier integral operators with a separated variables phase function and a symbol in the Hörmander class \(\bigcap_{0 < \rho < 1} S^0_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n)\).

Precisely, let \(K \in S(\mathbb{R})\) with \(K(t) = 1\) on \([-\delta, \delta]\) and \(b(t)\) is continuous function on \([0, 1]\) such that
\[
b(t) \in C^\infty([0, 1]), \quad b(0) = 0, \quad b'(t) > 0 \text{ in } [0, 1]
\]
\[
|b^{(k)}(t)| \leq \frac{C_k}{t^k} \text{ in } [0, 1], \quad k \in \mathbb{N}^*, \quad C_k > 0
\]
\(\chi(x), \psi(\xi) \in C^\infty(\mathbb{R}^n, \mathbb{R})\) homogeneous of degree 1. Thus the function
\[
q(x, \xi) = e^{-i x \cdot (x) \psi(\xi)} \prod_{j=1}^n K(b(|x|)|x|\xi_j), \quad \xi = (\xi_1, \ldots, \xi_n)
\]
belongs to \(C^\infty([-1, 1]^n \times \mathbb{R}^n)\) and satisfies, as in the proposition \([3.1]\), the following estimates

Proposition 3.2. For all \(\alpha, \beta \in \mathbb{N}^n\),
\[
|\partial_x^\alpha \partial_\xi^\beta q(x, \xi)| \leq C_{\alpha \beta} \frac{(1 + |\xi|)^{\alpha - |\beta|}}{b((1 + |\xi|)^{-1})^{|\beta|}}
\]
on \([-1, 1]^n \times \mathbb{R}^n\) where \(C_{\alpha \beta} > 0\).

Now if \(\phi(x)\) is a \(C_0^\infty(\mathbb{R})\)-function such that
\[
\phi(s) = 1 \quad \text{on } [-\delta, \delta], \quad \delta < 1
\]
\(\text{supp } \phi \subset [-1, 1]\)
define the global \(C^\infty\) symbol on \(\mathbb{R}^n \times \mathbb{R}^n\) by
\[
p(x, \xi) = e^{-i x \cdot \psi(\xi)} \prod_{j=1}^n \phi(x_j) K(b(|x|)|x|\xi_j)
\]
\(\quad x = (x_1, \ldots, x_n), \quad \xi = (\xi_1, \ldots, \xi_n)\).
Then \(p(x, \xi) \in \bigcap_{0 < \rho < 1} S^0_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n)\) and the corresponding Fourier integral operator is
\[
C\varphi(x) = \int_{\mathbb{R}^n} e^{i x \cdot \psi(\xi)} p(x, \xi) \mathcal{F}\varphi(\xi) d\xi
\]
\[
= \prod_{j=1}^n \phi(x_j) \int_{\mathbb{R}^n} K(b(|x|)|x|\xi_j) \mathcal{F}\varphi(\xi) d\xi
\]
By using an adequate change of variable in the integral \([3.8]\), we have
\[
C\varphi(x) = \int_{\mathbb{R}^n} \varphi(b(|x|)|x| z) \prod_{j=1}^{n} F K(z_j) d\xi, \quad z = (z_1, \ldots, z_n) \tag{3.9}
\]
which is of the form \(C\) in theorem \(2.2\) where the functions \(F(x, z) = b(|x|)|x| z\) and \(K(x, z) = \prod_{j=1}^{n} F K(z_j)\) satisfy (H1) and (H2). Consequently, the operator \(C\) cannot be continuously extended on \(L^2(\mathbb{R}^n)\).

References

[1] M. Aiboudi, B. Messirdi, A. Senoussaoui; An example of unbounded Fourier integral operator on \(L^2\) with symbol in \(\mathcal{S}_0^0(0, 1, \mathbb{R}^n \times \mathbb{R}^n)\). Int. Journal of Math. Analysis. Vol. 1, 2007, No. 18, 851-860.

Samir Bekkara
Université des Sciences et de la Technologie d’Oran, Faculté des Sciences, Département de Mathématiques, Oran, Algérie
E-mail address: sbekkara@yahoo.fr

Bekkai Messirdi, Abderrahmane Senoussaoui
Université d’Oran Es-Sénia, Faculté des Sciences, Département de Mathématiques. B.P. 1524 El-Mnaouer, Oran, Algérie
E-mail address: bmessirdi@univ-oran.dz
E-mail address: senoussaoui.abdou@univ-oran.dz